Search results for: measuring accuracy
4111 Developing Artistic Concepts for Kindergarten Children in Egypt Using Graphic Activities
Authors: Mona Yacoub, Ahmed Amin Mousa
Abstract:
The current work presents a program for children in Egypt. This program involved a collection of artistic activities that purposes to improve some language, artistic skills of kindergarten children. The researchers have prepared a questionnaire for the link between the target group and the content. The questionnaire has been presented to experts for adjudicating. The program was applied to a group of 30 children. Another questionnaire has been prepared by the researchers for measuring the activities’ effect on the children. The second questionnaire was considered as the pre-test and post-test. Finally, after applying the activities and the questionnaire, the researchers detected a significant difference in favor of the post-test results.Keywords: Developing, concepts, kindergarten, children, graphic activities
Procedia PDF Downloads 1594110 Method Development for the Determination of Gamma-Aminobutyric Acid in Rice Products by Lc-Ms-Ms
Authors: Cher Rong Matthew Kong, Edmund Tian, Seng Poon Ong, Chee Sian Gan
Abstract:
Gamma-aminobutyric acid (GABA) is a non-protein amino acid that is a functional constituent of certain rice varieties. When consumed, it decreases blood pressure and reduces the risk of hypertension-related diseases. This has led to more research dedicated towards the development of functional food products (e.g. germinated brown rice) with enhanced GABA content, and the development of these functional food products has led to increased demand for instrument-based methods that can efficiently and effectively determine GABA content. Current analytical methods require analyte derivatisation, and have significant disadvantages such as being labour intensive and time-consuming, and being subject to analyte loss due to the increased complexity of the sample preparation process. To address this, an LC-MS-MS method for the determination of GABA in rice products has been developed and validated. This developed method involves a relatively simple sample preparation process before analysis using HILIC LC-MS-MS. This method eliminates the need for derivatisation, thereby significantly reducing the labour and time associated with such an analysis. Using LC-MS-MS also allows for better differentiation of GABA from any potential co-eluting compounds in the sample matrix. Results obtained from the developed method demonstrated high linearity, accuracy, and precision for the determination of GABA (1ng/L to 8ng/L) in a variety of brown rice products. The method can significantly simplify sample preparation steps, improve the accuracy of quantitation, and increase the throughput of analyses, thereby providing a quick but effective alternative to established instrumental analysis methods for GABA in rice.Keywords: functional food, gamma-aminobutyric acid, germinated brown rice, method development
Procedia PDF Downloads 2664109 Influence of Lecithin from Different Sources on Crystallization Properties of Non-Trans Fat
Authors: Ivana Lončarević, Biljana Pajin, Radovan Omorjan, Aleksandra Torbica, Danica Zarić, Jovana Maksimović
Abstract:
Soybean seeds are the main source of lecithin in confectionery industry in Serbia and elsewhere. The extensive production of sunflower and rapeseed oil opens the possibility of using lecithin from these sources, as an alternative. Also, the development of functional foods dictates the use of edible fats with no undesirable trans fatty acids, obtained by fractionation and transesterification instead of common hydrogenation process. Crystallization properties of nontrans vegetable fat with the addition of soybean, sunflower and rapeseed lecithin were investigated in this paper. NMR technique was used for measuring the solid fat content (SFC) of fats at different temperatures, as well as for crystallization rate under static conditions. Also, the possibility of applying Gompertz function to define kinetics of crystallization was investigated.Keywords: non-trans fat, lecithin, fatty acids, SFC
Procedia PDF Downloads 4564108 A Multi-Stage Learning Framework for Reliable and Cost-Effective Estimation of Vehicle Yaw Angle
Authors: Zhiyong Zheng, Xu Li, Liang Huang, Zhengliang Sun, Jianhua Xu
Abstract:
Yaw angle plays a significant role in many vehicle safety applications, such as collision avoidance and lane-keeping system. Although the estimation of the yaw angle has been extensively studied in existing literature, it is still the main challenge to simultaneously achieve a reliable and cost-effective solution in complex urban environments. This paper proposes a multi-stage learning framework to estimate the yaw angle with a monocular camera, which can deal with the challenge in a more reliable manner. In the first stage, an efficient road detection network is designed to extract the road region, providing a highly reliable reference for the estimation. In the second stage, a variational auto-encoder (VAE) is proposed to learn the distribution patterns of road regions, which is particularly suitable for modeling the changing patterns of yaw angle under different driving maneuvers, and it can inherently enhance the generalization ability. In the last stage, a gated recurrent unit (GRU) network is used to capture the temporal correlations of the learned patterns, which is capable to further improve the estimation accuracy due to the fact that the changes of deflection angle are relatively easier to recognize among continuous frames. Afterward, the yaw angle can be obtained by combining the estimated deflection angle and the road direction stored in a roadway map. Through effective multi-stage learning, the proposed framework presents high reliability while it maintains better accuracy. Road-test experiments with different driving maneuvers were performed in complex urban environments, and the results validate the effectiveness of the proposed framework.Keywords: gated recurrent unit, multi-stage learning, reliable estimation, variational auto-encoder, yaw angle
Procedia PDF Downloads 1414107 The Correspondence between Self-regulated Learning, Learning Efficiency and Frequency of ICT Use
Authors: Maria David, Tunde A. Tasko, Katalin Hejja-Nagy, Laszlo Dorner
Abstract:
The authors have been concerned with research on learning since 1998. Recently, the focus of our interest is how prevalent use of information and communication technology (ICT) influences students' learning abilities, skills of self-regulated learning and learning efficiency. Nowadays, there are three dominant theories about the psychic effects of ICT use: According to social optimists, modern ICT devices have a positive effect on thinking. As to social pessimists, this effect is rather negative. And, regarding the views of biological optimists, the change is obvious, but these changes can fit into the mankind's evolved neurological system as did writing long ago. Mentality of 'digital natives' differ from that of elder people. They process information coming from the outside world in an other way, and different experiences result in different cerebral conformation. In this regard, researchers report about both positive and negative effects of ICT use. According to several studies, it has a positive effect on cognitive skills, intelligence, school efficiency, development of self-regulated learning, and self-esteem regarding learning. It is also proven, that computers improve skills of visual intelligence such as spacial orientation, iconic skills and visual attention. Among negative effects of frequent ICT use, researchers mention the decrease of critical thinking, as permanent flow of information does not give scope for deeper cognitive processing. Aims of our present study were to uncover developmental characteristics of self-regulated learning in different age groups and to study correlations of learning efficiency, the level of self-regulated learning and frequency of use of computers. Our subjects (N=1600) were primary and secondary school students and university students. We studied four age groups (age 10, 14, 18, 22), 400 subjects of each. We used the following methods: the research team developed a questionnaire for measuring level of self-regulated learning and a questionnaire for measuring ICT use, and we used documentary analysis to gain information about grade point average (GPA) and results of competence-measures. Finally, we used computer tasks to measure cognitive abilities. Data is currently under analysis, but as to our preliminary results, frequent use of computers results in shorter response time regarding every age groups. Our results show that an ordinary extent of ICT use tend to increase reading competence, and had a positive effect on students' abilities, though it didn't show relationship with school marks (GPA). As time passes, GPA gets worse along with the learning material getting more and more difficult. This phenomenon draws attention to the fact that students are unable to switch from guided to independent learning, so it is important to consciously develop skills of self-regulated learning.Keywords: digital natives, ICT, learning efficiency, reading competence, self-regulated learning
Procedia PDF Downloads 3594106 Sensor Registration in Multi-Static Sonar Fusion Detection
Authors: Longxiang Guo, Haoyan Hao, Xueli Sheng, Hanjun Yu, Jingwei Yin
Abstract:
In order to prevent target splitting and ensure the accuracy of fusion, system error registration is an important step in multi-static sonar fusion detection system. To eliminate the inherent system errors including distance error and angle error of each sonar in detection, this paper uses offline estimation method for error registration. Suppose several sonars from different platforms work together to detect a target. The target position detected by each sonar is based on each sonar’s own reference coordinate system. Based on the two-dimensional stereo projection method, this paper uses real-time quality control (RTQC) method and least squares (LS) method to estimate sensor biases. The RTQC method takes the average value of each sonar’s data as the observation value and the LS method makes the least square processing of each sonar’s data to get the observation value. In the underwater acoustic environment, matlab simulation is carried out and the simulation results show that both algorithms can estimate the distance and angle error of sonar system. The performance of the two algorithms is also compared through the root mean square error and the influence of measurement noise on registration accuracy is explored by simulation. The system error convergence of RTQC method is rapid, but the distribution of targets has a serious impact on its performance. LS method can not be affected by target distribution, but the increase of random noise will slow down the convergence rate. LS method is an improvement of RTQC method, which is widely used in two-dimensional registration. The improved method can be used for underwater multi-target detection registration.Keywords: data fusion, multi-static sonar detection, offline estimation, sensor registration problem
Procedia PDF Downloads 1674105 The Relationship between the Speed of Light and Cosmic Background Potential
Authors: Youping Dai, Xinping Dai, Xiaoyun Li
Abstract:
In this paper, the effect of Cosmic Background Gravitational Potential (CBGP) was discussed. It is helpful to reveal the equivalence of gravitational and inertial mass, and to understand the origin of inertia. The derivation is similar to the classic approach adopted by Landau in the book 'Classical Theory of Fields'.The main differences are that we used CBGP = Lambda^2 instead of c^2, and used CBGP energy E = m*Lambda^2 instead of kinetic energy E = (1/2)m*v^2 as initial assumptions (where Lambda has the same units for measuring velocity). It showed that Lorentz transformation, rest energy and Newtonian mechanics are all affected by $CBGP$, and the square of the speed of light is equal to CBGP too. Finally, the top value of cosmic mass density and cosmic radius were discussed.Keywords: the origin of inertia, Mach's principle, equivalence principle, cosmic background potential
Procedia PDF Downloads 3744104 YOLO-IR: Infrared Small Object Detection in High Noise Images
Authors: Yufeng Li, Yinan Ma, Jing Wu, Chengnian Long
Abstract:
Infrared object detection aims at separating small and dim target from clutter background and its capabilities extend beyond the limits of visible light, making it invaluable in a wide range of applications such as improving safety, security, efficiency, and functionality. However, existing methods are usually sensitive to the noise of the input infrared image, leading to a decrease in target detection accuracy and an increase in the false alarm rate in high-noise environments. To address this issue, an infrared small target detection algorithm called YOLO-IR is proposed in this paper to improve the robustness to high infrared noise. To address the problem that high noise significantly reduces the clarity and reliability of target features in infrared images, we design a soft-threshold coordinate attention mechanism to improve the model’s ability to extract target features and its robustness to noise. Since the noise may overwhelm the local details of the target, resulting in the loss of small target features during depth down-sampling, we propose a deep and shallow feature fusion neck to improve the detection accuracy. In addition, because the generalized Intersection over Union (IoU)-based loss functions may be sensitive to noise and lead to unstable training in high-noise environments, we introduce a Wasserstein-distance based loss function to improve the training of the model. The experimental results show that YOLO-IR achieves a 5.0% improvement in recall and a 6.6% improvement in F1-score over existing state-of-art model.Keywords: infrared small target detection, high noise, robustness, soft-threshold coordinate attention, feature fusion
Procedia PDF Downloads 694103 MRCP as a Pre-Operative Tool for Predicting Variant Biliary Anatomy in Living Related Liver Donors
Authors: Awais Ahmed, Atif Rana, Haseeb Zia, Maham Jahangir, Rashed Nazir, Faisal Dar
Abstract:
Purpose: Biliary complications represent the most common cause of morbidity in living related liver donor transplantation and detailed preoperative evaluation of biliary anatomic variants is crucial for safe patient selection and improved surgical outcomes. Purpose of this study is to determine the accuracy of preoperative MRCP in predicting biliary variations when compared to intraoperative cholangiography in living related liver donors. Materials and Methods: From 44 potential donors, 40 consecutive living related liver donors (13 females and 28 males) underwent donor hepatectomy at our centre from April 2012 to August 2013. MRCP and IOC of all patients were retrospectively reviewed separately by two radiologists and a transplant surgeon.MRCP was performed on 1.5 Tesla MR magnets using breath-hold heavily T2 weighted radial slab technique. One patient was excluded due to suboptimal MRCP. The accuracy of MRCP for variant biliary anatomy was calculated. Results: MRCP accurately predicted the biliary anatomy in 38 of 39 cases (97 %). Standard biliary anatomy was predicted by MRCP in 25 (64 %) donors (100% sensitivity). Variant biliary anatomy was noted in 14 (36 %) IOCs of which MRCP predicted precise anatomy of 13 variants (93 % sensitivity). The two most common variations were drainage of the RPSD into the LHD (50%) and the triple confluence of the RASD, RPSD and LHD (21%). Conclusion: MRCP is a sensitive imaging tool for precise pre-operative mapping of biliary variations which is critical to surgical decision making in living related liver transplantation.Keywords: intraoperative cholangiogram, liver transplantation, living related donors, magnetic resonance cholangio-pancreaticogram (MRCP)
Procedia PDF Downloads 3964102 Corporate Profitability through Effective Supply Chain Performance
Authors: Tareq N. Issa
Abstract:
The main pressuring challenges of global competition and high returns have forced businesses to shift their strategic competitive advantage from physical distribution management to integrated logistics management, finally moving into supply chain management. Conventionally, corporate profitability is a function of cost, capital employed, revenue and customer service. This article gives an insight into the effect of supply chain management on each of the above variables. It investigates the impact of the changing levels/ effects of these variables on corporate profitability and the means of measuring supply chain financial effectiveness. Information technology tools form the basis for supply chain optimal performance through alignment of supply chain systems in this ever increasing complexity in business decisions.Keywords: corporate profitability, sypply chain systems, business decisions, competitive advanage
Procedia PDF Downloads 3314101 Automatic Algorithm for Processing and Analysis of Images from the Comet Assay
Authors: Yeimy L. Quintana, Juan G. Zuluaga, Sandra S. Arango
Abstract:
The comet assay is a method based on electrophoresis that is used to measure DNA damage in cells and has shown important results in the identification of substances with a potential risk to the human population as innumerable physical, chemical and biological agents. With this technique is possible to obtain images like a comet, in which the tail of these refers to damaged fragments of the DNA. One of the main problems is that the image has unequal luminosity caused by the fluorescence microscope and requires different processing to condition it as well as to know how many optimal comets there are per sample and finally to perform the measurements and determine the percentage of DNA damage. In this paper, we propose the design and implementation of software using Image Processing Toolbox-MATLAB that allows the automation of image processing. The software chooses the optimum comets and measuring the necessary parameters to detect the damage.Keywords: artificial vision, comet assay, DNA damage, image processing
Procedia PDF Downloads 3094100 An Approach on Intelligent Tolerancing of Car Body Parts Based on Historical Measurement Data
Authors: Kai Warsoenke, Maik Mackiewicz
Abstract:
To achieve a high quality of assembled car body structures, tolerancing is used to ensure a geometric accuracy of the single car body parts. There are two main techniques to determine the required tolerances. The first is tolerance analysis which describes the influence of individually tolerated input values on a required target value. Second is tolerance synthesis to determine the location of individual tolerances to achieve a target value. Both techniques are based on classical statistical methods, which assume certain probability distributions. To ensure competitiveness in both saturated and dynamic markets, production processes in vehicle manufacturing must be flexible and efficient. The dimensional specifications selected for the individual body components and the resulting assemblies have a major influence of the quality of the process. For example, in the manufacturing of forming tools as operating equipment or in the higher level of car body assembly. As part of the metrological process monitoring, manufactured individual parts and assemblies are recorded and the measurement results are stored in databases. They serve as information for the temporary adjustment of the production processes and are interpreted by experts in order to derive suitable adjustments measures. In the production of forming tools, this means that time-consuming and costly changes of the tool surface have to be made, while in the body shop, uncertainties that are difficult to control result in cost-intensive rework. The stored measurement results are not used to intelligently design tolerances in future processes or to support temporary decisions based on real-world geometric data. They offer potential to extend the tolerancing methods through data analysis and machine learning models. The purpose of this paper is to examine real-world measurement data from individual car body components, as well as assemblies, in order to develop an approach for using the data in short-term actions and future projects. For this reason, the measurement data will be analyzed descriptively in the first step in order to characterize their behavior and to determine possible correlations. In the following, a database is created that is suitable for developing machine learning models. The objective is to create an intelligent way to determine the position and number of measurement points as well as the local tolerance range. For this a number of different model types are compared and evaluated. The models with the best result are used to optimize equally distributed measuring points on unknown car body part geometries and to assign tolerance ranges to them. The current results of this investigation are still in progress. However, there are areas of the car body parts which behave more sensitively compared to the overall part and indicate that intelligent tolerancing is useful here in order to design and control preceding and succeeding processes more efficiently.Keywords: automotive production, machine learning, process optimization, smart tolerancing
Procedia PDF Downloads 1144099 Computer-Aided Depression Screening: A Literature Review on Optimal Methodologies for Mental Health Screening
Authors: Michelle Nighswander
Abstract:
Suicide can be a tragic response to mental illness. It is difficult for people to disclose or discuss suicidal impulses. The stigma surrounding mental health can create a reluctance to seek help for mental illness. Patients may feel pressure to exhibit a socially desirable demeanor rather than reveal these issues, especially if they sense their healthcare provider is pressed for time or does not have an extensive history with their provider. Overcoming these barriers can be challenging. Although there are several validated depression and suicide risk instruments, varying processes used to administer these tools may impact the truthfulness of the responses. A literature review was conducted to find evidence of the impact of the environment on the accuracy of depression screening. Many investigations do not describe the environment and fewer studies use a comparison design. However, three studies demonstrated that computerized self-reporting might be more likely to elicit truthful and accurate responses due to increased privacy when responding compared to a face-to-face interview. These studies showed patients reported positive reactions to computerized screening for other stigmatizing health conditions such as alcohol use during pregnancy. Computerized self-screening for depression offers the possibility of more privacy and patient reflection, which could then send a targeted message of risk to the healthcare provider. This could potentially increase the accuracy while also increasing time efficiency for the clinic. Considering the persistent effects of mental health stigma, how these screening questions are posed can impact patients’ responses. This literature review analyzes trends in depression screening methodologies, the impact of setting on the results and how this may assist in overcoming one barrier caused by stigma.Keywords: computerized self-report, depression, mental health stigma, suicide risk
Procedia PDF Downloads 1284098 Video Analytics on Pedagogy Using Big Data
Authors: Jamuna Loganath
Abstract:
Education is the key to the development of any individual’s personality. Today’s students will be tomorrow’s citizens of the global society. The education of the student is the edifice on which his/her future will be built. Schools therefore should provide an all-round development of students so as to foster a healthy society. The behaviors and the attitude of the students in school play an essential role for the success of the education process. Frequent reports of misbehaviors such as clowning, harassing classmates, verbal insults are becoming common in schools today. If this issue is left unattended, it may develop a negative attitude and increase the delinquent behavior. So, the need of the hour is to find a solution to this problem. To solve this issue, it is important to monitor the students’ behaviors in school and give necessary feedback and mentor them to develop a positive attitude and help them to become a successful grownup. Nevertheless, measuring students’ behavior and attitude is extremely challenging. None of the present technology has proven to be effective in this measurement process because actions, reactions, interactions, response of the students are rarely used in the course of the data due to complexity. The purpose of this proposal is to recommend an effective supervising system after carrying out a feasibility study by measuring the behavior of the Students. This can be achieved by equipping schools with CCTV cameras. These CCTV cameras installed in various schools of the world capture the facial expressions and interactions of the students inside and outside their classroom. The real time raw videos captured from the CCTV can be uploaded to the cloud with the help of a network. The video feeds get scooped into various nodes in the same rack or on the different racks in the same cluster in Hadoop HDFS. The video feeds are converted into small frames and analyzed using various Pattern recognition algorithms and MapReduce algorithm. Then, the video frames are compared with the bench marking database (good behavior). When misbehavior is detected, an alert message can be sent to the counseling department which helps them in mentoring the students. This will help in improving the effectiveness of the education process. As Video feeds come from multiple geographical areas (schools from different parts of the world), BIG DATA helps in real time analysis as it analyzes computationally to reveal patterns, trends, and associations, especially relating to human behavior and interactions. It also analyzes data that can’t be analyzed by traditional software applications such as RDBMS, OODBMS. It has also proven successful in handling human reactions with ease. Therefore, BIG DATA could certainly play a vital role in handling this issue. Thus, effectiveness of the education process can be enhanced with the help of video analytics using the latest BIG DATA technology.Keywords: big data, cloud, CCTV, education process
Procedia PDF Downloads 2394097 Spatial Cognition and 3-Dimensional Vertical Urban Design Guidelines
Authors: Hee Sun (Sunny) Choi, Gerhard Bruyns, Wang Zhang, Sky Cheng, Saijal Sharma
Abstract:
The main focus of this paper is to propose a comprehensive framework for the cognitive measurement and modelling of the built environment. This will involve exploring and measuring neural mechanisms. The aim is to create a foundation for further studies in this field that are consistent and rigorous. Additionally, this framework will facilitate collaboration with cognitive neuroscientists by establishing a shared conceptual basis. The goal of this research is to develop a human-centric approach for urban design that is scientific and measurable, producing a set of urban design guidelines that incorporate cognitive measurement and modelling. By doing so, the broader intention is to design urban spaces that prioritize human needs and well-being, making them more liveable.Keywords: vertical urbanism, human centric design, spatial cognition and psychology, vertical urban design guidelines
Procedia PDF Downloads 814096 Concentrations and History of Heavy Metals in Sediment Cores: Geochemistry and Geochronology Using 210Pb
Authors: F. Fernandes, C. Poleto
Abstract:
This paper aims at assessing the concentrations of heavy metals and the isotopic composition of lead 210Pb in different fractions of sediment produced in the watershed that makes up the Mãe d'água dam and thus characterizing the distribution of metals along the sedimentary column and inferencing in the urbanization of the same process. Sample collection was carried out in June 2014; eight sediment cores were sampled in the lake of the dam. For extraction of the sediments core, a core sampler “Piston Core” was used. The trace metal concentrations were determined by conventional atomic absorption spectrophotometric methods. The samples were subjected to radiochemical analysis of 210Po. 210Pb activity was obtained by measuring 210Po activity. The chronology was calculated using the constant rate of supply (CRS). 210Pb is used to estimate the sedimentation rate.Keywords: ²¹⁰Pb dating method, heavy metal, lakes urban, pollution history
Procedia PDF Downloads 2974095 Emotion Detection in Twitter Messages Using Combination of Long Short-Term Memory and Convolutional Deep Neural Networks
Authors: Bahareh Golchin, Nooshin Riahi
Abstract:
One of the most significant issues as attended a lot in recent years is that of recognizing the sentiments and emotions in social media texts. The analysis of sentiments and emotions is intended to recognize the conceptual information such as the opinions, feelings, attitudes and emotions of people towards the products, services, organizations, people, topics, events and features in the written text. These indicate the greatness of the problem space. In the real world, businesses and organizations are always looking for tools to gather ideas, emotions, and directions of people about their products, services, or events related to their own. This article uses the Twitter social network, one of the most popular social networks with about 420 million active users, to extract data. Using this social network, users can share their information and opinions about personal issues, policies, products, events, etc. It can be used with appropriate classification of emotional states due to the availability of its data. In this study, supervised learning and deep neural network algorithms are used to classify the emotional states of Twitter users. The use of deep learning methods to increase the learning capacity of the model is an advantage due to the large amount of available data. Tweets collected on various topics are classified into four classes using a combination of two Bidirectional Long Short Term Memory network and a Convolutional network. The results obtained from this study with an average accuracy of 93%, show good results extracted from the proposed framework and improved accuracy compared to previous work.Keywords: emotion classification, sentiment analysis, social networks, deep neural networks
Procedia PDF Downloads 1364094 Measuring e-Business Activities of SMEs in Yemen
Authors: Ahmed Abdullah, Lyndon Murphy, Brychan Thomas
Abstract:
Increasingly, in developed and developing countries, small and medium-sized enterprises (SMEs) are becoming more important to national economies due to their strategic significance in developing different industrial sectors Worldwide. SMEs play a major role in an economy by significantly contributing to the enhancement of the countries’ gross domestic product and its labor force by creating more job opportunities and developing skilled labor. Rapid development has been witnessed in the World within different aspects of life, especially the technological revolution such as e-business. This has become a feature of this era requiring us to ‘keep-up’ in our daily society, losing the traditional pattern of our daily lives and combining scientific methodology of an analytical and experimental nature. In the past few years the emergence of e-business and e-commerce in the world has been carefully surveyed. There is widespread use of the internet in every aspect and phase of business.Keywords: e-business, e-business activities, SMEs, e-adoption ladder
Procedia PDF Downloads 5294093 Generalized Additive Model for Estimating Propensity Score
Authors: Tahmidul Islam
Abstract:
Propensity Score Matching (PSM) technique has been widely used for estimating causal effect of treatment in observational studies. One major step of implementing PSM is estimating the propensity score (PS). Logistic regression model with additive linear terms of covariates is most used technique in many studies. Logistics regression model is also used with cubic splines for retaining flexibility in the model. However, choosing the functional form of the logistic regression model has been a question since the effectiveness of PSM depends on how accurately the PS been estimated. In many situations, the linearity assumption of linear logistic regression may not hold and non-linear relation between the logit and the covariates may be appropriate. One can estimate PS using machine learning techniques such as random forest, neural network etc for more accuracy in non-linear situation. In this study, an attempt has been made to compare the efficacy of Generalized Additive Model (GAM) in various linear and non-linear settings and compare its performance with usual logistic regression. GAM is a non-parametric technique where functional form of the covariates can be unspecified and a flexible regression model can be fitted. In this study various simple and complex models have been considered for treatment under several situations (small/large sample, low/high number of treatment units) and examined which method leads to more covariate balance in the matched dataset. It is found that logistic regression model is impressively robust against inclusion quadratic and interaction terms and reduces mean difference in treatment and control set equally efficiently as GAM does. GAM provided no significantly better covariate balance than logistic regression in both simple and complex models. The analysis also suggests that larger proportion of controls than treatment units leads to better balance for both of the methods.Keywords: accuracy, covariate balances, generalized additive model, logistic regression, non-linearity, propensity score matching
Procedia PDF Downloads 3654092 Investigation on Performance of Optical Shutter Panels for Transparent Displays
Authors: Jaehong Kim, Sunhee Park, HongSeop Shin, Kyongho Lim, Suhyun Kwon, Don-Gyou Lee, Pureum Kim, Moojong Lim, JongSang Baek
Abstract:
Transparent displays with OLEDs are the most commonly produced forms of see-through displays on the market or in development. In order to block the visual interruption caused by the light coming from the background, the special panel is combined with transparent displays with OLEDs. There is, however, few studies performance of optical shutter panel for transparent displays until now. This paper, therefore, describes the performance of optical shutter panels. The novel evaluation method was developed by measuring the amount of light which can form a transmitted background image. The new proposed method could tell how recognizable transmitted background images cannot be seen, and is consistent with viewer’s perception.Keywords: optical shutter panel, optical performance, transparent display, visual interruption
Procedia PDF Downloads 5294091 Development of new Ecological Cleaning Process of Metal Sheets
Authors: L. M. López López, J. V. Montesdeoca Contreras, A. R. Cuji Fajardo, L. E. Garzón Muñoz, J. I. Fajardo Seminario
Abstract:
In this article a new method of cleaning process of metal sheets for household appliances was developed, using low-pressure cold plasma. In this context, this research consist in analyze the results of metal sheets cleaning process using plasma and compare with pickling process to determinate the efficiency of each process and the level of contamination produced. Surface Cleaning was evaluated by measuring the contact angle with deionized water, diiodo methane and ethylene glycol, for the calculus of the surface free energy by means of the Fowkes theories and Wu. Showing that low-pressure cold plasma is very efficient both in cleaning process how in environment impact.Keywords: efficient use of plasma, ecological impact of plasma, metal sheets cleaning means, plasma cleaning process.
Procedia PDF Downloads 3524090 A Robust System for Foot Arch Type Classification from Static Foot Pressure Distribution Data Using Linear Discriminant Analysis
Authors: R. Periyasamy, Deepak Joshi, Sneh Anand
Abstract:
Foot posture assessment is important to evaluate foot type, causing gait and postural defects in all age groups. Although different methods are used for classification of foot arch type in clinical/research examination, there is no clear approach for selecting the most appropriate measurement system. Therefore, the aim of this study was to develop a system for evaluation of foot type as clinical decision-making aids for diagnosis of flat and normal arch based on the Arch Index (AI) and foot pressure distribution parameter - Power Ratio (PR) data. The accuracy of the system was evaluated for 27 subjects with age ranging from 24 to 65 years. Foot area measurements (hind foot, mid foot, and forefoot) were acquired simultaneously from foot pressure intensity image using portable PedoPowerGraph system and analysis of the image in frequency domain to obtain foot pressure distribution parameter - PR data. From our results, we obtain 100% classification accuracy of normal and flat foot by using the linear discriminant analysis method. We observe there is no misclassification of foot types because of incorporating foot pressure distribution data instead of only arch index (AI). We found that the mid-foot pressure distribution ratio data and arch index (AI) value are well correlated to foot arch type based on visual analysis. Therefore, this paper suggests that the proposed system is accurate and easy to determine foot arch type from arch index (AI), as well as incorporating mid-foot pressure distribution ratio data instead of physical area of contact. Hence, such computational tool based system can help the clinicians for assessment of foot structure and cross-check their diagnosis of flat foot from mid-foot pressure distribution.Keywords: arch index, computational tool, static foot pressure intensity image, foot pressure distribution, linear discriminant analysis
Procedia PDF Downloads 4954089 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow
Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat
Abstract:
Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.Keywords: affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, student engagement
Procedia PDF Downloads 934088 Understanding and Measuring Stigma, Barriers and Attitudes Associated with Seeking Psychological Help Among Young Adults in Czech Republic
Authors: Tereza Hruskova
Abstract:
200 million people globally experience serious mental health problems, and only one third seek professional help, and help-seeking is described as a last resort. Adolescents and young adults have a high prevalence of mental illness. Mental stigma is a key element in the decision to seek help and is divided into (i) self-stigma (self-stigmatization), including internal beliefs, low self-esteem, and lower quality of life, and (ii) public stigma (social stigma) containing stereotypes, beliefs and society's disapproval of help-seeking having a negative effect on help-seeking and our attitudes. Previous research has mainly focused on examining the construct of help seeking, avoidance, and delaying separately and trying to find out why people do not seek help in time and what obstacles stand in the way. Barriers are not static and may change over time and the stage of help-seeking. Attitudes are closely related to self-stigma and social stigma and predict whether a person will seek help. Barriers (stigmatization, a sense of humiliation, insufficient recognition of the problem, preferences, solving it alone, and distrust of a professional) and facilitators (previous experience with mental problems, social support, and help from others) are factors influencing help-seeking. The current research on the Czech population of young adults responds to the gap between a person with mental health problems and actually seeking professional help. The aim of the study is to describe in detail the individual constructs and factors, to understand the person seeking help, and to define possible obstacles on this path of seeking help. A sample of approximately 250 participants (age 18-35) would take part in the online questionnaire, conducted in May-June 2023, and would be administered a demographic questionnaire and four scales measuring attitudes (Attitudes Toward Seeking Professional Psychological Help – Short form), barriers (Barrier to Help Seeking Scale), self-stigma (Self Stigma of Seeking Help) and stigmatization (Perceptions of Stigmatization by Others for seeking help). Firstly, all four scales would be translated into the Czech language. The aim is (I) to determine the validity and reliability of the Czech translation of the scales, (II) to examine the factors of the scales on the Czech population and compare them retrospectively with the results of reliability and validity from the original language of the scales and (III) to examine the connections between attitudes towards seeking, avoidance or delaying the search for professional psychological help due to the demographic and individual differences of the participants, barriers, self-stigmatization and social stigmatization. We expect to carry out the first study on the given topic in the Czech Republic, to identify and better understand the factors leading to the avoidance of seeking professional help and to reveal the relationships between stigmatization, attitudes and barriers leading to the avoidance or postponement of seeking professional help. The belief is to find out whether the Czech population of young adults differs from the data found on the foreign population in individual constructs, as cultural differences in individual countries were found.Keywords: mental health, stigma, problems, seeking psychological help
Procedia PDF Downloads 744087 Exploring Instructional Designs on the Socio-Scientific Issues-Based Learning Method in Respect to STEM Education for Measuring Reasonable Ethics on Electromagnetic Wave through Science Attitudes toward Physics
Authors: Adisorn Banhan, Toansakul Santiboon, Prasong Saihong
Abstract:
Using the Socio-Scientific Issues-Based Learning Method is to compare of the blended instruction of STEM education with a sample consisted of 84 students in 2 classes at the 11th grade level in Sarakham Pittayakhom School. The 2-instructional models were managed of five instructional lesson plans in the context of electronic wave issue. These research procedures were designed of each instructional method through two groups, the 40-experimental student group was designed for the instructional STEM education (STEMe) and 40-controlling student group was administered with the Socio-Scientific Issues-Based Learning (SSIBL) methods. Associations between students’ learning achievements of each instructional method and their science attitudes of their predictions to their exploring activities toward physics with the STEMe and SSIBL methods were compared. The Measuring Reasonable Ethics Test (MRET) was assessed students’ reasonable ethics with the STEMe and SSIBL instructional design methods on two each group. Using the pretest and posttest technique to monitor and evaluate students’ performances of their reasonable ethics on electromagnetic wave issue in the STEMe and SSIBL instructional classes were examined. Students were observed and gained experience with the phenomena being studied with the Socio-Scientific Issues-Based Learning method Model. To support with the STEM that it was not just teaching about Science, Technology, Engineering, and Mathematics; it is a culture that needs to be cultivated to help create a problem solving, creative, critical thinking workforce for tomorrow in physics. Students’ attitudes were assessed with the Test Of Physics-Related Attitude (TOPRA) modified from the original Test Of Science-Related Attitude (TOSRA). Comparisons between students’ learning achievements of their different instructional methods on the STEMe and SSIBL were analyzed. Associations between students’ performances the STEMe and SSIBL instructional design methods of their reasonable ethics and their science attitudes toward physics were associated. These findings have found that the efficiency of the SSIBL and the STEMe innovations were based on criteria of the IOC value higher than evidence as 80/80 standard level. Statistically significant of students’ learning achievements to their later outcomes on the controlling and experimental groups with the SSIBL and STEMe were differentiated between students’ learning achievements at the .05 level. To compare between students’ reasonable ethics with the SSIBL and STEMe of students’ responses to their instructional activities in the STEMe is higher than the SSIBL instructional methods. Associations between students’ later learning achievements with the SSIBL and STEMe, the predictive efficiency values of the R2 indicate that 67% and 75% for the SSIBL, and indicate that 74% and 81% for the STEMe of the variances were attributable to their developing reasonable ethics and science attitudes toward physics, consequently.Keywords: socio-scientific issues-based learning method, STEM education, science attitudes, measurement, reasonable ethics, physics classes
Procedia PDF Downloads 2914086 Changes in Geospatial Structure of Households in the Czech Republic: Findings from Population and Housing Census
Authors: Jaroslav Kraus
Abstract:
Spatial information about demographic processes are a standard part of outputs in the Czech Republic. That was also the case of Population and Housing Census which was held on 2011. This is a starting point for a follow up study devoted to two basic types of households: single person households and households of one completed family. Single person households and one family households create more than 80 percent of all households, but the share and spatial structure is in long-term changing. The increase of single households is results of long-term fertility decrease and divorce increase, but also possibility of separate living. There are regions in the Czech Republic with traditional demographic behavior, and regions like capital Prague and some others with changing pattern. Population census is based - according to international standards - on the concept of currently living population. Three types of geospatial approaches will be used for analysis: (i) firstly measures of geographic distribution, (ii) secondly mapping clusters to identify the locations of statistically significant hot spots, cold spots, spatial outliers, and similar features and (iii) finally analyzing pattern approach as a starting point for more in-depth analyses (geospatial regression) in the future will be also applied. For analysis of this type of data, number of households by types should be distinct objects. All events in a meaningful delimited study region (e.g. municipalities) will be included in an analysis. Commonly produced measures of central tendency and spread will include: identification of the location of the center of the point set (by NUTS3 level); identification of the median center and standard distance, weighted standard distance and standard deviational ellipses will be also used. Identifying that clustering exists in census households datasets does not provide a detailed picture of the nature and pattern of clustering but will be helpful to apply simple hot-spot (and cold spot) identification techniques to such datasets. Once the spatial structure of households will be determined, any particular measure of autocorrelation can be constructed by defining a way of measuring the difference between location attribute values. The most widely used measure is Moran’s I that will be applied to municipal units where numerical ratio is calculated. Local statistics arise naturally out of any of the methods for measuring spatial autocorrelation and will be applied to development of localized variants of almost any standard summary statistic. Local Moran’s I will give an indication of household data homogeneity and diversity on a municipal level.Keywords: census, geo-demography, households, the Czech Republic
Procedia PDF Downloads 954085 On the Solution of Fractional-Order Dynamical Systems Endowed with Block Hybrid Methods
Authors: Kizito Ugochukwu Nwajeri
Abstract:
This paper presents a distinct approach to solving fractional dynamical systems using hybrid block methods (HBMs). Fractional calculus extends the concept of derivatives and integrals to non-integer orders and finds increasing application in fields such as physics, engineering, and finance. However, traditional numerical techniques often struggle to accurately capture the complex behaviors exhibited by these systems. To address this challenge, we develop HBMs that integrate single-step and multi-step methods, enabling the simultaneous computation of multiple solution points while maintaining high accuracy. Our approach employs polynomial interpolation and collocation techniques to derive a system of equations that effectively models the dynamics of fractional systems. We also directly incorporate boundary and initial conditions into the formulation, enhancing the stability and convergence properties of the numerical solution. An adaptive step-size mechanism is introduced to optimize performance based on the local behavior of the solution. Extensive numerical simulations are conducted to evaluate the proposed methods, demonstrating significant improvements in accuracy and efficiency compared to traditional numerical approaches. The results indicate that our hybrid block methods are robust and versatile, making them suitable for a wide range of applications involving fractional dynamical systems. This work contributes to the existing literature by providing an effective numerical framework for analyzing complex behaviors in fractional systems, thereby opening new avenues for research and practical implementation across various disciplines.Keywords: fractional calculus, numerical simulation, stability and convergence, Adaptive step-size mechanism, collocation methods
Procedia PDF Downloads 414084 Measuring Multi-Class Linear Classifier for Image Classification
Authors: Fatma Susilawati Mohamad, Azizah Abdul Manaf, Fadhillah Ahmad, Zarina Mohamad, Wan Suryani Wan Awang
Abstract:
A simple and robust multi-class linear classifier is proposed and implemented. For a pair of classes of the linear boundary, a collection of segments of hyper planes created as perpendicular bisectors of line segments linking centroids of the classes or part of classes. Nearest Neighbor and Linear Discriminant Analysis are compared in the experiments to see the performances of each classifier in discriminating ripeness of oil palm. This paper proposes a multi-class linear classifier using Linear Discriminant Analysis (LDA) for image identification. Result proves that LDA is well capable in separating multi-class features for ripeness identification.Keywords: multi-class, linear classifier, nearest neighbor, linear discriminant analysis
Procedia PDF Downloads 5364083 Effect of Epoxy-ZrP Nanocomposite Top Coating on Inorganic Barrier Layer
Authors: Haesook Kim, Ha Na Ra, Mansu Kim, Hyun Gi Kim, Sung Soo Kim
Abstract:
Epoxy-ZrP (α-zirconium phosphate) nanocomposites were coated on inorganic barrier layer such as sputtering and atomic layer deposition (ALD) to improve the barrier properties and protect the layer. ZrP nanoplatelets were synthesized using a reflux method and exfoliated in the polymer matrix. The barrier properties of coating layer were characterized by measuring water vapor transmission rate (WVTR). The WVTR dramatically decreased after epoxy-ZrP nanocomposite coating, while maintaining the optical properties. It was also investigated the effect of epoxy-ZrP coating on inorganic layer after bending and reliability test. The optimal structure composed of inorganic and epoxy-ZrP nanocomposite layers was used in organic light emitting diodes (OLED) encapsulation.Keywords: α-zirconium phosphate, barrier properties, epoxy nanocomposites, OLED encapsulation
Procedia PDF Downloads 3564082 Comparison of Deep Learning and Machine Learning Algorithms to Diagnose and Predict Breast Cancer
Authors: F. Ghazalnaz Sharifonnasabi, Iman Makhdoom
Abstract:
Breast cancer is a serious health concern that affects many people around the world. According to a study published in the Breast journal, the global burden of breast cancer is expected to increase significantly over the next few decades. The number of deaths from breast cancer has been increasing over the years, but the age-standardized mortality rate has decreased in some countries. It’s important to be aware of the risk factors for breast cancer and to get regular check- ups to catch it early if it does occur. Machin learning techniques have been used to aid in the early detection and diagnosis of breast cancer. These techniques, that have been shown to be effective in predicting and diagnosing the disease, have become a research hotspot. In this study, we consider two deep learning approaches including: Multi-Layer Perceptron (MLP), and Convolutional Neural Network (CNN). We also considered the five-machine learning algorithm titled: Decision Tree (C4.5), Naïve Bayesian (NB), Support Vector Machine (SVM), K-Nearest Neighbors (KNN) Algorithm and XGBoost (eXtreme Gradient Boosting) on the Breast Cancer Wisconsin Diagnostic dataset. We have carried out the process of evaluating and comparing classifiers involving selecting appropriate metrics to evaluate classifier performance and selecting an appropriate tool to quantify this performance. The main purpose of the study is predicting and diagnosis breast cancer, applying the mentioned algorithms and also discovering of the most effective with respect to confusion matrix, accuracy and precision. It is realized that CNN outperformed all other classifiers and achieved the highest accuracy (0.982456). The work is implemented in the Anaconda environment based on Python programing language.Keywords: breast cancer, multi-layer perceptron, Naïve Bayesian, SVM, decision tree, convolutional neural network, XGBoost, KNN
Procedia PDF Downloads 74