Search results for: strain rate sensitivity
9867 Determination of Bisphenol A and Uric Acid by Modified Single-Walled Carbon Nanotube with Magnesium Layered Hydroxide 3-(4-Methoxyphenyl)Propionic Acid Nanocomposite
Authors: Illyas Md Isa, Maryam Musfirah Che Sobry, Mohamad Syahrizal Ahmad, Nurashikin Abd Azis
Abstract:
A single-walled carbon nanotube (SWCNT) that has been modified with magnesium layered hydroxide 3-(4-methoxyphenyl)propionic acid nanocomposite was proposed for the determination of uric acid and bisphenol A by square wave voltammetry. The results obtained denote that MLH-MPP nanocomposites enhance the sensitivity of the voltammetry detection responses. The best performance is shown by the modified carbon nanotube paste electrode (CNTPE) with the composition of single-walled carbon nanotube: magnesium layered hydroxide 3-(4-methoxyphenyl)propionic acid nanocomposite at 100:15 (% w/w). The linear range where the sensor works well is within the concentration 1.0 10-7 – 1.0 10-4 and 3.0 10-7 – 1.0 10-4 for uric acid and bisphenol A respectively with the limit of detection of 1.0 10-7 M for both organics. The interferences of uric acid and bisphenol A with other organic were studied and most of them did not interfere. The results shown for each experimental parameter on the proposed CNTPE showed that it has high sensitivity, good selectivity, repeatability and reproducibility. Therefore, the modified CNTPE can be used for the determination of uric acid and bisphenol A in real samples such as blood, plastic bottles and foods.Keywords: bisphenol A, magnesium layered hydroxide 3-(4-methoxyphenyl)propionic acid nanocomposite, Nanocomposite, uric acid
Procedia PDF Downloads 2129866 Review of Correlation between Tacrolimus Pharmacotherapy and Infection after Organ Transplantation
Authors: Zahra Tolou-Ghamari
Abstract:
Introduction: After allogeneic organ transplantation, in order to lower the rate of rejectiontacrolimus is given. In fact, infection is reported as the most complication of tacrolimus that might be associated with higher susceptibility by its’ long term use. Aim: This study aims to review the association between the occurrence of infections after organ transplantation following the administration of tacrolims. Materials and Methods: Scientific literature on the pharmacotherapy of tacrolimus after organ transplantation and infections were searched using PUBMED.Gov (https://pubmed.ncbi.nlm.nih.gov/), Web of Science, and Scopus. Results: In order to prevent acute and chronic rejection, the potent immunosuppressive drug tacrolimus administered as a calcineurin inhibitor after organ transplantation. Its’ most frequent infectious complication is reported as urinary tract infection. Virulent strain of recombinant Literiamonocytogenes, in addition to an increase in bacterial burden in the liver and spleen tissues, was reported in the animal experimental study. The consequence of aggressive events and recipients total area under the cureve exposure to immunosuppressive could be as considered as surrogate markers for individual infection’s risk evaluation. Conclusion: Transplant surgery and duration of hospital stay could determinate the risk of infection during the first month of organ transplantation. Despite administration of antiviral drugs, opportunistic infection such as cytomegalovirus could increase the risk of infection during month 1 to year after transplantation.Keywords: transplant, infection, tacrolimus, kidney
Procedia PDF Downloads 1319865 Sensing Study through Resonance Energy and Electron Transfer between Föster Resonance Energy Transfer Pair of Fluorescent Copolymers and Nitro-Compounds
Authors: Vishal Kumar, Soumitra Satapathi
Abstract:
Föster Resonance Energy Transfer (FRET) is a powerful technique used to probe close-range molecular interactions. Physically, the FRET phenomenon manifests as a dipole–dipole interaction between closely juxtaposed fluorescent molecules (10–100 Å). Our effort is to employ this FRET technique to make a prototype device for highly sensitive detection of environment pollutant. Among the most common environmental pollutants, nitroaromatic compounds (NACs) are of particular interest because of their durability and toxicity. That’s why, sensitive and selective detection of small amounts of nitroaromatic explosives, in particular, 2,4,6-trinitrophenol (TNP), 2,4-dinitrotoluene (DNT) and 2,4,6-trinitrotoluene (TNT) has been a critical challenge due to the increasing threat of explosive-based terrorism and the need of environmental monitoring of drinking and waste water. In addition, the excessive utilization of TNP in several other areas such as burn ointment, pesticides, glass and the leather industry resulted in environmental accumulation, and is eventually contaminating the soil and aquatic systems. To the date, high number of elegant methods, including fluorimetry, gas chromatography, mass, ion-mobility and Raman spectrometry have been successfully applied for explosive detection. Among these efforts, fluorescence-quenching methods based on the mechanism of FRET show good assembly flexibility, high selectivity and sensitivity. Here, we report a FRET-based sensor system for the highly selective detection of NACs, such as TNP, DNT and TNT. The sensor system is composed of a copolymer Poly [(N,N-dimethylacrylamide)-co-(Boc-Trp-EMA)] (RP) bearing tryptophan derivative in the side chain as donor and dansyl tagged copolymer P(MMA-co-Dansyl-Ala-HEMA) (DCP) as an acceptor. Initially, the inherent fluorescence of RP copolymer is quenched by non-radiative energy transfer to DCP which only happens once the two molecules are within Förster critical distance (R0). The excellent spectral overlap (Jλ= 6.08×10¹⁴ nm⁴M⁻¹cm⁻¹) between donors’ (RP) emission profile and acceptors’ (DCP) absorption profile makes them an exciting and efficient FRET pair i.e. further confirmed by the high rate of energy transfer from RP to DCP i.e. 0.87 ns⁻¹ and lifetime measurement by time correlated single photon counting (TCSPC) to validate the 64% FRET efficiency. This FRET pair exhibited a specific fluorescence response to NACs such as DNT, TNT and TNP with 5.4, 2.3 and 0.4 µM LODs, respectively. The detection of NACs occurs with high sensitivity by photoluminescence quenching of FRET signal induced by photo-induced electron transfer (PET) from electron-rich FRET pair to electron-deficient NAC molecules. The estimated stern-volmer constant (KSV) values for DNT, TNT and TNP are 6.9 × 10³, 7.0 × 10³ and 1.6 × 104 M⁻¹, respectively. The mechanistic details of molecular interactions are established by time-resolved fluorescence, steady-state fluorescence and absorption spectroscopy confirmed that the sensing process is of mixed type, i.e. both dynamic and static quenching as lifetime of FRET system (0.73 ns) is reduced to 0.55, 0.57 and 0.61 ns DNT, TNT and TNP, respectively. In summary, the simplicity and sensitivity of this novel FRET sensor opens up the possibility of designing optical sensor of various NACs in one single platform for developing multimodal sensor for environmental monitoring and future field based study.Keywords: FRET, nitroaromatic, stern-Volmer constant, tryptophan and dansyl tagged copolymer
Procedia PDF Downloads 1349864 Investigation of the Cyclic Response of Mudrock
Authors: Shaymaa Kennedy, Sam Clark, Paul Shaply
Abstract:
With the upcoming construction of high-speed rail HS2 in the UK, a number of issues surrounding the construction technology and track design need to be answered. In this paper performance of subsoil subjected to dynamic loads were studied. The material of study is Mudrock backfill, a weak prevalent rock which response under indicative loading of high-speed rail line is unknown. This paper aims to investigate the use of different track types and the influence they will have on the underlying soil, in order to evaluate the behaviour of it. Ballstless track is a well-established concept in Europe, and the investigation the benefit of the form of construction due to its known savings in maintenance costs. Physical test using a triaxial cyclic loading machine was conducted to assess the expected mechanical behaviour of mudrock under a range of dynamic loads which could be generated beneath different track constructions. Some further parameters are required to frame the problem including determining the stress change with depth and cyclic response are vital to determine the residual plastic strain which is a major concern. In addition, Stress level is discussed in this paper, which are applied to recreate conditions of soil in the laboratory. Results indicate that stress levels are highly influential on the performance of soil at shallower depth and become insignificant with increasing depth.Keywords: stress level, dynamic load, residual plastic strain, high speed railway
Procedia PDF Downloads 2479863 Performance Study of ZigBee-Based Wireless Sensor Networks
Authors: Afif Saleh Abugharsa
Abstract:
The IEEE 802.15.4 standard is designed for low-rate wireless personal area networks (LR-WPAN) with focus on enabling wireless sensor networks. It aims to give a low data rate, low power consumption, and low cost wireless networking on the device-level communication. The objective of this study is to investigate the performance of IEEE 802.15.4 based networks using simulation tool. In this project the network simulator 2 NS2 was used to several performance measures of wireless sensor networks. Three scenarios were considered, multi hop network with a single coordinator, star topology, and an ad hoc on demand distance vector AODV. Results such as packet delivery ratio, hop delay, and number of collisions are obtained from these scenarios.Keywords: ZigBee, wireless sensor networks, IEEE 802.15.4, low power, low data rate
Procedia PDF Downloads 4339862 Numerical Evaluation of Lateral Bearing Capacity of Piles in Cement-Treated Soils
Authors: Reza Ziaie Moayed, Saeideh Mohammadi
Abstract:
Soft soil is used in many of civil engineering projects like coastal, marine and road projects. Because of low shear strength and stiffness of soft soils, large settlement and low bearing capacity will occur under superstructure loads. This will make the civil engineering activities more difficult and costlier. In the case of soft soils, improvement is a suitable method to increase the shear strength and stiffness for engineering purposes. In recent years, the artificial cementation of soil by cement and lime has been extensively used for soft soil improvement. Cement stabilization is a well-established technique for improving soft soils. Artificial cementation increases the shear strength and hardness of the natural soils. On the other hand, in soft soils, the use of piles to transfer loads to the depths of ground is usual. By using cement treated soil around the piles, high bearing capacity and low settlement in piles can be achieved. In the present study, lateral bearing capacity of short piles in cemented soils is investigated by numerical approach. For this purpose, three dimensional (3D) finite difference software, FLAC 3D is used. Cement treated soil has a strain hardening-softening behavior, because of breaking of bonds between cement agent and soil particle. To simulate such behavior, strain hardening-softening soil constitutive model is used for cement treated soft soil. Additionally, conventional elastic-plastic Mohr Coulomb constitutive model and linear elastic model are used for stress-strain behavior of natural soils and pile. To determine the parameters of constitutive models and also for verification of numerical model, the results of available triaxial laboratory tests on and insitu loading of piles in cement treated soft soil are used. Different parameters are considered in parametric study to determine the effective parameters on the bearing of the piles on cemented treated soils. In the present paper, the effect of various length and height of the artificial cemented area, different diameter and length of the pile and the properties of the materials are studied. Also, the effect of choosing a constitutive model for cemented treated soils in the bearing capacity of the pile is investigated.Keywords: bearing capacity, cement-treated soils, FLAC 3D, pile
Procedia PDF Downloads 1269861 Design and Development of an Algorithm to Predict Fluctuations of Currency Rates
Authors: Nuwan Kuruwitaarachchi, M. K. M. Peiris, C. N. Madawala, K. M. A. R. Perera, V. U. N Perera
Abstract:
Dealing with businesses with the foreign market always took a special place in a country’s economy. Political and social factors came into play making currency rate changes fluctuate rapidly. Currency rate prediction has become an important factor for larger international businesses since large amounts of money exchanged between countries. This research focuses on comparing the accuracy of mainly three models; Autoregressive Integrated Moving Average (ARIMA), Artificial Neural Networks(ANN) and Support Vector Machines(SVM). series of data import, export, USD currency exchange rate respect to LKR has been selected for training using above mentioned algorithms. After training the data set and comparing each algorithm, it was able to see that prediction in SVM performed better than other models. It was improved more by combining SVM and SVR models together.Keywords: ARIMA, ANN, FFNN, RMSE, SVM, SVR
Procedia PDF Downloads 2129860 An Empirical Investigation into the Effect of Macroeconomic Policy on Economic Growth in Nigeria
Authors: Rakiya Abba
Abstract:
This paper investigates the effect of the money supply, exchange and interest rate on economic growth in Nigeria through the application of Augmented Dickey-Fuller technique in testing the unit root property of the series and Granger causality test of causation between GDP, money supply, the exchange, and interest rate. The results of unit root suggest that all the variables in the model are stationary at 1, 5 and 10 percent level of significance, and the results of Causality suggest that money supply and exchange granger cause IR, the result further reveals two – way causation existed between M2 and EXR while IR granger cause GDP the null hypothesis is rejected and GDP does not granger cause IR as indicated by their probability values of 0.4805 and confirmed by F-statistics values of 0.75483. The results revealed that M2 and EXR do not granger causes GDP, the null hypothesis is accepted at 75percent 18percent respectively as indicated by their probability values of 0.7472 and 0.1830 respectively; also, GDP does not granger cause M2 and EXR. The Johansen cointegration result indicates that despite GDP does not granger cause M2, IR, and EXR, but there existed 1 cointegrating equation, implying the existence of long-run relationship between GDP, M2 IR, and EXR. A major policy implication of this result is that economic growth is function of and money supply and exchange rate, effective monetary policies should direct on manipulating instruments and importance should be placed on justification for adopting a particular policy be rationalized in order to increase growth in economyKeywords: economic growth, money supply, interest rate, exchange rate, causality
Procedia PDF Downloads 2679859 Demographic Dividend Explained by Infrastructure Costs of Population Growth Rate, Distinct from Age Dependency
Authors: Jane N. O'Sullivan
Abstract:
Although it is widely believed that fertility decline has benefitted economic advancement, particularly in East and South-East Asian countries, the causal mechanisms for this stimulus are contested. Since the turn of this century, demographic dividend theory has been increasingly recognised, hypothesising that higher proportions of working-age people can contribute to economic expansion if conditions are met to employ them productively. Population growth rate, as a systemic condition distinct from age composition, has not been similar attention since the 1970s and has lacked methodology for quantitative assessment. This paper explores conceptual and empirical quantification of the burden of expanding physical capital to accommodate a growing population. In proof-of-concept analyses of Australia and the United Kingdom, actual expenditure on gross fixed capital formation was compiled over four decades and apportioned to maintenance/turnover or expansion to accommodate population growth, based on lifespan of capital assets and population growth rate. In both countries, capital expansion was estimated to cost 6.5-7.0% of GDP per 1% population growth rate. This opportunity cost impedes the improvement of per capita capacity needed to realise the potential of the working-age population. Economic modelling of demographic scenarios have to date omitted this channel of influence; the implications of its inclusion are discussed.Keywords: age dependency, demographic dividend, infrastructure, population growth rate
Procedia PDF Downloads 1449858 Bioflocculation Using the Purified Wild Strain of P. aeruginosa Culture in Wastewater Treatment
Authors: Mohammad Hajjartabar, Tahereh Kermani Ranjbar
Abstract:
P. aeruginosa EF2 was isolated and identified from human infection sources before in our previous study. The present study was performed to determine the characteristics and activity role of bioflocculant produced by the bacterium in flocculation of the wastewater active sludge treatment. The bacterium was inoculated and then was grown in an orbital shaker at 250 rpm for 5 days at 35 °C under TSB and peptone water media. After incubation period, culture broths of the bacterial strain was collected and washed. The concentration of the bacteria was adjusted. For the extraction of the bacterial bioflocculant, culture was centrifuged at 6000 rpm for 20 min at 4 °C to remove bacterial cells. Supernatant was decanted and pellet containing bioflocculant was dried at 105 °C to a constant weight according to APHA, 2005. The chemical composition of the extracted bioflocculant from the bacterial sample was then analyzed. Wastewater active sludge sample obtained from aeration tank from one of wastewater treatment plants in Tehran, was first mixed thoroughly. After addition of bioflocculant, improvements in floc density were observed with an increase in bioflocculant. The results of this study strongly suggested that the extracted bioflucculant played a significant role in flocculation of the wastewater sample. The use of wild bacteria and nutrient regulation techniques instead of genetic manipulation opens wide investigation area in the future to improve wastewater treatment processes. Also this may put a new path in front of us to attain and improve the more effective bioflocculant using the purified microbial culture in wastewater treatment.Keywords: wastewater treatment, P. aeruginosa, sludge treatment
Procedia PDF Downloads 1569857 Effect of Pressure and Dissolved Oxygen on Stress Corrosion Cracking Susceptibility of Inconel 617 in Steam and Supercritical Water
Authors: Hasan Izhar Khan, Naiqiang Zhang, Hong Xu, Zhongliang Zhu, Dongfang Jiang
Abstract:
Inconel 617, a nickel-based alloy designed for high-temperature applications, got an excellent amalgamation of strength and oxidation resistance at high temperatures. For a better understanding of its suitability to be used in superheater and reheater tubes in ultra-supercritical power plants, stress corrosion cracking (SCC) susceptibility must be evaluated. In the present study, the effect of medium environment on SCC behavior of Inconel 617, in the form of a round bar tensile specimen, was tested via slow strain rate tensile tests in steam and supercritical water (SCW) at 650 °C. The results showed that SCC susceptibility has a linear relationship with exposed pressure and increases monotonically with an increase in pressure. A severe SCC susceptibility was observed in SCW followed by that in a steam environment. Fracture and gage surface showed apparent characteristics of brittle fracture. Intergranular cracks initiated from the edge region and propagated into the matrix through cross section until ductile rupture. When dissolved oxygen contents were decreased in SCW environment, it showed no noticeable effect on mechanical properties but SCC susceptibility slightly decreased. The research revealed the influence of environment on SCC susceptibility of Inconel 617 in steam and SCW.Keywords: Inconel 617, steam, supercritical water, stress corrosion cracking
Procedia PDF Downloads 1579856 UV-Enhanced Room-Temperature Gas-Sensing Properties of ZnO-SnO2 Nanocomposites Obtained by Hydrothermal Treatment
Authors: Luís F. da Silva, Ariadne C. Catto, Osmando F. Lopes, Khalifa Aguir, Valmor R. Mastelaro, Caue Ribeiro, Elson Longo
Abstract:
Gas detection is important for controlling industrial, and vehicle emissions, agricultural residues, and environmental control. In last decades, several semiconducting oxides have been used to detect dangerous or toxic gases. The excellent gas-sensing performance of these devices have been observed at high temperatures (~250 °C), which forbids the use for the detection of flammable and explosive gases. In this way, ultraviolet light activated gas sensors have been a simple and promising alternative to achieve room temperature sensitivity. Among the semiconductor oxides which exhibit a good performance as gas sensor, the zinc oxide (ZnO) and tin oxide (SnO2) have been highlighted. Nevertheless, their poor selectivity is the main disadvantage for application as gas sensor devices. Recently, heterostructures combining these two semiconductors (ZnO-SnO2) have been studied as an alternative way to enhance the gas sensor performance (sensitivity, selectivity, and stability). In this work, we investigated the influence of mass ratio Zn:Sn on the properties of ZnO-SnO2 nanocomposites prepared by hydrothermal treatment for 4 hours at 200 °C. The crystalline phase, surface, and morphological features were characterized by X-ray diffraction (XRD), high-resolution transmission electron (HR-TEM), and X-ray photoelectron spectroscopy (XPS) measurements. The gas sensor measurements were carried out at room-temperature under ultraviolet (UV) light irradiation using different ozone levels (0.06 to 0.61 ppm). The XRD measurements indicate the presence of ZnO and SnO2 crystalline phases, without the evidence of solid solution formation. HR-TEM analysis revealed that a good contact between the SnO2 nanoparticles and the ZnO nanorods, which are very important since interface characteristics between nanostructures are considered as challenge to development new and efficient heterostructures. Electrical measurements proved that the best ozone gas-sensing performance is obtained for ZnO:SnO2 (50:50) nanocomposite under UV light irradiation. Its sensitivity was around 6 times higher when compared to SnO2 pure, a traditional ozone gas sensor. These results demonstrate the potential of ZnO-SnO2 heterojunctions for the detection of ozone gas at room-temperature when irradiated with UV light irradiation.Keywords: hydrothermal, zno-sno2, ozone sensor, uv-activation, room-temperature
Procedia PDF Downloads 2849855 Improved Thermal Comfort and Sensation with Occupant Control of Ceiling Personalized Ventilation System: A Lab Study
Authors: Walid Chakroun, Sorour Alotaibi, Nesreen Ghaddar, Kamel Ghali
Abstract:
This study aims at determining the extent to which occupant control of microenvironment influences, improves thermal sensation and comfort, and saves energy in spaces equipped with ceiling personalized ventilation (CPV) system assisted by chair fans (CF) and desk fans (DF) in 2 experiments in a climatic chamber equipped with two-station CPV systems, one that allows control of fan flow rate and the other is set to the fan speed of the selected participant in control. Each experiment included two participants each entering the cooled space from transitional environment at a conventional mixed ventilation (MV) at 24 °C. For CPV diffuser, fresh air was delivered at a rate of 20 Cubic feet per minute (CFM) and a temperature of 16 °C while the recirculated air was delivered at the same temperature but at a flow rate 150 CFM. The macroclimate air of the space was at 26 °C. The full speed flow rates for both the CFs and DFs were at 5 CFM and 20 CFM, respectively. Occupant 1 was allowed to operate the CFs or the DFs at (1/3 of the full speed, 2/3 of the full speed, and the full speed) while occupant 2 had no control on the fan speed and their fan speed was selected by occupant 1. Furthermore, a parametric study was conducted to study the effect of increasing the fresh air flow rate on the occupants’ thermal comfort and whole body sensations. The results showed that most occupants in the CPV+CFs, who did not control the CF flow rate, felt comfortable 6 minutes. The participants, who controlled the CF speeds, felt comfortable in around 24 minutes because they were preoccupied with the CFs. For the DF speed control experiments, most participants who did not control the DFs felt comfortable within the first 8 minutes. Similarly to the CPV+CFs, the participants who controlled the DF flow rates felt comfortable at around 26 minutes. When the CPV system was either supported by CFs or DFs, 93% of participants in both cases reached thermal comfort. Participants in the parametric study felt more comfortable when the fresh air flow rate was low, and felt cold when as the flow rate increased.Keywords: PMV, thermal comfort, thermal environment, thermal sensation
Procedia PDF Downloads 2599854 Plasma Treatment of Poppy and Flax Seeds in Fluidized Bed Reactor
Authors: Jakub Perner, Jindrich Matousek, Hana Malinska
Abstract:
Adverse environmental conditions at planting (especially water shortage) can lead into reduced germination rate of seeds. The plasma treatment is one of the possibilities that can solve this problem. Such treatment can increase the germination rate of seeds and make germs grow faster due to increased wettability of seeds surface or disrupted seed coat. This could lead to enhanced oxygen and water transport into the seed and improve germination. Poppy and flax seeds were treated in fluidized bed reactor, and discharge power ranging from 10 to 40 W was used. The working gas was air at pressure 100 Pa. Poppy seeds were then planted into Petri dishes on 7 layers of filter paper saturated with water, and the number of germinated seeds was observed from 3 to 6 days after planting. Every plasma treated sample showed improved germination rate compared to untreated seeds (75.5%) six days after planting. Samples treated in 40W discharge had the highest germination rate (81.2%). The decreased contact angle of water on treated poppy seeds was observed from 85° (untreated) to 30–35° (treated). Untreated flax seeds have a germination rate over 98%; therefore, the weight of seeds was taken to be a measure of the successful germination. Treated flax seeds had a slightly higher weight than untreated. Also, the contact angle of water decreased from 99° (untreated) to 65-73° (treated); therefore the treatment of both species is considered to be successful.Keywords: flax, germination, plasma treatment, poppy
Procedia PDF Downloads 1799853 Evaluating Gender Sensitivity and Policy: Case Study of an EFL Textbook in Armenia
Authors: Ani Kojoyan
Abstract:
Linguistic studies have been investigating a connection between gender and linguistic development since 1970s. Scholars claim that gender differences in first and second language learning are socially constructed. Recent studies to language learning and gender reveal that second language acquisition is also a social phenomenon directly influencing one’s gender identity. Those responsible for designing language learning-teaching materials should be encouraged to understand the importance of and address the gender sensitivity accurately in textbooks. Writing or compiling a textbook is not an easy task; it requires strong academic abilities, patience, and experience. For a long period of time Armenia has been involved in the compilation process of a number of foreign language textbooks. However, there have been very few discussions or evaluations of those textbooks which will allow specialists to theorize that practice. The present paper focuses on the analysis of gender sensitivity issues and policy aspects involved in an EFL textbook. For the research the following material has been considered – “A Basic English Grammar: Morphology”, first printed in 2011. The selection of the material is not accidental. First, the mentioned textbook has been widely used in university teaching over years. Secondly, in Armenia “A Basic English Grammar: Morphology” has considered one of the most successful English grammar textbooks in a university teaching environment and served a source-book for other authors to compile and design their textbooks. The present paper aims to find out whether an EFL textbook is gendered in the Armenian teaching environment, and whether the textbook compilers are aware of gendered messages while compiling educational materials. It also aims at investigating students’ attitude toward the gendered messages in those materials. And finally, it also aims at increasing the gender sensitivity among book compilers and educators in various educational settings. For this study qualitative and quantitative research methods of analyses have been applied, the quantitative – in terms of carrying out surveys among students (45 university students, 18-25 age group), and the qualitative one – by discourse analysis of the material and conducting in-depth and semi-structured interviews with the Armenian compilers of the textbook (interviews with 3 authors). The study is based on passive and active observations and teaching experience done in a university classroom environment in 2014-2015, 2015-2016. The findings suggest that the discussed and analyzed teaching materials (145 extracts and examples) include traditional examples of intensive use of language and role-modelling, particularly, men are mostly portrayed as active, progressive, aggressive, whereas women are often depicted as passive and weak. These modeled often serve as a ‘reliable basis’ for reinforcing the traditional roles that have been projected on female and male students. The survey results also show that such materials contribute directly to shaping learners’ social attitudes and expectations around issues of gender. The applied techniques and discussed issues can be generalized and applied to other foreign language textbook compilation processes, since those principles, regardless of a language, are mostly the same.Keywords: EFL textbooks, gender policy, gender sensitivity, qualitative and quantitative research methods
Procedia PDF Downloads 1959852 Premalignant and Malignant Lesions of Uterine Polyps: Analysis at a University Hospital
Authors: Manjunath A. P., Al-Ajmi G. M., Al Shukri M., Girija S
Abstract:
Introduction: This study aimed to compare the ability of hysteroscopy and ultrasonography to diagnose uterine polyps. To correlate the ultrasonography and hystroscopic findings with various clinical factors and histopathology of uterine polyps. Methods: This is a retrospective study conducted at the Department of Obstetrics and Gynaecology at Sultan Qaboos University Hospital from 2014 to 2019. All women undergoing hysteroscopy for suspected uterine polyps were included. All relevant data were obtained from the electronic patient record and analysed using SPSS. Results: A total of 77 eligible women were analysed. The mean age of the patients was 40 years. The clinical risk factors; obesity, hypertension, and diabetes mellitus, showed no significant statistical association with the presence of uterine polyps (p-value>0.005). Although 20 women (52.6%) with uterine polyps had thickened endometrium (>11 mm), however, there is no statistical association (p-value>0.005). The sensitivity and specificity of ultrasonography in the detection of uterine polyp were 39% and 65%, respectively. Whereas for hysteroscopy, it was 89% and 20%, respectively. The prevalence of malignant and premalignant lesions were 1.85% and 7.4%, respectively. Conclusion: This study found that obesity, hypertension, and diabetes mellitus were not associated with the presence of uterine polyps. There was no association between thick endometrium and uterine polyps. The sensitivity is higher for hysteroscopy, whereas the specificity is higher for sonography in detecting uterine polyps. The prevalence of malignancy was very low in uterine polyps.Keywords: endometrial polyps, hysteroscopy, ultrasonography, premalignant, malignant
Procedia PDF Downloads 1299851 Impact of Compost Application with Different Rates of Chemical Fertilizers on Corn Growth and Production
Authors: Reda Abdel-Aziz
Abstract:
Agricultural activities in Egypt generate annually around 35 million tons of waste. Composting is one of the most promising technologies to turnover waste in a more economical way, for many centuries. Composting has been used as a mean of recycling organic matter back into the soil to improve soil structure and fertility. Field experiments were conducted in two governorates, Giza and Al-Monofia, to find out the effect of compost with different rates of chemical fertilizers on growth and yield of corn (Zea mays L.) during two constitutive seasons of 2012 and 2013. The experiment, laid out in a randomized complete block design (RCBD), was carried out on five farmers’ fields in each governorate. The treatments were: unfertilized control, full dose of NPK (120, 30, and 50 kg/acre, respectively), compost at rate of 20 ton/acre, compost at rate of 10 ton/acre + 25% of chemical fertilizer, compost at rate of 10 ton/acre + 50% of chemical fertilizer and compost at rate of 10 ton/acre + 75% of chemical fertilizer. Results revealed a superiority of the treatment of compost at rate of 10 ton/acre + 50% of NPK that caused significant improvement in growth, yield and nutrient uptakes of corn in the two governorates during the two constitutive seasons. Results showed that agricultural waste could be composted into value added soil amendment to enhance efficiency of chemical fertilizer. Composting of agricultural waste could also reduce the chemical fertilizers potential hazard to the environment.Keywords: agricultural waste, compost, chemical fertilizers, corn production, environment
Procedia PDF Downloads 3189850 The Prevalence and Profile of Extended Spectrum B-Lactamase (ESBL) Producing Enterobacteriaceae Species in the Intensive Care Unit (ICU) Setting of a Tertiary Care Hospital of North India
Authors: Harmeet Pal Singh Dhooria, Deepinder Chinna, UPS Sidhu, Alok Jain
Abstract:
Serious infections caused by gram-negative bacteria are a significant cause of mortality and morbidity in the hospital setting. In acute care facilities like in intensive care units (ICUs), the intensity of antimicrobial use together with a population highly susceptible to infection, creates an environment, which facilitates both emergence and transmission of Extended Spectrum -lactamase (ESBL) producing Enterobacteriaceae species. The study was conducted in the Medical Intensive Care Unit (MICU) and the Pulmonary Critical Care Unit (PCCU) of the Department of Medicine, Dayanand Medical College and Hospital, Ludhiana, Punjab, India. Out of a total of 1108 samples of urine, blood and respiratory tract secretions received for culture and sensitivity analysis from Medical Intensive Care Unit and Pulmonary Critical Care Unit, a total of 170 isolates of Enterobacteriaceae species were obtained which were then included in our study. Out of these 170 isolates, confirmed ESBL production was seen in 116 (68.24%) cases. E.coli was the most common species isolated (56.47%) followed by Klebsiella (32.94%), Enterobacter (5.88%), Citrobacter (3.53%), Enterobacter (0.59%) and Morganella (0.59%) among the total isolates. The rate of ESBL production was more in Klebsiella (78.57%) as compared to E.coli (60.42%). ESBL producers were found to be significantly more common in patients with prior history of hospitalization, antibiotic use, and prolonged ICU stay. Also significantly increased the prevalence of ESBL related infections was observed in patients with a history of catheterization or central line insertion but not in patients with the history of intubation. Patients who had an underlying malignancy had significantly higher prevalence of ESBL related infections as compared to other co-morbid illnesses. A slightly significant difference in the rate of mortality/LAMA was observed in the ESBL producer versus the non-ESBL producer group. The rate of mortality/LAMA was significantly higher in the ESBL related UTI but not in the ESBL related respiratory tract and bloodstream infections. ESBL producing isolates had significantly higher rates of resistance to Cefepime and Piperacillin/Tazobactum, and to non β-lactum antibiotics like Amikacin and Ciprofloxacin. The level of resistance to Imipenem was lower as compared to other antibiotics. However, it was noted that ESBL producing isolates had higher levels of resistance to Imipenem as compared to non-ESBL producing isolates. Conclusion- The prevalence of ESBL producing organisms was found to be very high (68.24%) among Enterobacteriaceae isolates in our ICU setting as among other ICU care settings around the world.Keywords: enterobacteriaceae, extended spectrum B-lactamase (ESBL), ICU, antibiotic resistance
Procedia PDF Downloads 2769849 The Role of Cholesterol Oxidase of Mycobacterium tuberculosis in the Down-Regulation of TLR2-Signaling Pathway in Human Macrophages during Infection Process
Authors: Michal Kielbik, Izabela Szulc-Kielbik, Anna Brzostek, Jaroslaw Dziadek, Magdalena Klink
Abstract:
The goal of many research groups in the world is to find new components that are important for survival of mycobacteria in the host cells. Mycobacterium tuberculosis (Mtb) possesses a number of enzymes degrading cholesterol that are considered to be an important factor for its survival and persistence in host macrophages. One of them - cholesterol oxidase (ChoD), although not being essential for cholesterol degradation, is discussed as a virulence compound, however its involvement in macrophages’ response to Mtb is still not sufficiently determined. The recognition of tubercle bacilli antigens by pathogen recognition receptors is crucial for the initiation of the host innate immune response. An important receptor that has been implicated in the recognition and/or uptake of Mtb is Toll-like receptor type 2 (TLR2). Engagement of TLR2 results in the activation and phosphorylation of intracellular signaling proteins including IRAK-1 and -4, TRAF-6, which in turn leads to the activation of target kinases and transcription factors responsible for bactericidal and pro-inflammatory response of macrophages. The aim of these studies was a detailed clarification of the role of Mtb cholesterol oxidase as a virulence factor affecting the TLR2 signaling pathway in human macrophages. As human macrophages the THP-1 differentiated cells were applied. The virulent wild-type Mtb strain (H37Rv), its mutant lacking a functional copy of gene encoding cholesterol oxidase (∆choD), as well as complimented strain (∆choD–choD) were used. We tested the impact of Mtb strains on the expression of TLR2-depended signaling proteins (mRNA level, cytosolic level and phosphorylation status). The cytokine and bactericidal response of THP-1 derived macrophages infected with Mtb strains in relation to TLR2 signaling pathway dependence was also determined. We found that during the 24-hours of infection process the wild-type and complemented Mtb significantly reduced the cytosolic level and phosphorylation status of IRAK-4 and TRAF-6 proteins in macrophages, that was not observed in the case of ΔchoD mutant. Decreasement of TLR2-dependent signaling proteins, induced by wild-type Mtb, was not dependent on the activity of proteasome. Blocking of TLR2 expression, before infection, effectively prevented the induced by wild-type strain reduction of cytosolic level and phosphorylation of IRAK-4. None of the strains affected the surface expression of TLR2. The mRNA level of IRAK-4 and TRAF-6 genes were significantly increased in macrophages 24 hours post-infection with either of tested strains. However, the impact of wild-type Mtb strain on both examined genes was significantly stronger than its ΔchoD mutant. We also found that wild-type strain stimulated macrophages to release high amount of immunosuppressive IL-10, accompanied by low amount of pro-inflammatory IL-8 and bactericidal nitric oxide in comparison to mutant lacking cholesterol oxidase. The influence of wild-type Mtb on this type of macrophages' response strongly dependent on fully active IRAK-1 and IRAK-4 signaling proteins. In conclusion, Mtb using cholesterol oxidase causes the over-activation of TLR2 signaling proteins leading to the reduction of their cytosolic level and activity resulting in the modulation of macrophages response to allow its intracellular survival. Supported by grant: 2014/15/B/NZ6/01565, National Science Center, PolandKeywords: Mycobacterium tuberculosis, cholesterol oxidase, macrophages, TLR2-dependent signaling pathway
Procedia PDF Downloads 4199848 Genome Sequencing and Analysis of the Spontaneous Nanosilver Resistant Bacterium Proteus mirabilis Strain scdr1
Authors: Amr Saeb, Khalid Al-Rubeaan, Mohamed Abouelhoda, Manojkumar Selvaraju, Hamsa Tayeb
Abstract:
Background: P. mirabilis is a common uropathogenic bacterium that can cause major complications in patients with long-standing indwelling catheters or patients with urinary tract anomalies. In addition, P. mirabilis is a common cause of chronic osteomyelitis in diabetic foot ulcer (DFU) patients. Methodology: P. mirabilis SCDR1 was isolated from a diabetic ulcer patient. We examined P. mirabilis SCDR1 levels of resistance against nano-silver colloids, the commercial nano-silver and silver containing bandages and commonly used antibiotics. We utilized next generation sequencing techniques (NGS), bioinformatics, phylogenetic analysis and pathogenomics in the identification and characterization of the infectious pathogen. Results: P. mirabilis SCDR1 is a multi-drug resistant isolate that also showed high levels of resistance against nano-silver colloids, nano-silver chitosan composite and the commercially available nano-silver and silver bandages. The P. mirabilis-SCDR1 genome size is 3,815,621 bp with G+C content of 38.44%. P. mirabilis-SCDR1 genome contains a total of 3,533 genes, 3,414 coding DNA sequence genes, 11, 10, 18 rRNAs (5S, 16S, and 23S), and 76 tRNAs. Our isolate contains all the required pathogenicity and virulence factors to establish a successful infection. P. mirabilis SCDR1 isolate is a potential virulent pathogen that despite its original isolation site, wound, it can establish kidney infection and its associated complications. P. mirabilis SCDR1 contains several mechanisms for antibiotics and metals resistance including, biofilm formation, swarming mobility, efflux systems, and enzymatic detoxification. Conclusion: P. mirabilis SCDR1 is the spontaneous nano-silver resistant bacterial strain. P. mirabilis SCDR1 strain contains all reported pathogenic and virulence factors characteristic for the species. In addition, it possesses several mechanisms that may lead to the observed nano-silver resistance.Keywords: Proteus mirabilis, multi-drug resistance, silver nanoparticles, resistance, next generation sequencing techniques, genome analysis, bioinformatics, phylogeny, pathogenomics, diabetic foot ulcer, xenobiotics, multidrug resistance efflux, biofilm formation, swarming mobility, resistome, glutathione S-transferase, copper/silver efflux system, altruism
Procedia PDF Downloads 3359847 A Model for Diagnosis and Prediction of Coronavirus Using Neural Network
Authors: Sajjad Baghernezhad
Abstract:
Meta-heuristic and hybrid algorithms have high adeer in modeling medical problems. In this study, a neural network was used to predict covid-19 among high-risk and low-risk patients. This study was conducted to collect the applied method and its target population consisting of 550 high-risk and low-risk patients from the Kerman University of medical sciences medical center to predict the coronavirus. In this study, the memetic algorithm, which is a combination of a genetic algorithm and a local search algorithm, has been used to update the weights of the neural network and develop the accuracy of the neural network. The initial study showed that the accuracy of the neural network was 88%. After updating the weights, the memetic algorithm increased by 93%. For the proposed model, sensitivity, specificity, positive predictivity value, value/accuracy to 97.4, 92.3, 95.8, 96.2, and 0.918, respectively; for the genetic algorithm model, 87.05, 9.20 7, 89.45, 97.30 and 0.967 and for logistic regression model were 87.40, 95.20, 93.79, 0.87 and 0.916. Based on the findings of this study, neural network models have a lower error rate in the diagnosis of patients based on individual variables and vital signs compared to the regression model. The findings of this study can help planners and health care providers in signing programs and early diagnosis of COVID-19 or Corona.Keywords: COVID-19, decision support technique, neural network, genetic algorithm, memetic algorithm
Procedia PDF Downloads 679846 Pyrethroid and Organophosphate Susceptibility Status of Aedesaegypti (Linnaeus), Aedes albopictus (Skuse) and Culex quinquefasciatus (Say) in Penang, Malaysia
Authors: Hadura Abu Hasan, Zairi Jaal, P. J. McCall
Abstract:
Dengue is a serious problem in Malaysia, particularly in high-density urban communities with lower socio-economic levels. This study evaluated the susceptibility of local populations of Aedesaegypti (Linnaeus), Aedesalbopictus (Skuse) and Culexquinquefasciatus (Say) from the traditional community of BaganDalam, Penang, Malaysia to lambdacyhalothrin and pirimiphos-methyl using standard World Health Organization (WHO) adult bioassay test. Unfed female mosquitoes aged 3-5 days were exposed to WHO recommended dosages of insecticides over fixed time periods with results presented as knock-down time (KT50) for each strain.The insecticide susceptible VCRU laboratory strain was usedas control. All three specieswere highly resistant to lambda-cyhalothrin with less than 10% mortality at 24 hours after treatment. In contrast, Ae.aegypti and Ae. albopictus were susceptible to pirimiphos-methyl, showing 100% mortality recorded 24 hoursafter treatment. Cx. quinquefasciatuswasclassed as ‘suspected resistant’ to pirimiphos-methyl as mortality recorded 24 hours after treatment was 94-96%. The results indicate that organophosphates such as pirimiphos-methyl might be used as alternative to pyrethroid for dengue vector control in this dengue-prone area.Keywords: vector control, aedes aegypti, aedes albopictus, dengue, culex quinquefasciatus, residuals insecticides, pyrethroid, organophosphate, resistant, mosquito
Procedia PDF Downloads 2599845 Mechanical Properties and Microstructures of the Directional Solidified Zn-Al-Cu Alloy
Authors: Mehmet Izzettin Yilmazer, Emin Cadirli
Abstract:
Zn-7wt.%Al-2.96wt.%Cu eutectic alloy was directionally solidified upwards with different temperature gradients (from 6.70 K/mm to 10.67 K/mm) at a constant growth rate (16.4 Km/s) and also different growth rate (from 8.3 micron/s to 166 micron/s) at a constant temperature gradient (10.67 K/mm) using a Bridgman–type growth apparatus.The values of eutectic spacing were measured from longitudinal and transverse sections of the samples. The dependency of microstructures on the G and V were determined with linear regression analysis and experimental equations were found as λl=8.953xVexp-0.49, λt=5.942xVexp-0.42 and λl=0.008xGexp-1.23, λt=0.024xGexp-0.93. The measurements of microhardness of directionally solidified samples were obtained by using a microhardness test device. The dependence of microhardness HV on temperature gradient and growth rate were analyzed. The dependency of microhardness on the G and V were also determined with linear regression analysis as HVl=110.66xVexp0.02, HVt=111.94xVexp0.02 and HVl=69.66xGexp0.17, HVt=68.86xGexp0.18. The experimental results show that the microhardness of the directionally solidified Zn-Al-Cu alloy increases with increasing the growth rate. The results obtained in this work were compared with the previous similar experimental results.Keywords: directional solidification, eutectic alloys, microstructure, microhardness
Procedia PDF Downloads 4519844 An Improved Cooperative Communication Scheme for IoT System
Authors: Eui-Hak Lee, Jae-Hyun Ro, Hyoung-Kyu Song
Abstract:
In internet of things (IoT) system, the communication scheme with reliability and low power is required to connect a terminal. Cooperative communication can achieve reliability and lower power than multiple-input multiple-output (MIMO) system. Cooperative communication increases the reliability with low power, but decreases a throughput. It has a weak point that the communication throughput is decreased. In this paper, a novel scheme is proposed to increase the communication throughput. The novel scheme is a transmission structure that increases transmission rate. And a decoding scheme according to the novel transmission structure is proposed. Simulation results show that the proposed scheme increases the throughput without bit error rate (BER) performance degradation.Keywords: cooperative communication, IoT, STBC, transmission rate
Procedia PDF Downloads 3969843 The Impact of COVID-19 Health Measures on Adults with Multiple Chemical Sensitivity
Authors: Riina I. Bray, Yifan Wang, Nikolas Argiropoulos, Stephanie Robins, John Molot, Kelly Tragash, Lynn M. Marshall, Margaret E. Sears, Marie-Andrée Pigeon, Michel Gaudet, Pierre Auger, Emily Bélanger, Rohini Peris
Abstract:
Multiple chemical sensitivity (MCS) is a chronic medical condition characterized by intolerances to chemical substances. Since the arrival of the COVID-19 pandemic and associated health measures, people experiencing MCS (PEMCS) are at a heightened risk of environmental exposures associated with cleaners, disinfectants, and sanitizers. Little attention has been paid to the well-being of PEMCS in the context of the COVID-19 pandemic. Objective: This study assesses the lived experiences of Canadian adults with MCS in relation to their living environment, access to healthcare, and levels of perceived social support before and during the pandemic. Methods: A total of 119 PEMCS completed an online questionnaire. McNemar Chi-Squared and Wilcoxon Signed Rank tests were used to evaluate if there were statistically significant changes in participants’ perception of their living environment, access to healthcare, and levels of social support before and after March 11, 2020. Results: Both positive and negative outcomes were noted. Participants reported an increase in exposure to disinfectants/sanitizers that entered their living environment (p<.001). There was a reported decrease in access to a family doctor during the pandemic (p<0.001). Although PEMCS experienced increased social isolation (p<0.001), they also reported an increase in understanding from family (p<0.029) and a decrease in stigma for wearing personal protective equipment (p<0.001). Conclusion: PEMCS reported experiencing: increased exposure to disinfectants or sanitizers, a loss of social support, and barriers in accessing healthcare during the pandemic. However, COVID-19 provided an opportunity to normalize the living conditions of PEMCS, such as wearing masks and social isolation. These findings can guide decision-makers on the importance of implementing nontoxic alternatives for cleaning and disinfection, as well as improving accommodation measures for PEMCS.Keywords: covid-19, multiple chemical sensitivity, MCS, quality of life, social isolation, physical environment, healthcare
Procedia PDF Downloads 869842 Exergy Losses Relation with Driving Forces in Heat Transfer Process
Authors: S. Ali Ashrafizadeh, M. Amidpour, N. Hedayat
Abstract:
Driving forces along with transfer coefficient affect on heat transfer rate, on the other hand, with regard to the relation of these forces with irriversibilities they are effective on exergy losses. Therefore, the driving forces can be used as a relation between heat transfer rate, transfer coefficients and exergy losses. In this paper, first, the relation of the exergetic efficiency and resistant forces is obtained, next the relation between exergy efficiency, relative driving force, heat transfer rate and heat resistances is considered. In all cases, results are argued graphically. Finally, a case study inspected by obtained results.Keywords: heat transfer, exergy losses, exergetic efficiency, driving forces
Procedia PDF Downloads 6069841 Findings in Vascular Catheter Cultures at the Laboratory of Microbiology of General Hospital during One Year
Authors: P. Christodoulou, M. Gerasimou, S. Mantzoukis, N. Varsamis, G. Kolliopoulou, N. Zotos
Abstract:
Abstract— Purpose: The Intensive Care Unit (ICU) environment is conducive to the growth of microorganisms. A variety of microorganisms gain access to the intravascular area and are transported throughout the circulatory system. Therefore, examination of the catheters used in ICU patients is of paramount importance. Material and Method: The culture medium is a catheter tip, which is enriched with Tryptic soy broth (TSB). After one day of incubation, the broth is passaged in the following selective media: Blood, Mac conkey No. 2, chocolate, Mueller Hinton, Chapman, and Saboureaud agar. The above selective media is incubated for 2 days. After this period, if any number of microbial colonies is detected, gram staining is performed and then the microorganisms are identified by biochemical techniques in the automated Microscan (Siemens) system followed by a sensitivity test in the same system using the minimum inhibitory concentration (MIC) technique. The sensitivity test is verified by a Kirby Bauer test. Results: In 2017, the Microbiology Laboratory received 84 catheters from the ICU. 42 were found positive. Of these, S. epidermidis was identified at 8, A. baumannii in 10, K. pneumoniae in 6, P. aeruginosa in 6, P. mirabilis in 3, S. simulans in 1, S. haemolyticus in 4, S. aureus in 3 and S. hominis in 1. Conclusions: The results show that the placement and maintenance of the catheters in ICU patients are relatively successful, despite the unfavorable environment of the unit.Keywords: culture, intensive care unit, microorganisms, vascular catheters
Procedia PDF Downloads 2839840 Sensitivity and Uncertainty Analysis of Hydrocarbon-In-Place in Sandstone Reservoir Modeling: A Case Study
Authors: Nejoud Alostad, Anup Bora, Prashant Dhote
Abstract:
Kuwait Oil Company (KOC) has been producing from its major reservoirs that are well defined and highly productive and of superior reservoir quality. These reservoirs are maturing and priority is shifting towards difficult reservoir to meet future production requirements. This paper discusses the results of the detailed integrated study for one of the satellite complex field discovered in the early 1960s. Following acquisition of new 3D seismic data in 1998 and re-processing work in the year 2006, an integrated G&G study was undertaken to review Lower Cretaceous prospectivity of this reservoir. Nine wells have been drilled in the area, till date with only three wells showing hydrocarbons in two formations. The average oil density is around 300API (American Petroleum Institute), and average porosity and water saturation of the reservoir is about 23% and 26%, respectively. The area is dissected by a number of NW-SE trending faults. Structurally, the area consists of horsts and grabens bounded by these faults and hence compartmentalized. The Wara/Burgan formation consists of discrete, dirty sands with clean channel sand complexes. There is a dramatic change in Upper Wara distributary channel facies, and reservoir quality of Wara and Burgan section varies with change of facies over the area. So predicting reservoir facies and its quality out of sparse well data is a major challenge for delineating the prospective area. To characterize the reservoir of Wara/Burgan formation, an integrated workflow involving seismic, well, petro-physical, reservoir and production engineering data has been used. Porosity and water saturation models are prepared and analyzed to predict reservoir quality of Wara and Burgan 3rd sand upper reservoirs. Subsequently, boundary conditions are defined for reservoir and non-reservoir facies by integrating facies, porosity and water saturation. Based on the detailed analyses of volumetric parameters, potential volumes of stock-tank oil initially in place (STOIIP) and gas initially in place (GIIP) were documented after running several probablistic sensitivity analysis using Montecalro simulation method. Sensitivity analysis on probabilistic models of reservoir horizons, petro-physical properties, and oil-water contacts and their effect on reserve clearly shows some alteration in the reservoir geometry. All these parameters have significant effect on the oil in place. This study has helped to identify uncertainty and risks of this prospect particularly and company is planning to develop this area with drilling of new wells.Keywords: original oil-in-place, sensitivity, uncertainty, sandstone, reservoir modeling, Monte-Carlo simulation
Procedia PDF Downloads 1979839 Achievable Average Secrecy Rates over Bank of Parallel Independent Fading Channels with Friendly Jamming
Authors: Munnujahan Ara
Abstract:
In this paper, we investigate the effect of friendly jamming power allocation strategies on the achievable average secrecy rate over a bank of parallel fading wiretap channels. We investigate the achievable average secrecy rate in parallel fading wiretap channels subject to Rayleigh and Rician fading. The achievable average secrecy rate, due to the presence of a line-of-sight component in the jammer channel is also evaluated. Moreover, we study the detrimental effect of correlation across the parallel sub-channels, and evaluate the corresponding decrease in the achievable average secrecy rate for the various fading configurations. We also investigate the tradeoff between the transmission power and the jamming power for a fixed total power budget. Our results, which are applicable to current orthogonal frequency division multiplexing (OFDM) communications systems, shed further light on the achievable average secrecy rates over a bank of parallel fading channels in the presence of friendly jammers.Keywords: fading parallel channels, wire-tap channel, OFDM, secrecy capacity, power allocation
Procedia PDF Downloads 5129838 Effect of Time and Rate of Nitrogen Application on the Malting Quality of Barley Yield in Sandy Soil
Authors: A. S. Talaab, Safaa, A. Mahmoud, Hanan S. Siam
Abstract:
A field experiment was conducted during the winter season of 2013/2014 in the barley production area of Dakhala – New Valley Governorate, Egypt to assess the effect of nitrogen rate and time of N fertilizer application on barley grain yield, yield components and N use efficiency of barley and their association with grain yield. The treatments consisted of three levels of nitrogen (0, 70 and 100 kg N/acre) and five application times. The experiment was laid out as a randomized complete block design with three replication. Results revealed that barley grain yield and yield components increased significantly in response to N rate. Splitting N fertilizer amount at several times result in significant effect on grain yield, yield components, protein content and N uptake efficiency when compared with the entire N was applied at once. Application of N at rate of 100 kg N/acre resulted in accumulation of nitrate in the subsurface soil > 30cm. When N application timing considered, less NO3 was found in the soil profile with splitting N application compared with all preplans application.Keywords: nitrogen use efficiency, splitting N fertilizer, barley, NO3
Procedia PDF Downloads 313