Search results for: schema recognition
634 Recreating Home: Restoration and Reflections on the Traditional Houses of Kucapungane
Authors: Sasala Taiban
Abstract:
This paper explores the process and reflections on the restoration of traditional slate houses in the Rukai tribe's old settlement of Kucapungane. Designated as a "Class II Historical Site" by the Ministry of the Interior in 1991 and listed by UNESCO's World Monuments Fund in 2016, Kucapungane holds significant historical and cultural value. However, due to government neglect, tribal migration, and the passing of elders, the traditional knowledge and techniques for constructing slate houses face severe discontinuity. Over the past decades, residents have strived to preserve and transmit these traditional skills through the restoration and reconstruction of their homes. This study employs a qualitative methodology, combining ethnographic fieldwork, historical analysis, and participatory observation. The research includes in-depth interviews, focus group discussions, and hands-on participation in restoration activities to gather comprehensive data. The paper reviews the historical evolution of Kucapungane, the restoration process, and the challenges encountered, such as insufficient resources, technical preservation issues, material acquisition problems, and lack of community recognition. Furthermore, it highlights the importance of house restoration in indigenous consciousness and cultural revival, proposing strategies to address current issues and promote preservation. Through these efforts, the cultural heritage of the Rukai tribe can be sustained and carried forward into the future.Keywords: rukai, kucapungane, slate house restoration, cultural heritage
Procedia PDF Downloads 38633 Context-Aware Alert Method in Hajj Pilgrim Location-Based Tracking System
Authors: Syarif Hidayat
Abstract:
As millions of people with different backgrounds perform hajj every year in Saudi Arabia, it brings out several problems. Missing people is among many crucial problems need to be encountered. Some people might have had insufficient knowledge of using tracking system equipment. Other might become a victim of an accident, lose consciousness, or even died, prohibiting them to perform certain activity. For those reasons, people could not send proper SOS message. The major contribution of this paper is the application of the diverse alert method in pilgrims tracking system. It offers a simple yet robust solution to send SOS message by pilgrims during Hajj. Knowledge of context aware computing is assumed herein. This study presents four methods that could be utilized by pilgrims to send SOS. The first method is simple mobile application contains only a button. The second method is based on behavior analysis based off GPS location movement anomaly. The third method is by introducing pressing pattern to smartwatch physical button as a panic button. The fourth method is by identifying certain accelerometer pattern recognition as a sign of emergency situations. Presented method in this paper would be an important part of pilgrims tracking system. The discussion provided here includes easy to use design whilst maintaining tracking accuracy, privacy, and security of its users.Keywords: context aware computing, emergency alert system, GPS, hajj pilgrim tracking, location-based services
Procedia PDF Downloads 216632 Towards Dynamic Estimation of Residential Building Energy Consumption in Germany: Leveraging Machine Learning and Public Data from England and Wales
Authors: Philipp Sommer, Amgad Agoub
Abstract:
The construction sector significantly impacts global CO₂ emissions, particularly through the energy usage of residential buildings. To address this, various governments, including Germany's, are focusing on reducing emissions via sustainable refurbishment initiatives. This study examines the application of machine learning (ML) to estimate energy demands dynamically in residential buildings and enhance the potential for large-scale sustainable refurbishment. A major challenge in Germany is the lack of extensive publicly labeled datasets for energy performance, as energy performance certificates, which provide critical data on building-specific energy requirements and consumption, are not available for all buildings or require on-site inspections. Conversely, England and other countries in the European Union (EU) have rich public datasets, providing a viable alternative for analysis. This research adapts insights from these English datasets to the German context by developing a comprehensive data schema and calibration dataset capable of predicting building energy demand effectively. The study proposes a minimal feature set, determined through feature importance analysis, to optimize the ML model. Findings indicate that ML significantly improves the scalability and accuracy of energy demand forecasts, supporting more effective emissions reduction strategies in the construction industry. Integrating energy performance certificates into municipal heat planning in Germany highlights the transformative impact of data-driven approaches on environmental sustainability. The goal is to identify and utilize key features from open data sources that significantly influence energy demand, creating an efficient forecasting model. Using Extreme Gradient Boosting (XGB) and data from energy performance certificates, effective features such as building type, year of construction, living space, insulation level, and building materials were incorporated. These were supplemented by data derived from descriptions of roofs, walls, windows, and floors, integrated into three datasets. The emphasis was on features accessible via remote sensing, which, along with other correlated characteristics, greatly improved the model's accuracy. The model was further validated using SHapley Additive exPlanations (SHAP) values and aggregated feature importance, which quantified the effects of individual features on the predictions. The refined model using remote sensing data showed a coefficient of determination (R²) of 0.64 and a mean absolute error (MAE) of 4.12, indicating predictions based on efficiency class 1-100 (G-A) may deviate by 4.12 points. This R² increased to 0.84 with the inclusion of more samples, with wall type emerging as the most predictive feature. After optimizing and incorporating related features like estimated primary energy consumption, the R² score for the training and test set reached 0.94, demonstrating good generalization. The study concludes that ML models significantly improve prediction accuracy over traditional methods, illustrating the potential of ML in enhancing energy efficiency analysis and planning. This supports better decision-making for energy optimization and highlights the benefits of developing and refining data schemas using open data to bolster sustainability in the building sector. The study underscores the importance of supporting open data initiatives to collect similar features and support the creation of comparable models in Germany, enhancing the outlook for environmental sustainability.Keywords: machine learning, remote sensing, residential building, energy performance certificates, data-driven, heat planning
Procedia PDF Downloads 57631 Biosensor Design through Molecular Dynamics Simulation
Authors: Wenjun Zhang, Yunqing Du, Steven W. Cranford, Ming L. Wang
Abstract:
The beginning of 21st century has witnessed new advancements in the design and use of new materials for biosensing applications, from nano to macro, protein to tissue. Traditional analytical methods lack a complete toolset to describe the complexities introduced by living systems, pathological relations, discrete hierarchical materials, cross-phase interactions, and structure-property dependencies. Materiomics – via systematic molecular dynamics (MD) simulation – can provide structure-process-property relations by using a materials science approach linking mechanisms across scales and enables oriented biosensor design. With this approach, DNA biosensors can be utilized to detect disease biomarkers present in individuals’ breath such as acetone for diabetes. Our wireless sensor array based on single-stranded DNA (ssDNA)-decorated single-walled carbon nanotubes (SWNT) has successfully detected trace amount of various chemicals in vapor differentiated by pattern recognition. Here, we present how MD simulation can revolutionize the way of design and screening of DNA aptamers for targeting biomarkers related to oral diseases and oral health monitoring. It demonstrates great potential to be utilized to build a library of DNDA sequences for reliable detection of several biomarkers of one specific disease, and as well provides a new methodology of creating, designing, and applying of biosensors.Keywords: biosensor, DNA, biomarker, molecular dynamics simulation
Procedia PDF Downloads 463630 A Review: Detection and Classification Defects on Banana and Apples by Computer Vision
Authors: Zahow Muoftah
Abstract:
Traditional manual visual grading of fruits has been one of the agricultural industry’s major challenges due to its laborious nature as well as inconsistency in the inspection and classification process. The main requirements for computer vision and visual processing are some effective techniques for identifying defects and estimating defect areas. Automated defect detection using computer vision and machine learning has emerged as a promising area of research with a high and direct impact on the visual inspection domain. Grading, sorting, and disease detection are important factors in determining the quality of fruits after harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have been conducted to identify diseases and pests that affect the fruits of agricultural crops. However, most previous studies concentrated solely on the diagnosis of a lesion or disease. This study focused on a comprehensive study to identify pests and diseases of apple and banana fruits using detection and classification defects on Banana and Apples by Computer Vision. As a result, the current article includes research from these domains as well. Finally, various pattern recognition techniques for detecting apple and banana defects are discussed.Keywords: computer vision, banana, apple, detection, classification
Procedia PDF Downloads 106629 Infodemic Detection on Social Media with a Multi-Dimensional Deep Learning Framework
Authors: Raymond Xu, Cindy Jingru Wang
Abstract:
Social media has become a globally connected and influencing platform. Social media data, such as tweets, can help predict the spread of pandemics and provide individuals and healthcare providers early warnings. Public psychological reactions and opinions can be efficiently monitored by AI models on the progression of dominant topics on Twitter. However, statistics show that as the coronavirus spreads, so does an infodemic of misinformation due to pandemic-related factors such as unemployment and lockdowns. Social media algorithms are often biased toward outrage by promoting content that people have an emotional reaction to and are likely to engage with. This can influence users’ attitudes and cause confusion. Therefore, social media is a double-edged sword. Combating fake news and biased content has become one of the essential tasks. This research analyzes the variety of methods used for fake news detection covering random forest, logistic regression, support vector machines, decision tree, naive Bayes, BoW, TF-IDF, LDA, CNN, RNN, LSTM, DeepFake, and hierarchical attention network. The performance of each method is analyzed. Based on these models’ achievements and limitations, a multi-dimensional AI framework is proposed to achieve higher accuracy in infodemic detection, especially pandemic-related news. The model is trained on contextual content, images, and news metadata.Keywords: artificial intelligence, fake news detection, infodemic detection, image recognition, sentiment analysis
Procedia PDF Downloads 255628 Uncommon Presentation of Iscahemic Heart Disease with Sheehan’s Syndrome at Mid-Level Private Hospital of Bangladesh and Its Management- A Case Report
Authors: Nazmul Haque, Syeda Tasnuva Maria
Abstract:
Sheehan's Syndrome (SS), also known as postpartum hypopituitarism, is a rare but potentially serious condition resulting from ischemic necrosis of the pituitary gland, often occurring during or after childbirth. This syndrome is characterized by hypopituitarism, leading to deficiencies in various hormones produced by the pituitary gland. The primary cause is typically severe postpartum hemorrhage, leading to inadequate blood supply and subsequent necrosis of the pituitary tissue. This chronic hypopituitarism sometimes plays the role of premature atherosclerosis, which may lead to cardiovascular disease. This abstract provides a comprehensive overview of Sheehan's Syndrome with ischaemic heart disease, encompassing its pathophysiology, clinical manifestations, and current management strategies. The disorder presents a wide spectrum of symptoms, including chest pain, fatigue, amenorrhea, lactation failure, hypothyroidism, and adrenal insufficiency. Timely diagnosis is crucial, as delayed recognition can lead to complications and long-term health consequences. We herein report a patient complaining of chronic fatigue symptoms, aggressiveness, chest pain, and breathlessness with repeated LOC that were diagnosed with SS with IHD. The patient was treated with antiplatelet, antianginal, steroids, and hormone replacement with marked improvement in his overall condition.Keywords: ischaemic heart disease, Sheehan's syndrome, post-partum haemorrhage, pituitary gland
Procedia PDF Downloads 58627 Nano-Zinc Oxide: A Powerful and Recyclable Catalyst for Chemospecific Synthesis of Dicoumarols Based on Aryl Glyoxals
Authors: F. Jafari, S. GharehzadehShirazi, S. Khodabakhshi
Abstract:
An efficient, simple, and environmentally benign procedure for the one-pot synthesis of dicoumarols was reported. The reaction entails the condensation of aryl glyoxals and 4-hydroxyxoumarin in the presence of catalytic amount of zinc oxide nanoparticles (ZnO NPs) as recyclable catalyst in aqueous media. High product yields and use of clean conditions are important factors of green chemistry.Part of our continued interest to achieve high atom economic reactions by the use safe catalysts. The reaction mixture was refluxed with catalytic amount (3 mol%) of zinc oxide nanoparticles.Reducing the amount of toxic waste and byproducts arising from chemical reactions is an important issue in the context of green chemistry. In comparison with commonly organic solvents, the aqueous media is cheaper and more environmentally friendly. Avoiding the use of organic solvents is an important way to prevent waste in chemical processes. In the context of green and sustainable chemistry, one ofthe most promising approaches is the use of water as the reaction media. In recent years, there has been increasing recognition that water is an attractive media for manyorganic reactions. Using water continues to attract wide attention among synthetic chemists in the design of new synthetic methods.Keywords: zinc oxide, dicoumarol, aryl glyoxal, green chemistry, catalyst
Procedia PDF Downloads 354626 Generation of Electro-Encephalography Readiness Potentials by Intention
Authors: Seokbeen Lim, Gilwon Yoon
Abstract:
The readiness potential in brain waves is a brain activity related with an intention whose potential arises even before its conscious intention. This study was carried out in order to understand the generation and mechanism of the readiness potential more. The experiment with two subjects was conducted in two ways following the Oddball task protocol. Firstly, auditory stimuli were randomly presented to the subjects. The subject was allowed to press the keyboard with the right index finger only when the subject heard the target stimulus but not the standard stimulus. Secondly, unlike the first one, the auditory stimuli were randomly presented, and the subjects pressed the keyboard in the same manner, but at the same time with grasping action of the left hand. The readiness potential showed up for both of these experiments. In the first Oddball experiment, the readiness potential was detected only when the target stimulus was presented. However, in the second Oddball experiment with the left hand action of grasping something, the readiness potential was detected at the presentation of for both standard and target stimuli. However, detected readiness potentials with the target stimuli were larger than those of the standard stimuli. We found an interesting phenomenon that the readiness potential was able to be detected even the standard stimulus. This indicates that motor-related readiness potentials can be generated only by the intention to move. These results present a new perspective in psychology and brain engineering since subconscious brain action may be prior to conscious recognition of the intention.Keywords: readiness potential, auditory stimuli, event-related potential, electroencephalography, oddball task
Procedia PDF Downloads 204625 Molecular Characterization of Functional Domain (LRR) of TLR9 Genes in Malnad Gidda Cattle and Their Comparison to Cross Breed Cattle
Authors: Ananthakrishna L. R., Ramesh D., Kumar Wodeyar, Kotresh A. M., Gururaj P. M.
Abstract:
Malnad Gidda is the indigenous recognized cattle breed of Shivamogga District of Karnataka state, India is known for its disease resistance to many of the infectious diseases. There are 25 LRR (Leucine Rich Repeats) identified in bovine (Bos indicus) TLR9. The amino acid sequence of LRR is deduced to nucleotide sequence in BLASTx bioinformatic online tools. LRR2 to LRR10 are involved in pathogen recognition and binding in human TLR9 which showed a higher degree of nucleotide variations with respect to disease resistance to various pathogens. Hence, primers were designed to amplify the flanking sequences of LRR2 to LRR10, to discover the nucleotide variations if any, in Malnad Gidda breed of Cattle which is associated with disease resistance. The DNA isolated from peripheral blood mononuclear cells of ten Malnad Gidda cattle. A desired and specific amplification product of 0.8 kb was obtained at an annealing temperature of 56.6ᵒC. All the PCR products were sequenced on both sides by gene-specific primers. The sequences were compared with TLR9 sequence of cross breed cattle obtained from NCBI data bank. The sequence analysis between Malnad Gidda and crossbreed cattle revealed no nucleotide variations in the region LRR2 to LRR9 which shows the conserved in pathogen binding domain (LRR) of TLR9.Keywords: leucine rich repeats, Malnad Gidda, cross breed, TLR9
Procedia PDF Downloads 226624 Ontology Expansion via Synthetic Dataset Generation and Transformer-Based Concept Extraction
Authors: Andrey Khalov
Abstract:
The rapid proliferation of unstructured data in IT infrastructure management demands innovative approaches for extracting actionable knowledge. This paper presents a framework for ontology-based knowledge extraction that combines relational graph neural networks (R-GNN) with large language models (LLMs). The proposed method leverages the DOLCE framework as the foundational ontology, extending it with concepts from ITSMO for domain-specific applications in IT service management and outsourcing. A key component of this research is the use of transformer-based models, such as DeBERTa-v3-large, for automatic entity and relationship extraction from unstructured texts. Furthermore, the paper explores how transfer learning techniques can be applied to fine-tune large language models (LLaMA) for using to generate synthetic datasets to improve precision in BERT-based entity recognition and ontology alignment. The resulting IT Ontology (ITO) serves as a comprehensive knowledge base that integrates domain-specific insights from ITIL processes, enabling more efficient decision-making. Experimental results demonstrate significant improvements in knowledge extraction and relationship mapping, offering a cutting-edge solution for enhancing cognitive computing in IT service environments.Keywords: ontology expansion, synthetic dataset, transformer fine-tuning, concept extraction, DOLCE, BERT, taxonomy, LLM, NER
Procedia PDF Downloads 14623 Role of a Physical Therapist in Rehabilitation
Authors: Andrew Anis Fakhrey Mosaad
Abstract:
Objectives: Physiotherapy in the intensive care unit (ICU) improves patient outcomes. We aimed to determine the characteristics of physiotherapy practice and critical barriers to applying physiotherapy in ICUs. Materials and Methods: A 54-item survey for determining the characteristics physiotherapists and physiotherapy applications in the ICU was developed. The survey was electronically sent to potential participants through the Turkish Physiotherapy Association network. Sixty-five physiotherapists (47F and 18M; 23–52 years; ICU experience: 6.0±6.2 years) completed the survey. The data were analyzed using quantitative and qualitative methods. Results: The duration of ICU practice was 3.51±2.10 h/day. Positioning (90.8%), active exercises (90.8%), breathing exercises (89.2%), passive exercises (87.7%), and percussion (87.7%) were the most commonly used applications. The barriers were related to physiotherapists (low level of employment and practice, lack of shift); patients (unwillingness, instability, participation restriction); teamwork (lack of awareness and communication); equipment (inadequacy, non-priority to purchase); and legal (reimbursement, lack of direct physiotherapy access, non-recognition of autonomy) procedures. Conclusion: The most common interventions were positioning, active, passive, breathing exercises, and percussion. Critical barriers toward physiotherapy are multifactorial and related to physiotherapists, patients, teams, equipment, and legal procedures. Physiotherapist employment, service maintenance, and multidisciplinary teamwork should be considered for physiotherapy effectiveness in ICUs.Keywords: intensive care units, physical therapy, physiotherapy, exercises
Procedia PDF Downloads 102622 Service Quality and Consumer Behavior on Metered Taxi Services
Authors: Nattapong Techarattanased
Abstract:
The purposes of this research are to make comparisons in respect of the behaviors on the use of the services of metered taxi classified by the demographic factor and to study the influence of the recognition on service quality having the effect on usage behaviors of metered taxi services of consumers in Bangkok Metropolitan Areas. The samples used in this research are 400 metered taxi service users in Bangkok Metropolitan Areas and use a questionnaire as the tool for collecting the data. Analysis statistics is mean and multiple regression analysis. Results of the research revealed that the consumers recognize the overall quality of services in each aspect include tangible aspects of the service, responses to customers, assurance on the confidence, understanding and knowing of customers which is rated at the moderate level except the aspect of the assurance on the confidence and trustworthiness which are rated at a high level. For the result of a hypothetical test, it is found that the quality in providing the services on the aspect of the assurance given to the customers has the effect on the usage behaviors of metered taxi services and the aspect of the frequency on the use of the services per month which in this connection. Such variable can forecast at one point nine percent (1.9%). In addition, quality in providing the services and the aspect of the responses to customers have the effect on the behaviors on the use of metered taxi services on the aspect of the expenses on the use of services per month which in this connection, such variable can forecast at two point one percent (2.1%).Keywords: consumer behavior, metered taxi service, satisfaction, service quality
Procedia PDF Downloads 223621 Hyaluronic Acid Binding to Link Domain of Stabilin-2 Receptor
Authors: Aleksandra Twarda, Dobrosława Krzemień, Grzegorz Dubin, Tad A. Holak
Abstract:
Stabilin-2 belongs to the group of scavenger receptors and plays a crucial role in clearance of more than 10 ligands from the bloodstream, including hyaluronic acid, products of degradation of extracellular matrix and metabolic products. The Link domain, a defining feature of stabilin-2, has a sequence similar to Link domains in other hyaluronic acid receptors, such as CD44 or TSG-6, and is responsible for most of ligands binding. Present knowledge of signal transduction by stabilin-2, as well as ligands’ recognition and binding mechanism, is limited. Until now, no experimental structures have been solved for any segments of stabilin-2. It has recently been demonstrated that the stabilin-2 knock-out or blocking of the receptor by an antibody effectively opposes cancer metastasis by elevating the level of circulating hyaluronic acid. Moreover, loss of expression of stabilin-2 in a peri-tumourous liver correlates with increased survival. Solving of the crystal structure of stabilin-2 and elucidation of the binding mechanism of hyaluronic acid could enable the precise characterization of the interactions in the binding site. These results may allow for designing specific small-molecule inhibitors of stabilin-2 that could be used in cancer therapy. To carry out screening for crystallization of stabilin-2, we cloned constructs of the Link domain of various lengths with or without surrounding domains. The folding properties of the constructs were checked by nuclear magnetic resonance (NMR). It is planned to show the binding of hyaluronic acid to the Link domain using several biochemical methods, i.a. NMR, isothermal titration calorimetry and fluorescence polarization assay.Keywords: stabilin-2, Link domain, X-ray crystallography, NMR, hyaluronic acid, cancer
Procedia PDF Downloads 403620 DCDNet: Lightweight Document Corner Detection Network Based on Attention Mechanism
Authors: Kun Xu, Yuan Xu, Jia Qiao
Abstract:
The document detection plays an important role in optical character recognition and text analysis. Because the traditional detection methods have weak generalization ability, and deep neural network has complex structure and large number of parameters, which cannot be well applied in mobile devices, this paper proposes a lightweight Document Corner Detection Network (DCDNet). DCDNet is a two-stage architecture. The first stage with Encoder-Decoder structure adopts depthwise separable convolution to greatly reduce the network parameters. After introducing the Feature Attention Union (FAU) module, the second stage enhances the feature information of spatial and channel dim and adaptively adjusts the size of receptive field to enhance the feature expression ability of the model. Aiming at solving the problem of the large difference in the number of pixel distribution between corner and non-corner, Weighted Binary Cross Entropy Loss (WBCE Loss) is proposed to define corner detection problem as a classification problem to make the training process more efficient. In order to make up for the lack of Dataset of document corner detection, a Dataset containing 6620 images named Document Corner Detection Dataset (DCDD) is made. Experimental results show that the proposed method can obtain fast, stable and accurate detection results on DCDD.Keywords: document detection, corner detection, attention mechanism, lightweight
Procedia PDF Downloads 354619 Learning a Bayesian Network for Situation-Aware Smart Home Service: A Case Study with a Robot Vacuum Cleaner
Authors: Eu Tteum Ha, Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
The smart home environment backed up by IoT (internet of things) technologies enables intelligent services based on the awareness of the situation a user is currently in. One of the convenient sensors for recognizing the situations within a home is the smart meter that can monitor the status of each electrical appliance in real time. This paper aims at learning a Bayesian network that models the causal relationship between the user situations and the status of the electrical appliances. Using such a network, we can infer the current situation based on the observed status of the appliances. However, learning the conditional probability tables (CPTs) of the network requires many training examples that cannot be obtained unless the user situations are closely monitored by any means. This paper proposes a method for learning the CPT entries of the network relying only on the user feedbacks generated occasionally. In our case study with a robot vacuum cleaner, the feedback comes in whenever the user gives an order to the robot adversely from its preprogrammed setting. Given a network with randomly initialized CPT entries, our proposed method uses this feedback information to adjust relevant CPT entries in the direction of increasing the probability of recognizing the desired situations. Simulation experiments show that our method can rapidly improve the recognition performance of the Bayesian network using a relatively small number of feedbacks.Keywords: Bayesian network, IoT, learning, situation -awareness, smart home
Procedia PDF Downloads 524618 Comparative Analysis of Local Acceptance of Renewable Energy Facilities and Spent Nuclear Fuel Repositories
Authors: Taehyun Kim, Hyunjoo Park, Taehyun Kim
Abstract:
Public deliberation committee on Shin-Gori Nuclear Reactors No. 5 & 6 in South Korea recently suggested policy recommendation in July 2017 including complementary measures for resumption of construction: 1) nuclear power generation reduction, 2) expansion of investment to increase proportion of renewable energy, 3) repositories of spent nuclear fuel. Even when constructing eco-friendly renewable energy facilities such as solar and wind power plants, local residents are opposed to construction of these facilities due to environmental pollution and health impacts. In order to transform eco-friendly energy, it is necessary to convert nuclear energy into renewable energy and to take measures to increase the acceptance of residents through the participation of citizens. Therefore, this study aims to compare the factors of local acceptance of renewable energy facilities and spent nuclear fuel repositories through literature review and in-depth interview. The results show that environmental and economic concerns, risk perceptions, sociality, demographic characteristics and subjective recognition types affect the local acceptance for spent nuclear fuel repository. The factors of local acceptance for renewable energy facilities are partially coincide with those for spent nuclear fuel repository. The results of this study will contribute to improving residents' acceptance and reducing conflicts when determining the location of facilities in the future.Keywords: local acceptance, renewable energy facility, spent nuclear fuel repository, interview
Procedia PDF Downloads 301617 Research the Counseling of Taichung Taiwan's 10 Creative Zones
Authors: Feng Shih-Jen, Chiang Yi-Hua, Yang Min-Chih
Abstract:
After going through mass production and contract manufacturing phases, under the global consumption trend, Taiwan’s traditional industry has turned to creative design, research and development to gain recognition in the consumer market, build competitiveness in the global market and further promote the products from Taiwan’s traditional industry. Taichung City is rich in cultural creative resources, outperforming other counties/cities in originality, creative talents, cultural taste, art/culture participation and global marketing. As the result this has created a diversified and vibrant cultural market in Taichung, giving Taichung the highest potential as a cultural creative city. This research, through the project by Taichung Cultural Creative Industry Promotion Office, has built an exchange platform for the cultural creative industry in central Taiwan. The platform will promote exchanges of creative ideas in the cultural creative industry in Taiwan as well as industrial transformation and brings more value for the industry. This study also proposes the idea of “Taichung Cultural Creative Exhibition” Therefore, this study was conducted in Taiwan, Taichung 10 Creative Zone Exhibition, which is divided into four stages counseling. Respectively, of the first order: the cultural creative Zone specialty shops offer; The second stage is the industrial settlement discussions and counseling workshops in the ground; The third stage of consultation for the recruitment of the cultural creative businesses separate estate; The fourth stage is the story of the build cultural and creative industry. Hope through periodic counseling, handling Taichung 10 Creative Zone Exhibition.Keywords: cultural creative industry, counseling, Taichung, Taiwan's creative zones
Procedia PDF Downloads 499616 The Morality of the Sensitive in Adorno: Suffering and Recognition in the Mimesis Model
Authors: Talita Cavaignac
Abstract:
Adorno's critique of totality, especially in a split society marked by reification, also rests on the impossibility of generalizing normative principles. Given the unfeasibility of normative universalizations, which conditions can justify the possibility of criticism and normativity in Adorno's thought? If reason itself is still entangled in alienation from the model of the domination of nature, how could be possible a critical theory? In political terms, if the notion of totality is challenged by the critique of identity, how can Adorno maintain the ideal of liberation and reconciliation between private interests and the possibility of some sort of ethics without giving up a materialist theory of society and without betting in a necessary link between redemption and history? Faced with this complex of questions, it is intended to reflect on the sense in which the notion of ‘suffering’ could throw help to the epistemological problem of the foundations of criticism in Adorno's work. The idea is that, in contrast to a universalizable model of justice, Adorno mobilizes in the notion of ‘suffering’ a gateway to the critical reflection of society. He would thus develop an approach to moral problems through the sensual-bodily perspective, fear, pain, and somatic factors. Nevertheless, due to the attention to the damaged experience and to the constitution of subjectivity -a sense in which the concept of mimesis continues to stand out- we understand suffering as an expression of an objective reification. Following the statement of other authors, the intention is to think how the resources linked to the idea of ‘suffering’ in Adorno's writings are engaged in the reflection of the problem of morality and of the contradictions between universal and particular (articulated in Hegel's tradition).Keywords: ethics, morality, sensitive, Theodor Adorno
Procedia PDF Downloads 137615 Employee Engagement
Authors: Jai Bakliya, Palak Dhamecha
Abstract:
Today customer satisfaction is given utmost priority be it any industry. But when it comes to hospitality industry this applies even more as they come in direct contact with customers while providing them services. Employee engagement is new concept adopted by Human Resource Department which impacts customer satisfactions. To satisfy your customers, it is necessary to see that the employees in the organisation are satisfied and engaged enough in their work that they meet the company’s expectations and contribute in the process of achieving company’s goals and objectives. After all employees is human capital of the organisation. Employee engagement has become a top business priority for every organisation. In this fast moving economy, business leaders know that having a potential and high-performing human resource is important for growth and survival. They recognize that a highly engaged manpower can increase innovation, productivity, and performance, while reducing costs related to retention and hiring in highly competitive talent markets. But while most executives see a clear need to improve employee engagement, many have yet to develop tangible ways to measure and tackle this goal. Employee Engagement is an approach which is applied to establish an emotional connection between an employee and the organisation which ensures the employee’s commitment towards his work which affects the productivity and overall performance of the organisation. The study was conducted in hospitality industry. A popular branded hotel was chosen as a sample unit. Data were collected, both qualitative and quantitative from respondents. It is found that employee engagement level of the organisation (Hotel) is quite low. This means that employees are not emotionally connected with the organisation which may in turn, affect performance of the employees it is important to note that in hospitality industry individual employee’s performance specifically in terms of emotional engagement is critical and, therefore, a low engagement level may contribute to low organisation performance. An attempt to this study was made to identify employee engagement level. Another objective to take this study was to explore the factors impeding employee engagement and to explore employee engagement facilitation. While in the hospitality industry where people tend to work for as long as 16 to 18 hours concepts like employee engagement is essential. Because employees get tired of their routine job and in case where job rotation cannot be done employee engagement acts as a solution. The study was conducted at Trident Hotel, Udaipur. It was conducted on the sample size of 30 in-house employees from 6 different departments. The various departments were: Accounts and General, Front Office, Food & Beverage Service, Housekeeping, Food & Beverage Production and Engineering. It was conducted with the help of research instrument. The research instrument was Questionnaire. Data collection source was primary source. Trident Udaipur is one of the busiest hotels in Udaipur. The occupancy rate of the guest over there is nearly 80%. Due the high occupancy rate employees or staff of the hotel used to remain very busy and occupied all the time in their work. They worked for their remuneration only. As a result, they do not have any encouragement for their work nor they are interested in going an extra mile for the organisation. The study result shows working environment factors including recognition and appreciation, opinions of the employee, counselling, feedback from superiors, treatment of managers and respect from the organisation are capable of increasing employee engagement level in the hotel. The above study result encouraged us to explore the factors contributed to low employee engagement. It is being found that factors such as recognition and appreciation, feedback from supervisors, opinion of the employee, counselling, feedback from supervisors, treatment from managers has contributed negatively to employee engagement level. Probable reasons for the low contribution are number of employees gave the negative feedback in accordance to the factors stated above of the organisation. It seems that the structure of organisation itself is responsible for the low contribution of employee engagement. The scope of this study is limited to trident hotel situated in the Udaipur. The limitation of the study was that that the results or findings were only based on the responses of respondents of Trident, Udaipur. And so the recommendations were also applicable in Trident, Udaipur and not to all the like organisations across the country. Through the data collected was further analysed, interpreted and concluded. On the basis of the findings, suggestions were provided to the hotel for improvisation.Keywords: human resource, employee engagement, research, study
Procedia PDF Downloads 308614 Information Retrieval from Internet Using Hand Gestures
Authors: Aniket S. Joshi, Aditya R. Mane, Arjun Tukaram
Abstract:
In the 21st century, in the era of e-world, people are continuously getting updated by daily information such as weather conditions, news, stock exchange market updates, new projects, cricket updates, sports and other such applications. In the busy situation, they want this information on the little use of keyboard, time. Today in order to get such information user have to repeat same mouse and keyboard actions which includes time and inconvenience. In India due to rural background many people are not much familiar about the use of computer and internet also. Also in small clinics, small offices, and hotels and in the airport there should be a system which retrieves daily information with the minimum use of keyboard and mouse actions. We plan to design application based project that can easily retrieve information with minimum use of keyboard and mouse actions and make our task more convenient and easier. This can be possible with an image processing application which takes real time hand gestures which will get matched by system and retrieve information. Once selected the functions with hand gestures, the system will report action information to user. In this project we use real time hand gesture movements to select required option which is stored on the screen in the form of RSS Feeds. Gesture will select the required option and the information will be popped and we got the information. A real time hand gesture makes the application handier and easier to use.Keywords: hand detection, hand tracking, hand gesture recognition, HSV color model, Blob detection
Procedia PDF Downloads 290613 Defect Classification of Hydrogen Fuel Pressure Vessels using Deep Learning
Authors: Dongju Kim, Youngjoo Suh, Hyojin Kim, Gyeongyeong Kim
Abstract:
Acoustic Emission Testing (AET) is widely used to test the structural integrity of an operational hydrogen storage container, and clustering algorithms are frequently used in pattern recognition methods to interpret AET results. However, the interpretation of AET results can vary from user to user as the tuning of the relevant parameters relies on the user's experience and knowledge of AET. Therefore, it is necessary to use a deep learning model to identify patterns in acoustic emission (AE) signal data that can be used to classify defects instead. In this paper, a deep learning-based model for classifying the types of defects in hydrogen storage tanks, using AE sensor waveforms, is proposed. As hydrogen storage tanks are commonly constructed using carbon fiber reinforced polymer composite (CFRP), a defect classification dataset is collected through a tensile test on a specimen of CFRP with an AE sensor attached. The performance of the classification model, using one-dimensional convolutional neural network (1-D CNN) and synthetic minority oversampling technique (SMOTE) data augmentation, achieved 91.09% accuracy for each defect. It is expected that the deep learning classification model in this paper, used with AET, will help in evaluating the operational safety of hydrogen storage containers.Keywords: acoustic emission testing, carbon fiber reinforced polymer composite, one-dimensional convolutional neural network, smote data augmentation
Procedia PDF Downloads 94612 Evaluation of Planned and Organically Transformed Public Spaces in Urban Indian Market Places: A Case of Bhopal City, India
Authors: Piyush Hajela
Abstract:
Public spaces within Indian markets are vibrant, colorful and contain dimensions that make them attractive and therefore act as popular gathering spaces. Most of these public spaces emerge as squares, plazas of varied shapes and sizes spread at different locations within the market. These public spaces grow organically and are discovered by the people themselves as they respond positively to the collective human senses. On the other hand, there are the planned and designed public spaces as well that are less active. This research evaluates both the planned and the organically transformed public spaces in Indian markets from an Urban Design point of view. The purpose of such research is to provide a basis for design solutions to ensure the success of designed public spaces. The evaluation is done for identified Attributes, namely Comfort, Protection, Familiarity, Activities, Form, Legibility, Engagement, Safety, Accessibility, Environment and Transformations by which a Public Space attains its recognition. The evaluation is based on a rating done for forty-four parameters falling under eleven attributes of public space. An opinion survey of professionals is conducted for their priorities of attributes while designing Public spaces. A comparison is made to rank these attributes between Planned and Organically transformed Public spaces and, opinion of the professionals. After dues analysis, the research suggests the learning from the organically transformed Public spaces for ensuring the success of designed public spaces. The suggestions may be in the form of Design decisions or administrative regulations, or both for achieving the desirables.Keywords: assessment, attributes, engagement, interaction
Procedia PDF Downloads 209611 A 10-Year In-Depth Follow-up of Post-lingual Hearing Loss Patients with Chinese Domestic Cochlear Implants
Authors: Jianan Li, Lusen Shi, Haiqiao Du, Wei Chen, Qian Wang, Shuoshuo Kang, Shiming Yang
Abstract:
Background: Follow-up of cochlear implant effectiveness is mainly focused on 3 years postoperatively, and studies with more than 5 years of observation are rare, especially for local Chinese brands. Objectives: Nurotron (Chinese domestic cochlear implant brand) CI recipients who participated in the clinical trial in 2009 were followed-up for 10 years prospectively, providing data to guide doctors and patients. Material and Methods: From December 2009 to April 2010, 57 subjects underwent Nurotron Venus CI surgery at multiple centers and were continued to be followed up and assessed at 1, 2, 3, 4, 5, and 10 years after switching on. Results: All recipients were successfully implanted with CIs with no difficulty in subsequent use, with one reported case of re-implantation 9 years after implantation. The aided hearing thresholds were significantly improved one month after switching on (p<0.0001) and remained stable afterward for 10 years. Speech recognition scores were significantly higher than pre-operative results (p<0.05) and continued to improve till 3 years after switching on. At 10 years of post-operation, most subjects had improved QOL scores in most sub-items. Conclusions and Significance: Nurotron Venus CI System provides long-term, stable results in hearing speech assistance capabilities and can improve the quality of life of CI recipients.Keywords: cochlear implantation, hearing loss, post lingual, follow up
Procedia PDF Downloads 16610 Reasons for the Slow Uptake of Embodied Carbon Estimation in the Sri Lankan Building Sector
Authors: Amalka Nawarathna, Nirodha Fernando, Zaid Alwan
Abstract:
Global carbon reduction is not merely a responsibility of environmentally advanced developed countries, but also a responsibility of developing countries regardless of their less impact on global carbon emissions. In recognition of that, Sri Lanka as a developing country has initiated promoting green building construction as one reduction strategy. However, notwithstanding the increasing attention on Embodied Carbon (EC) reduction in the global building sector, they still mostly focus on Operational Carbon (OC) reduction (through improving operational energy). An adequate attention has not yet been given on EC estimation and reduction. Therefore, this study aims to identify the reasons for the slow uptake of EC estimation in the Sri Lankan building sector. To achieve this aim, 16 numbers of global barriers to estimate EC were identified through existing literature. They were then subjected to a pilot survey to identify the significant reasons for the slow uptake of EC estimation in the Sri Lankan building sector. A questionnaire with a three-point Likert scale was used to this end. The collected data were analysed using descriptive statistics. The findings revealed that 11 out of 16 challenges/ barriers are highly relevant as reasons for the slow uptake in estimating EC in buildings in Sri Lanka while the other five challenges/ barriers remain as moderately relevant reasons. Further, the findings revealed that there are no low relevant reasons. Eventually, the paper concluded that all the known reasons are significant to the Sri Lankan building sector and it is necessary to address them in order to upturn the attention on EC reduction.Keywords: embodied carbon emissions, embodied carbon estimation, global carbon reduction, Sri Lankan building sector
Procedia PDF Downloads 206609 Female’s Involvement in Real Estate Business in Nigeria: A Case Study of Lagos State
Authors: Osaretin Rosemary Uyi, A. O. Ogungbemi
Abstract:
Female involvement in policy making and partnership in a man-driven-world is fast gaining international recognition. The Nigeria commercial real estate is one of the sectors of the economy that has a significant number of the male in the business. This study was conducted to assess the participation of females in estate management in Lagos state, Nigeria. Lagos is the commercial nerve center of Nigeria having the highest number of real estate practitioners and investors. The population due to the daily influx of people has made real estate business to continue to grow in this part of Nigeria. A structured questionnaire duly pre-tested and validated was used to elicit information from the respondents. The data collected were presented using tables and charts and were analyzed using descriptive statistical tools such as frequency counts, percentages, were used to test the hypothesis. The results also indicated that most females that participated in commercial real estate business are educated (80%), fell within 31-40 years of age (75%) and of high income status (88%) earn above ₦800,000 per year, while 10% are real estate investors and 82% of the female in the sector are employee. The study concluded that the number of female participating in various aspect of commercial real estate business in the study area was moderate while the numbers of female investors are low when compared to male. This might be due to the problems associated with rent collection, land disputes and other issues that are associated with property management in Nigeria. It is therefore recommended that females in real estate should be empowered and encouraged to match with their male counterpart.Keywords: commercial real estate, empowerment, female, participation, property management
Procedia PDF Downloads 332608 Studies of Lactose Utilization in Microalgal Isolate for Further Use in Dairy By-Product Bioconversion
Authors: Sergejs Kolesovs, Armands Vigants
Abstract:
The use of dairy industry by-products and wastewater as a cheap substrate for microalgal growth is gaining recognition. However, the mechanisms of lactose utilization remain understudied, limiting the potential of successful microalgal biomass production using various dairy by-products, such as whey and permeate. The necessity for microalgae to produce a specific enzyme, β-galactosidase, requires the selection of suitable strains. This study focuses on a freshwater microalgal isolate's ability to grow on a semi-synthetic medium supplemented with lactose. After 10 days of agitated cultivation, an axenic microalgal isolate achieved significantly higher biomass production under mixotrophic growth conditions (0.86 ± 0.07 g/L, dry weight) than heterotrophic growth (0.46 ± 0.04 g/L). Moreover, mixotrophic cultivation had significantly higher biomass production compared to photoautotrophic growth (0.67 ± 0.05 g/L). The activity of β-galactosidase was detected in both supernatant and microalgal biomass under mixotrophic and heterotrophic growth conditions, showing the potential of extracellular and intracellular mechanisms of enzyme production. However, the main limiting factor in this study was the increase of pH values during the cultivation, significantly reducing the activity of the β-galactosidase enzyme after 3rd day of cultivation. It highlights the need for stricter control of growth parameters to ensure the enzyme's activity. Further research will assess the isolate's suitability for dairy by-product bioconversion and biomass composition.Keywords: microalgae, lactose, whey, permeate, beta-galactosidase, mixotrophy, heterotrophy
Procedia PDF Downloads 65607 Inclusive Cultural Heritage Tourism Project
Authors: L. Cruz-Lopes, M. Sell, P. Escudeiro, B. Esteves
Abstract:
It might be difficult for deaf people to communicate since spoken and written languages are different from sign language. When it comes to getting information, going to places of cultural heritage, or using services and infrastructure, there is a clear lack of inclusiveness. By creating assistive technology that enables deaf individuals to get around communication hurdles and encourage inclusive tourism, the ICHT- Inclusive Cultural Heritage Tourism initiative hopes to increase knowledge of sign language. The purpose of the Inclusive Cultural Heritage Tourism (ICHT) project is to develop online and on-site sign language tools and material for usage at popular tourist destinations in the northern region of Portugal, including Torre dos Clérigos, the Lello bookstore, Maia Zoo, Porto wine cellars, and São Pedro do Sul (Viseu) thermae. The ICHT system consists of an application using holography, a mobile game, an online platform for collaboration with deaf and hearing users, and a collection of International Sign training courses. The project also offers a prospect for a more inclusive society by introducing a method of teaching sign languages to tourism industry professionals. As a result, the teaching and learning of sign language along with the assistive technology tools created by the project sets up an inclusive environment for the deaf community, producing results in the area of automatic sign language translation and aiding in the global recognition of the Portuguese tourism industry.Keywords: inclusive tourism, games, international sign training, deaf community
Procedia PDF Downloads 116606 Autonomous Ground Vehicle Navigation Based on a Single Camera and Image Processing Methods
Authors: Auday Al-Mayyahi, Phil Birch, William Wang
Abstract:
A vision system-based navigation for autonomous ground vehicle (AGV) equipped with a single camera in an indoor environment is presented. A proposed navigation algorithm has been utilized to detect obstacles represented by coloured mini- cones placed in different positions inside a corridor. For the recognition of the relative position and orientation of the AGV to the coloured mini cones, the features of the corridor structure are extracted using a single camera vision system. The relative position, the offset distance and steering angle of the AGV from the coloured mini-cones are derived from the simple corridor geometry to obtain a mapped environment in real world coordinates. The corridor is first captured as an image using the single camera. Hence, image processing functions are then performed to identify the existence of the cones within the environment. Using a bounding box surrounding each cone allows to identify the locations of cones in a pixel coordinate system. Thus, by matching the mapped and pixel coordinates using a projection transformation matrix, the real offset distances between the camera and obstacles are obtained. Real time experiments in an indoor environment are carried out with a wheeled AGV in order to demonstrate the validity and the effectiveness of the proposed algorithm.Keywords: autonomous ground vehicle, navigation, obstacle avoidance, vision system, single camera, image processing, ultrasonic sensor
Procedia PDF Downloads 302605 Predicting the Compressive Strength of Geopolymer Concrete Using Machine Learning Algorithms: Impact of Chemical Composition and Curing Conditions
Authors: Aya Belal, Ahmed Maher Eltair, Maggie Ahmed Mashaly
Abstract:
Geopolymer concrete is gaining recognition as a sustainable alternative to conventional Portland Cement concrete due to its environmentally friendly nature, which is a key goal for Smart City initiatives. It has demonstrated its potential as a reliable material for the design of structural elements. However, the production of Geopolymer concrete is hindered by batch-to-batch variations, which presents a significant challenge to the widespread adoption of Geopolymer concrete. To date, Machine learning has had a profound impact on various fields by enabling models to learn from large datasets and predict outputs accurately. This paper proposes an integration between the current drift to Artificial Intelligence and the composition of Geopolymer mixtures to predict their mechanical properties. This study employs Python software to develop machine learning model in specific Decision Trees. The research uses the percentage oxides and the chemical composition of the Alkali Solution along with the curing conditions as the input independent parameters, irrespective of the waste products used in the mixture yielding the compressive strength of the mix as the output parameter. The results showed 90 % agreement of the predicted values to the actual values having the ratio of the Sodium Silicate to the Sodium Hydroxide solution being the dominant parameter in the mixture.Keywords: decision trees, geopolymer concrete, machine learning, smart cities, sustainability
Procedia PDF Downloads 88