Search results for: wind machines
719 An Automated System for the Detection of Citrus Greening Disease Based on Visual Descriptors
Authors: Sidra Naeem, Ayesha Naeem, Sahar Rahim, Nadia Nawaz Qadri
Abstract:
Citrus greening is a bacterial disease that causes considerable damage to citrus fruits worldwide. Efficient method for this disease detection must be carried out to minimize the production loss. This paper presents a pattern recognition system that comprises three stages for the detection of citrus greening from Orange leaves: segmentation, feature extraction and classification. Image segmentation is accomplished by adaptive thresholding. The feature extraction stage comprises of three visual descriptors i.e. shape, color and texture. From shape feature we have used asymmetry index, from color feature we have used histogram of Cb component from YCbCr domain and from texture feature we have used local binary pattern. Classification was done using support vector machines and k nearest neighbors. The best performances of the system is Accuracy = 88.02% and AUROC = 90.1% was achieved by automatic segmented images. Our experiments validate that: (1). Segmentation is an imperative preprocessing step for computer assisted diagnosis of citrus greening, and (2). The combination of shape, color and texture features form a complementary set towards the identification of citrus greening disease.Keywords: citrus greening, pattern recognition, feature extraction, classification
Procedia PDF Downloads 183718 An Efficient Hybrid Approach Based on Multi-Agent System and Emergence Method for the Integration of Systematic Preventive Maintenance Policies
Authors: Abdelhadi Adel, Kadri Ouahab
Abstract:
This paper proposes a hybrid algorithm for the integration of systematic preventive maintenance policies in hybrid flow shop scheduling to minimize makespan. We have implemented a problem-solving approach for optimizing the processing time, methods based on metaheuristics. The proposed approach is inspired by the behavior of the human body. This hybridization is between a multi-agent system and inspirations of the human body, especially genetics. The effectiveness of our approach has been demonstrated repeatedly in this paper. To solve such a complex problem, we proposed an approach which we have used advanced operators such as uniform crossover set and single point mutation. The proposed approach is applied to three preventive maintenance policies. These policies are intended to maximize the availability or to maintain a minimum level of reliability during the production chain. The results show that our algorithm outperforms existing algorithms. We assumed that the machines might be unavailable periodically during the production scheduling.Keywords: multi-agent systems, emergence, genetic algorithm, makespan, systematic maintenance, scheduling, hybrid flow shop scheduling
Procedia PDF Downloads 334717 Design of Structure for a Heavy-Duty Mineral Tow Machine by Evaluating the Dynamic and Static Loads
Authors: M. Akhondizadeh, Mohsen Khajoei, Mojtaba Khajoei
Abstract:
The purpose of the present work was the design of a towing machine which was decided to be manufactured by Arman Gohar-e-Sirjan company in the Gol-e-Gohar iron ore complex in Iran. The load analysis has been conducted to determine the static and dynamic loads at the critical conditions. The inertial forces due to the velocity increment and road bump have been considered in load evaluation. The form of loading of the present machine is hauling and/or conveying the mineral machines on the mini ramp. Several stages of these forms of loading, from the initial touch of the tow and carried machine to the final position, have been assessed to determine the critical state. The stress analysis has been performed by the ANSYS software. Several geometries for the main load-carrying elements have been analyzed to have the optimum design by the minimum weight of the structure. Finally, a structure with a total weight of 38 tons has been designed with a static load-carrying capacity of 80 tons by considering the 40 tons additional capacity for dynamic effects. The stress analysis for 120 tons load gives the minimum safety factor of 1.18.Keywords: mechanical design, stress analysis, tow structure, dynamic load, static load
Procedia PDF Downloads 104716 A Constrained Neural Network Based Variable Neighborhood Search for the Multi-Objective Dynamic Flexible Job Shop Scheduling Problems
Authors: Aydin Teymourifar, Gurkan Ozturk, Ozan Bahadir
Abstract:
In this paper, a new neural network based variable neighborhood search is proposed for the multi-objective dynamic, flexible job shop scheduling problems. The neural network controls the problems' constraints to prevent infeasible solutions, while the Variable Neighborhood Search (VNS) applies moves, based on the critical block concept to improve the solutions. Two approaches are used for managing the constraints, in the first approach, infeasible solutions are modified according to the constraints, after the moves application, while in the second one, infeasible moves are prevented. Several neighborhood structures from the literature with some modifications, also new structures are used in the VNS. The suggested neighborhoods are more systematically defined and easy to implement. Comparison is done based on a multi-objective flexible job shop scheduling problem that is dynamic because of the jobs different release time and machines breakdowns. The results show that the presented method has better performance than the compared VNSs selected from the literature.Keywords: constrained optimization, neural network, variable neighborhood search, flexible job shop scheduling, dynamic multi-objective optimization
Procedia PDF Downloads 344715 The Impact of Ship Traffic and Harbor Activities on the Atmospheric Pollution in Two Northern Adriatic Ports: Venice and Rijeka
Authors: Elena Barbaro, Elena Gregoris, Rossano Piazza, Boris Mifka, Tatjana Ivošević, Ivo Orlić, Ana Alebić-Juretić, Andrea Gambaro, Daniele Contini
Abstract:
The aim of the POSEIDON project is to quantify the relative contribution of maritime traffic and harbor activities to atmospheric pollutants concentration in four port-cities of the Adriatic Sea. This study focuses on the harbors of Venice and Rijeka. In order to investigate the main pollution sources, emission inventories were used as input for receptor models: PMF (positive matrix factorization) and PCA (principal components analysis); moreover source identification was also conducted using PAHs diagnostic ratios. The ship traffic impact was quantified: i) on gaseous and particulate PAHs, collected using a new method which consisted in a double simultaneous sampling, in different wind sectors; ii) applying PMF to data of metals, PAHs and ions in PM10; iii) using the vanadium concentration according to the Agrawal methodology.Keywords: ship traffic, PMF, harbor, POSEIDON
Procedia PDF Downloads 599714 Effect of Noise at Different Frequencies on Heart Rate Variability - Experimental Study Protocol
Authors: A. Bortkiewcz, A. Dudarewicz, P. Małecki, M. Kłaczyński, T. Wszołek, Małgorzata Pawlaczyk-Łuszczyńska
Abstract:
Low-frequency noise (LFN) has been recognized as a special environmental pollutant. It is usually considered a broadband noise with the dominant content of low frequencies from 10 Hz to 250 Hz. A growing body of data shows that LFN differs in nature from other environmental noises, which are at comparable levels but not dominated by low-frequency components. The primary and most frequent adverse effect of LFN exposure is annoyance. Moreover, some recent investigations showed that LFN at relatively low A-weighted sound pressure levels (40−45 dB) occurring in office-like areas could adversely affect the mental performance, especially of high-sensitive subjects. It is well documented that high-frequency noise disturbs various types of human functions; however, there is very little data on the impact of LFN on well-being and health, including the cardiovascular system. Heart rate variability (HRV) is a sensitive marker of autonomic regulation of the circulatory system. Walker and co-workers found that LFN has a significantly more negative impact on cardiovascular response than exposure to high-frequency noise and that changes in HRV parameters resulting from LFN exposure tend to persist over time. The negative reactions of the cardiovascular system in response to LFN generated by wind turbines (20-200 Hz) were confirmed by Chiu. The scientific aim of the study is to assess the relationship between the spectral-temporal characteristics of LFN and the activity of the autonomic nervous system, considering the subjective assessment of annoyance, sensitivity to this type of noise, and cognitive and general health status. The study will be conducted in 20 male students in a special, acoustically prepared, constantly supervised room. Each person will be tested 4 times (4 sessions), under conditions of non-exposure (sham) and exposure to noise of wind turbines recorded at a distance of 250 meters from the turbine with different frequencies and frequency ranges: acoustic band 20 Hz-20 kHz, infrasound band 5-20 Hz, acoustic band + infrasound band. The order of sessions of the experiment will be randomly selected. Each session will last 1 h. There will be a 2-3 days break between sessions to exclude the possibility of the earlier session influencing the results of the next one. Before the first exposure, a questionnaire will be conducted on noise sensitivity, general health status using the GHQ questionnaire, hearing organ status and sociodemographic data. Before each of the 4 exposures, subjects will complete a brief questionnaire on their mood and sleep quality the night before the test. After the test, the subjects will be asked about any discomfort and subjective symptoms during the exposure. Before the test begins, Holter ECG monitoring equipment will be installed. HRV will be analyzed from the ECG recordings, including time and frequency domain parameters. The tests will always be performed in the morning (9-12) to avoid the influence of diurnal rhythm on HRV results. Students will perform psychological tests 15 minutes before the end of the test (Vienna Test System).Keywords: neurovegetative control, heart rate variability (HRV), cognitive processes, low frequency noise
Procedia PDF Downloads 78713 Aerodynamic Analysis and Design of Banners for Remote-Controlled Aircraft
Authors: Peyman Honarmandi, Mazen Alhirsh
Abstract:
Banner towing is a major form of advertisement. It consists of a banner showing a logo or a selection of words or letters being towed by an aircraft. Traditionally bush planes have been used to tow banners given their high thrust capabilities; however, with the development of remote-controlled (RC) aircraft, they could be a good replacement as RC planes mitigate the risk of human life and can be easier to operate. This paper studies the best banner design to be towed by an RC aircraft. This is done by conducting wind tunnel testing on an array of banners with different materials and designs. A pull gauge is used to record the drag force during testing, which is then used to calculate the coefficient of drag, Cd. The testing results show that the best banner design would be a hybrid design with a solid and mesh material. The design with the lowest Cd of 0.082 was a half ripstop nylon half polyester mesh design. On the other hand, the design with the highest Cd of 0.305 involved incorporating a tail chute to decrease fluttering.Keywords: aerodynamics of banner, banner design, banner towing, drag coefficients of banner, RC aircraft banner
Procedia PDF Downloads 240712 Constructing a Bayesian Network for Solar Energy in Egypt Using Life Cycle Analysis and Machine Learning Algorithms
Authors: Rawaa H. El-Bidweihy, Hisham M. Abdelsalam, Ihab A. El-Khodary
Abstract:
In an era where machines run and shape our world, the need for a stable, non-ending source of energy emerges. In this study, the focus was on the solar energy in Egypt as a renewable source, the most important factors that could affect the solar energy’s market share throughout its life cycle production were analyzed and filtered, the relationships between them were derived before structuring a Bayesian network. Also, forecasted models were built for multiple factors to predict the states in Egypt by 2035, based on historical data and patterns, to be used as the nodes’ states in the network. 37 factors were found to might have an impact on the use of solar energy and then were deducted to 12 factors that were chosen to be the most effective to the solar energy’s life cycle in Egypt, based on surveying experts and data analysis, some of the factors were found to be recurring in multiple stages. The presented Bayesian network could be used later for scenario and decision analysis of using solar energy in Egypt, as a stable renewable source for generating any type of energy needed.Keywords: ARIMA, auto correlation, Bayesian network, forecasting models, life cycle, partial correlation, renewable energy, SARIMA, solar energy
Procedia PDF Downloads 154711 Shape Optimization of a Hole for Water Jetting in a Spudcan for a Jack-Up Rig
Authors: Han Ik Park, Jeong Hyeon Seong, Dong Seop Han, Su-Chul Shin, Young Chul Park
Abstract:
A Spudcan is mounted on the lower leg of the jack-up rig, a device for preventing a rollover of a structure and to support the structure in a stable sea floor. At the time of inserting the surface of the spud can to penetrate when the sand layer is stable and smoothly pulled to the clay layer, and at that time of recovery when uploading the spud can is equipped with a water injection device. In this study, it is significant to optimize the shape of pipelines holes for water injection device and it was set in two kinds of shape, the oval and round. Interpretation of the subject into the site of Gulf of Mexico offshore Wind Turbine Installation Vessels (WTIV)was chosen as a target platform. Using the ANSYS Workbench commercial programs, optimal design was conducted. The results of this study can be applied to the hole-shaped design of various marine structures.Keywords: kriging method, jack-up rig, shape optimization, spudcan
Procedia PDF Downloads 507710 Manual to Automated Testing: An Effort-Based Approach for Determining the Priority of Software Test Automation
Authors: Peter Sabev, Katalina Grigorova
Abstract:
Test automation allows performing difficult and time consuming manual software testing tasks efficiently, quickly and repeatedly. However, development and maintenance of automated tests is expensive, so it needs a proper prioritization what to automate first. This paper describes a simple yet efficient approach for such prioritization of test cases based on the effort needed for both manual execution and software test automation. The suggested approach is very flexible because it allows working with a variety of assessment methods, and adding or removing new candidates at any time. The theoretical ideas presented in this article have been successfully applied in real world situations in several software companies by the authors and their colleagues including testing of real estate websites, cryptographic and authentication solutions, OSGi-based middleware framework that has been applied in various systems for smart homes, connected cars, production plants, sensors, home appliances, car head units and engine control units (ECU), vending machines, medical devices, industry equipment and other devices that either contain or are connected to an embedded service gateway.Keywords: automated testing, manual testing, test automation, software testing, test prioritization
Procedia PDF Downloads 333709 Hydroinformatics of Smart Cities: Real-Time Water Quality Prediction Model Using a Hybrid Approach
Authors: Elisa Coraggio, Dawei Han, Weiru Liu, Theo Tryfonas
Abstract:
Water is one of the most important resources for human society. The world is currently undergoing a wave of urban growth, and pollution problems are of a great impact. Monitoring water quality is a key task for the future of the environment and human species. In recent times, researchers, using Smart Cities technologies are trying to mitigate the problems generated by the population growth in urban areas. The availability of huge amounts of data collected by a pervasive urban IoT can increase the transparency of decision making. Several services have already been implemented in Smart Cities, but more and more services will be involved in the future. Water quality monitoring can successfully be implemented in the urban IoT. The combination of water quality sensors, cloud computing, smart city infrastructure, and IoT technology can lead to a bright future for environmental monitoring. In the past decades, lots of effort has been put on monitoring and predicting water quality using traditional approaches based on manual collection and laboratory-based analysis, which are slow and laborious. The present study proposes a methodology for implementing a water quality prediction model using artificial intelligence techniques and comparing the results obtained with different algorithms. Furthermore, a 3D numerical model will be created using the software D-Water Quality, and simulation results will be used as a training dataset for the artificial intelligence algorithm. This study derives the methodology and demonstrates its implementation based on information and data collected at the floating harbour in the city of Bristol (UK). The city of Bristol is blessed with the Bristol-Is-Open infrastructure that includes Wi-Fi network and virtual machines. It was also named the UK ’s smartest city in 2017.In recent times, researchers, using Smart Cities technologies are trying to mitigate the problems generated by the population growth in urban areas. The availability of huge amounts of data collected by a pervasive urban IoT can increase the transparency of decision making. Several services have already been implemented in Smart Cities, but more and more services will be involved in the future. Water quality monitoring can successfully be implemented in the urban IoT. The combination of water quality sensors, cloud computing, smart city infrastructure, and IoT technology can lead to a bright future for the environment monitoring. In the past decades, lots of effort has been put on monitoring and predicting water quality using traditional approaches based on manual collection and laboratory-based analysis, which are slow and laborious. The present study proposes a new methodology for implementing a water quality prediction model using artificial intelligence techniques and comparing the results obtained with different algorithms. Furthermore, a 3D numerical model will be created using the software D-Water Quality, and simulation results will be used as a training dataset for the Artificial Intelligence algorithm. This study derives the methodology and demonstrate its implementation based on information and data collected at the floating harbour in the city of Bristol (UK). The city of Bristol is blessed with the Bristol-Is-Open infrastructure that includes Wi-Fi network and virtual machines. It was also named the UK ’s smartest city in 2017.Keywords: artificial intelligence, hydroinformatics, numerical modelling, smart cities, water quality
Procedia PDF Downloads 185708 Epileptic Seizure Onset Detection via Energy and Neural Synchronization Decision Fusion
Authors: Marwa Qaraqe, Muhammad Ismail, Erchin Serpedin
Abstract:
This paper presents a novel architecture for a patient-specific epileptic seizure onset detector using scalp electroencephalography (EEG). The proposed architecture is based on the decision fusion calculated from energy and neural synchronization related features. Specifically, one level of the detector calculates the condition number (CN) of an EEG matrix to evaluate the amount of neural synchronization present within the EEG channels. On a parallel level, the detector evaluates the energy contained in four EEG frequency subbands. The information is then fed into two independent (parallel) classification units based on support vector machines to determine the onset of a seizure event. The decisions from the two classifiers are then combined together according to two fusion techniques to determine a global decision. Experimental results demonstrate that the detector based on the AND fusion technique outperforms existing detectors with a sensitivity of 100%, detection latency of 3 seconds, while it achieves a 2:76 false alarm rate per hour. The OR fusion technique achieves a sensitivity of 100%, and significantly improves delay latency (0:17 seconds), yet it achieves 12 false alarms per hour.Keywords: epilepsy, EEG, seizure onset, electroencephalography, neuron, detection
Procedia PDF Downloads 475707 Effective Cooling of Photovoltaic Solar Cells by Inserting Triangular Ribs: A Numerical Study
Authors: S. Saadi, S. Benissaad, S. Poncet, Y. Kabar
Abstract:
In photovoltaic (PV) cells, most of the absorbed solar radiation cannot be converted into electricity. A large amount of solar radiation is converted to heat, which should be dissipated by any cooling techniques. In the present study, the cooling is achieved by inserting triangular ribs in the duct. A comprehensive two-dimensional thermo-fluid model for the effective cooling of PV cells has been developed. It has been first carefully validated against experimental and numerical results available in the literature. A parametric analysis was then carried out about the influence of the number and size of the ribs, wind speed, solar irradiance and inlet fluid velocity on the average solar cell and outlet air temperatures as well as the thermal and electrical efficiencies of the module. Results indicated that the use of triangular ribbed channels is a very effective cooling technique, which significantly reduces the average temperature of the PV cell, especially when increasing the number of ribs.Keywords: effective cooling, numerical modeling, photovoltaic cell, triangular ribs
Procedia PDF Downloads 175706 Mage Fusion Based Eye Tumor Detection
Authors: Ahmed Ashit
Abstract:
Image fusion is a significant and efficient image processing method used for detecting different types of tumors. This method has been used as an effective combination technique for obtaining high quality images that combine anatomy and physiology of an organ. It is the main key in the huge biomedical machines for diagnosing cancer such as PET-CT machine. This thesis aims to develop an image analysis system for the detection of the eye tumor. Different image processing methods are used to extract the tumor and then mark it on the original image. The images are first smoothed using median filtering. The background of the image is subtracted, to be then added to the original, results in a brighter area of interest or tumor area. The images are adjusted in order to increase the intensity of their pixels which lead to clearer and brighter images. once the images are enhanced, the edges of the images are detected using canny operators results in a segmented image comprises only of the pupil and the tumor for the abnormal images, and the pupil only for the normal images that have no tumor. The images of normal and abnormal images are collected from two sources: “Miles Research” and “Eye Cancer”. The computerized experimental results show that the developed image fusion based eye tumor detection system is capable of detecting the eye tumor and segment it to be superimposed on the original image.Keywords: image fusion, eye tumor, canny operators, superimposed
Procedia PDF Downloads 361705 Observation and Analysis of Urban Micro-Climate and Urban Morphology on Block Scale in Zhengzhou City
Authors: Linlin Guo, Baofeng Li
Abstract:
Zhengzhou is a typical plain city with a high population density and a permanent population of 10 million, located in central China. The scale of this city is constantly expanding, and the urban form has changed dramatically by the accelerating process of urbanization, which makes a great effect on the urban microclimate. In order to study the influence of block morphology on urban micro-climate, air temperature, humidity, wind velocity and so on in three typical types of blocks in the center of Zhengzhou were collected, which was chosen to perform the fixed and mobile observation. After data handling and analysis, a series of graphs and diagrams were obtained to reflect the differences in the influence of different types of block morphology on the urban microclimate. These can provide targeted strategies for urban design to improve and regulate urban micro-climate.Keywords: urban micro-climate, block morphology, fixed and mobile observation, urban design
Procedia PDF Downloads 238704 Analysis and Modeling of Vibratory Signals Based on LMD for Rolling Bearing Fault Diagnosis
Authors: Toufik Bensana, Slimane Mekhilef, Kamel Tadjine
Abstract:
The use of vibration analysis has been established as the most common and reliable method of analysis in the field of condition monitoring and diagnostics of rotating machinery. Rolling bearings cover a broad range of rotary machines and plays a crucial role in the modern manufacturing industry. Unfortunately, the vibration signals collected from a faulty bearing are generally non-stationary, nonlinear and with strong noise interference, so it is essential to obtain the fault features correctly. In this paper, a novel numerical analysis method based on local mean decomposition (LMD) is proposed. LMD decompose the signal into a series of product functions (PFs), each of which is the product of an envelope signal and a purely frequency modulated FM signal. The envelope of a PF is the instantaneous amplitude (IA) and the derivative of the unwrapped phase of a purely flat frequency demodulated (FM) signal is the IF. After that, the fault characteristic frequency of the roller bearing can be extracted by performing spectrum analysis to the instantaneous amplitude of PF component containing dominant fault information. the results show the effectiveness of the proposed technique in fault detection and diagnosis of rolling element bearing.Keywords: fault diagnosis, local mean decomposition, rolling element bearing, vibration analysis
Procedia PDF Downloads 406703 Application of Chemical Tests for the Inhibition of Scaling From Hamma Hard Waters
Authors: Samira Ghizellaoui, Manel Boumagoura
Abstract:
Calcium carbonate precipitation is a widespread problem, especially in hard water systems. The main water supply that supplies the city of Constantine with drinking water is underground water called Hamma water. This water has a very high hardness of around 590 mg/L CaCO₃. This leads to the formation of scale, consisting mainly of calcium carbonate, which can be responsible for the clogging of valves and the deterioration of equipment (water heaters, washing machines and encrustations in the pipes). Plant extracts used as scale inhibitors have attracted the attention of several researchers. In recent years, green inhibitors have attracted great interest because they are biodegradable, non-toxic and do not affect the environment. The aim of our work is to evaluate the effectiveness of a chemical antiscale treatment in the presence of three green inhibitors: gallicacid; quercetin; alginate, and three mixtures: (gallic acid-quercetin); (quercetin-alginate); (gallic acid-alginate). The results show that the inhibitory effect is manifested from an addition of 1mg/L of gallic acid, 10 mg/L of quercetin, 0.2 mg/L of alginate, 0.4mg/L of (gallic acid-quercetin), 2mg/L of (quercetin-alginate) and 0.4 mg/L of (gallic acid-alginate). On the other hand, 100 mg/L (Drinking water standard) of Ca2+is reached for partial softening at 4 mg/L of gallic acid, 40 mg/L of quercetin, 0.6mg/L of alginate, 4mg/L of (gallic acid-quercetin), 10mg/L of (quercetin-alginate) and 1.6 mg/L of (gallic acid-alginate).Keywords: water, scaling, calcium carbonate, green inhibitor
Procedia PDF Downloads 66702 Auto-Tuning of CNC Parameters According to the Machining Mode Selection
Authors: Jenq-Shyong Chen, Ben-Fong Yu
Abstract:
CNC(computer numerical control) machining centers have been widely used for machining different metal components for various industries. For a specific CNC machine, its everyday job is assigned to cut different products with quite different attributes such as material type, workpiece weight, geometry, tooling, and cutting conditions. Theoretically, the dynamic characteristics of the CNC machine should be properly tuned match each machining job in order to get the optimal machining performance. However, most of the CNC machines are set with only a standard set of CNC parameters. In this study, we have developed an auto-tuning system which can automatically change the CNC parameters and in hence change the machine dynamic characteristics according to the selection of machining modes which are set by the mixed combination of three machine performance indexes: the HO (high surface quality) index, HP (high precision) index and HS (high speed) index. The acceleration, jerk, corner error tolerance, oscillation and dynamic bandwidth of machine’s feed axes have been changed according to the selection of the machine performance indexes. The proposed auto-tuning system of the CNC parameters has been implemented on a PC-based CNC controller and a three-axis machining center. The measured experimental result have shown the promising of our proposed auto-tuning system.Keywords: auto-tuning, CNC parameters, machining mode, high speed, high accuracy, high surface quality
Procedia PDF Downloads 378701 A Speeded up Robust Scale-Invariant Feature Transform Currency Recognition Algorithm
Authors: Daliyah S. Aljutaili, Redna A. Almutlaq, Suha A. Alharbi, Dina M. Ibrahim
Abstract:
All currencies around the world look very different from each other. For instance, the size, color, and pattern of the paper are different. With the development of modern banking services, automatic methods for paper currency recognition become important in many applications like vending machines. One of the currency recognition architecture’s phases is Feature detection and description. There are many algorithms that are used for this phase, but they still have some disadvantages. This paper proposes a feature detection algorithm, which merges the advantages given in the current SIFT and SURF algorithms, which we call, Speeded up Robust Scale-Invariant Feature Transform (SR-SIFT) algorithm. Our proposed SR-SIFT algorithm overcomes the problems of both the SIFT and SURF algorithms. The proposed algorithm aims to speed up the SIFT feature detection algorithm and keep it robust. Simulation results demonstrate that the proposed SR-SIFT algorithm decreases the average response time, especially in small and minimum number of best key points, increases the distribution of the number of best key points on the surface of the currency. Furthermore, the proposed algorithm increases the accuracy of the true best point distribution inside the currency edge than the other two algorithms.Keywords: currency recognition, feature detection and description, SIFT algorithm, SURF algorithm, speeded up and robust features
Procedia PDF Downloads 234700 Adjusted LOLE and EENS Indices for the Consideration of Load Excess Transfer in Power Systems Adequacy Studies
Authors: François Vallée, Jean-François Toubeau, Zacharie De Grève, Jacques Lobry
Abstract:
When evaluating the capacity of a generation park to cover the load in transmission systems, traditional Loss of Load Expectation (LOLE) and Expected Energy not Served (EENS) indices can be used. If those indices allow computing the annual duration and severity of load non-covering situations, they do not take into account the fact that the load excess is generally shifted from one penury state (hour or quarter of an hour) to the following one. In this paper, a sequential Monte Carlo framework is introduced in order to compute adjusted LOLE and EENS indices. Practically, those adapted indices permit to consider the effect of load excess transfer on the global adequacy of a generation park, providing thus a more accurate evaluation of this quantity.Keywords: expected energy not served, loss of load expectation, Monte Carlo simulation, reliability, wind generation
Procedia PDF Downloads 409699 Valorization of Residues from Forest Industry for the Generation of Energy
Authors: M. A. Amezcua-Allieri, E. Torres, J. A. Zermeño Eguía-Lis, M. Magdaleno, L. A. Melgarejo, E. Palmerín, A. Rosas, D. López, J. Aburto
Abstract:
The use of biomass to produce renewable energy is one of the forms that can be used to reduce the impact of energy production. Like any other energy resource, there are limitations for biomass use, and it must compete not only with fossil fuels but also with other renewable energy sources such as solar or wind energy. Combustion is currently the most efficient and widely used waste-to-energy process, in the areas where direct use of biomass is possible, without the need to make large transfers of raw material. Many industrial facilities can use agricultural or forestry waste, straw, chips, bagasse, etc. in their thermal systems without making major transformations or adjustments in the feeding to the ovens, making this waste an attractive and cost-effective option in terms of availability, access, and costs. In spite of the facilities and benefits, the environmental reasons (emission of gases and particulate material) are decisive for its use for energy purpose. This paper describes a valorization of residues from forest industry to generate energy, using a case study.Keywords: bioenergy, forest waste, life-cycle assessment, waste-to-energy, electricity
Procedia PDF Downloads 304698 Tribological Characterization of Composites Based on Epoxy Resin Filled with Tailings of Scheelite
Authors: Clarissa D. M. O. Guimaraes, Mariza C. M. Fernandes, Francisco R. V. Diaz, Juliana R. Souza
Abstract:
The use of mineral fillers in the preparation of organic matrix composites can be an efficient alternative in minimizing the environmental damage generated in passive mineral beneficiation processes. In addition, it may represent a new material option for wind, construction, and aeronautical industries, for example. In this sense, epoxy resin composites with Tailings of Scheelite (TS) were developed. The composites were manufactured with 5%, 10% and 20% of TS in volume percentage, homogenized by mechanical mixing and molded in a silicon mold. In order to make the tribological evaluation, pin on disk tests were performed to analyze coefficient of friction and wear. The wear mechanisms were identified by SEM (scanning electron microscope) images. The coefficient of friction had a tendency to decrease with increasing amount of filler. The wear tends to increase with increasing amount of filler, although it exhibits a similar wear behavior. The results suggest characteristics that are potential used in many tribological applications.Keywords: composites, mineral filler, tailings of scheelite, tribology
Procedia PDF Downloads 163697 Analysis of Noodle Production Process at Yan Hu Food Manufacturing: Basis for Production Improvement
Authors: Rhadinia Tayag-Relanes, Felina C. Young
Abstract:
This study was conducted to analyze the noodle production process at Yan Hu Food Manufacturing for the basis of production improvement. The study utilized the PDCA approach and record review in the gathering of data for the calendar year 2019 from August to October data of the noodle products miki, canton, and misua. Causal-comparative research was used in this study; it attempts to establish cause-effect relationships among the variables such as descriptive statistics and correlation, both were used to compute the data gathered. The study found that miki, canton, and misua production has different cycle time sets for each production and has different production outputs in every set of its production process and a different number of wastages. The company has not yet established its allowable rejection rate/ wastage; instead, this paper used a 1% wastage limit. The researcher recommended the following: machines used for each process of the noodle product must be consistently maintained and monitored; an assessment of all the production operators by checking their performance statistically based on the output and the machine performance; a root cause analysis for finding the solution must be conducted; and an improvement on the recording system of the input and output of the production process of noodle product should be established to eliminate the poor recording of data.Keywords: continuous improvement, process, operations, PDCA
Procedia PDF Downloads 69696 Resource-Constrained Assembly Line Balancing Problems with Multi-Manned Workstations
Authors: Yin-Yann Chen, Jia-Ying Li
Abstract:
Assembly line balancing problems can be categorized into one-sided, two-sided, and multi-manned ones by using the number of operators deployed at workstations. This study explores the balancing problem of a resource-constrained assembly line with multi-manned workstations. Resources include machines or tools in assembly lines such as jigs, fixtures, and hand tools. A mathematical programming model was developed to carry out decision-making and planning in order to minimize the numbers of workstations, resources, and operators for achieving optimal production efficiency. To improve the solution-finding efficiency, a genetic algorithm (GA) and a simulated annealing algorithm (SA) were designed and developed in this study to be combined with a practical case in car making. Results of the GA/SA and mathematics programming were compared to verify their validity. Finally, analysis and comparison were conducted in terms of the target values, production efficiency, and deployment combinations provided by the algorithms in order for the results of this study to provide references for decision-making on production deployment.Keywords: heuristic algorithms, line balancing, multi-manned workstation, resource-constrained
Procedia PDF Downloads 207695 Crowdfunding for Saudi Arabia Green Projects
Authors: Saleh Komies, Mona Alharbi, Razan Alhayyani, Mozah Almulhim, Roseanne Khawaja, Ahmed Alradhi
Abstract:
One of the proposed solutions that faces some challenges is encouraging sustainable energy consumption across Saudi Arabia through crowdfunding platforms. To address these challenges, we need to determine the level of awareness of crowdfunding and green projects, as well as the preferences and willingness of Saudis to utilize crowdfunding as an alternative funding source for green projects in Saudi Arabia. In this study, we aim to determine the influence of environmental awareness and concern on the propensity to crowdfund green projects. The survey is being conducted as part of environmental initiatives to assess public perceptions and opinions on crowdfunding green projects in Saudi Arabia. A total of 450 responses to an online questionnaire distributed via convenience and snowball sampling were utilized for data analysis. The survey reveals that Saudis have a low understanding of crowdfunding concepts and a relatively high understanding of implementing green projects. The public is interested in crowdfunding green projects if there is a return on investment.Keywords: crowdfunding, green projects, awareness, Saudi Arabia, energy, solar, wind
Procedia PDF Downloads 98694 Influence of Major Axis on the Aerodynamic Characteristics of Elliptical Section
Authors: K. B. Rajasekarababu, J. Karthik, G. Vinayagamurthy
Abstract:
This paper is intended to explain the influence of major axis on aerodynamic characteristics of elliptical section. Many engineering applications such as off shore structures, bridge piers, civil structures and pipelines can be modelled as a circular cylinder but flow over complex bodies like, submarines, Elliptical wing, fuselage, missiles, and rotor blades, in which the parameters such as axis ratio can influence the flow characteristics of the wake and nature of separation. Influence of Major axis in Flow characteristics of elliptical sections are examined both experimentally and computationally in this study. For this research, four elliptical models with varying major axis [*AR=1, 4, 6, 10] are analysed. Experimental works have been conducted in a subsonic wind tunnel. Furthermore, flow characteristics on elliptical model are predicted from k-ε turbulence model using the commercial CFD packages by pressure based transient solver with Standard wall conditions.The analysis can be extended to estimation and comparison of Drag coefficient and Fatigue analysis of elliptical sections.Keywords: elliptical section, major axis, aerodynamic characteristics, k-ε turbulence model
Procedia PDF Downloads 434693 A Teaching Learning Based Optimization for Optimal Design of a Hybrid Energy System
Authors: Ahmad Rouhani, Masood Jabbari, Sima Honarmand
Abstract:
This paper introduces a method to optimal design of a hybrid Wind/Photovoltaic/Fuel cell generation system for a typical domestic load that is not located near the electricity grid. In this configuration the combination of a battery, an electrolyser, and a hydrogen storage tank are used as the energy storage system. The aim of this design is minimization of overall cost of generation scheme over 20 years of operation. The Matlab/Simulink is applied for choosing the appropriate structure and the optimization of system sizing. A teaching learning based optimization is used to optimize the cost function. An overall power management strategy is designed for the proposed system to manage power flows among the different energy sources and the storage unit in the system. The results have been analyzed in terms of technics and economics. The simulation results indicate that the proposed hybrid system would be a feasible solution for stand-alone applications at remote locations.Keywords: hybrid energy system, optimum sizing, power management, TLBO
Procedia PDF Downloads 574692 Shock Formation for Double Ramp Surface
Authors: Abdul Wajid Ali
Abstract:
Supersonic flight promises speed, but the design of the air inlet faces an obstacle: shock waves. They prevent air flow in the mixed compression ports, which reduces engine performance. Our research investigates this using supersonic wind tunnels and schlieren imaging to reveal the complex dance between shock waves and airflow. The findings show clear patterns of shock wave formation influenced by internal/external pressure surfaces. We looked at the boundary layer, the slow-moving air near the inlet walls, and its interaction with shock waves. In addition, the study emphasizes the dependence of the shock wave behaviour on the Mach number, which highlights the need for adaptive models. This knowledge is key to optimizing the combined compression inputs, paving the way for more powerful and efficient supersonic vehicles. Future engineers can use this knowledge to improve existing designs and explore innovative configurations for next-generation ultrasonic applications.Keywords: oblique shock formation, boundary layer interaction, schlieren images, double wedge surface
Procedia PDF Downloads 64691 Efficiency of Google Translate and Bing Translator in Translating Persian-to-English Texts
Authors: Samad Sajjadi
Abstract:
Machine translation is a new subject increasingly being used by academic writers, especially students and researchers whose native language is not English. There are numerous studies conducted on machine translation, but few investigations have assessed the accuracy of machine translation from Persian to English at lexical, semantic, and syntactic levels. Using Groves and Mundt’s (2015) Model of error taxonomy, the current study evaluated Persian-to-English translations produced by two famous online translators, Google Translate and Bing Translator. A total of 240 texts were randomly selected from different academic fields (law, literature, medicine, and mass media), and 60 texts were considered for each domain. All texts were rendered by the two translation systems and then by four human translators. All statistical analyses were applied using SPSS. The results indicated that Google translations were more accurate than the translations produced by the Bing Translator, especially in the domains of medicine (lexis: 186 vs. 225; semantic: 44 vs. 48; syntactic: 148 vs. 264 errors) and mass media (lexis: 118 vs. 149; semantic: 25 vs. 32; syntactic: 110 vs. 220 errors), respectively. Nonetheless, both machines are reasonably accurate in Persian-to-English translation of lexicons and syntactic structures, particularly from mass media and medical texts.Keywords: machine translations, accuracy, human translation, efficiency
Procedia PDF Downloads 73690 Study of ANFIS and ARIMA Model for Weather Forecasting
Authors: Bandreddy Anand Babu, Srinivasa Rao Mandadi, C. Pradeep Reddy, N. Ramesh Babu
Abstract:
In this paper quickly illustrate the correlation investigation of Auto-Regressive Integrated Moving and Average (ARIMA) and daptive Network Based Fuzzy Inference System (ANFIS) models done by climate estimating. The climate determining is taken from University of Waterloo. The information is taken as Relative Humidity, Ambient Air Temperature, Barometric Pressure and Wind Direction utilized within this paper. The paper is carried out by analyzing the exhibitions are seen by demonstrating of ARIMA and ANIFIS model like with Sum of average of errors. Versatile Network Based Fuzzy Inference System (ANFIS) demonstrating is carried out by Mat lab programming and Auto-Regressive Integrated Moving and Average (ARIMA) displaying is produced by utilizing XLSTAT programming. ANFIS is carried out in Fuzzy Logic Toolbox in Mat Lab programming.Keywords: ARIMA, ANFIS, fuzzy surmising tool stash, weather forecasting, MATLAB
Procedia PDF Downloads 418