Search results for: game predictions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1266

Search results for: game predictions

126 The Reliability and Shape of the Force-Power-Velocity Relationship of Strength-Trained Males Using an Instrumented Leg Press Machine

Authors: Mark Ashton Newman, Richard Blagrove, Jonathan Folland

Abstract:

The force-velocity profile of an individual has been shown to influence success in ballistic movements, independent of the individuals' maximal power output; therefore, effective and accurate evaluation of an individual’s F-V characteristics and not solely maximal power output is important. The relatively narrow range of loads typically utilised during force-velocity profiling protocols due to the difficulty in obtaining force data at high velocities may bring into question the accuracy of the F-V slope along with predictions pertaining to the maximum force that the system can produce at a velocity of null (F₀) and the theoretical maximum velocity against no load (V₀). As such, the reliability of the slope of the force-velocity profile, as well as V₀, has been shown to be relatively poor in comparison to F₀ and maximal power, and it has been recommended to assess velocity at loads closer to both F₀ and V₀. The aim of the present study was to assess the relative and absolute reliability of an instrumented novel leg press machine which enables the assessment of force and velocity data at loads equivalent to ≤ 10% of one repetition maximum (1RM) through to 1RM during a ballistic leg press movement. The reliability of maximal and mean force, velocity, and power, as well as the respective force-velocity and power-velocity relationships and the linearity of the force-velocity relationship, were evaluated. Sixteen male strength-trained individuals (23.6 ± 4.1 years; 177.1 ± 7.0 cm; 80.0 ± 10.8 kg) attended four sessions; during the initial visit, participants were familiarised with the leg press, modified to include a mounted force plate (Type SP3949, Force Logic, Berkshire, UK) and a Micro-Epsilon WDS-2500-P96 linear positional transducer (LPT) (Micro-Epsilon, Merseyside, UK). Peak isometric force (IsoMax) and a dynamic 1RM, both from a starting position of 81% leg length, were recorded for the dominant leg. Visits two to four saw the participants carry out the leg press movement at loads equivalent to ≤ 10%, 30%, 50%, 70%, and 90% 1RM. IsoMax was recorded during each testing visit prior to dynamic F-V profiling repetitions. The novel leg press machine used in the present study appears to be a reliable tool for measuring F and V-related variables across a range of loads, including velocities closer to V₀ when compared to some of the findings within the published literature. Both linear and polynomial models demonstrated good to excellent levels of reliability for SFV and F₀ respectively, with reliability for V₀ being good using a linear model but poor using a 2nd order polynomial model. As such, a polynomial regression model may be most appropriate when using a similar unilateral leg press setup to predict maximal force production capabilities due to only a 5% difference between F₀ and obtained IsoMax values with a linear model being best suited to predict V₀.

Keywords: force-velocity, leg-press, power-velocity, profiling, reliability

Procedia PDF Downloads 58
125 Online Course of Study and Job Crafting for University Students: Development Work and Feedback

Authors: Hannele Kuusisto, Paivi Makila, Ursula Hyrkkanen

Abstract:

Introduction: There have been arguments about the skills university students should have when graduated. Current trends argue that as well as the specific job-related skills the graduated students need problem-solving, interaction and networking skills as well as self-management skills. Skills required in working life are also considered in the Finnish national project called VALTE (short for 'prepared for working life'). The project involves 11 Finnish school organizations. As one result of this project, a five-credit independent online course in study and job engagement as well as in study and job crafting was developed at Turku University of Applied Sciences. The aim of the oral or e-poster presentation is to present the online course developed in the project. The purpose of this abstract is to present the development work of the online course and the feedback received from the pilots. Method: As the University of Turku is the leading partner of the VALTE project, the collaborative education platform ViLLE (https://ville.utu.fi, developed by the University of Turku) was chosen as the online platform for the course. Various exercise types with automatic assessment were used; for example, quizzes, multiple-choice questions, classification exercises, gap filling exercises, model answer questions, self-assessment tasks, case tasks, and collaboration in Padlet. In addition, the free material and free platforms on the Internet were used (Youtube, Padlet, Todaysmeet, and Prezi) as well as the net-based questionnaires about the study engagement and study crafting (made with Webropol). Three teachers with long teaching experience (also with job crafting and online pedagogy) and three students working as trainees in the project developed the content of the course. The online course was piloted twice in 2017 as an elective course for the students at Turku University of Applied Sciences, a higher education institution of about 10 000 students. After both pilots, feedback from the students was gathered and the online course was developed. Results: As the result, the functional five-credit independent online course suitable for students of different educational institutions was developed. The student feedback shows that students themselves think that the developed online course really enhanced their job and study crafting skills. After the course, 91% of the students considered their knowledge in job and study engagement as well as in job and study crafting to be at a good or excellent level. About two-thirds of the students were going to exploit their knowledge significantly in the future. Students appreciated the variability and the game-like feeling of the exercises as well as the opportunity to study online at the time and place they chose themselves. On a five-point scale (1 being poor and 5 being excellent), the students graded the clarity of the ViLLE platform as 4.2, the functionality of the platform as 4.0 and the easiness of operating as 3.9.

Keywords: job crafting, job engagement, online course, study crafting, study engagement

Procedia PDF Downloads 153
124 The Effectiveness of Multiphase Flow in Well- Control Operations

Authors: Ahmed Borg, Elsa Aristodemou, Attia Attia

Abstract:

Well control involves managing the circulating drilling fluid within the wells and avoiding kicks and blowouts as these can lead to losses in human life and drilling facilities. Current practices for good control incorporate predictions of pressure losses through computational models. Developing a realistic hydraulic model for a good control problem is a very complicated process due to the existence of a complex multiphase region, which usually contains a non-Newtonian drilling fluid and the miscibility of formation gas in drilling fluid. The current approaches assume an inaccurate flow fluid model within the well, which leads to incorrect pressure loss calculations. To overcome this problem, researchers have been considering the more complex two-phase fluid flow models. However, even these more sophisticated two-phase models are unsuitable for applications where pressure dynamics are important, such as in managed pressure drilling. This study aims to develop and implement new fluid flow models that take into consideration the miscibility of fluids as well as their non-Newtonian properties for enabling realistic kick treatment. furthermore, a corresponding numerical solution method is built with an enriched data bank. The research work considers and implements models that take into consideration the effect of two phases in kick treatment for well control in conventional drilling. In this work, a corresponding numerical solution method is built with an enriched data bank. Software STARCCM+ for the computational studies to study the important parameters to describe wellbore multiphase flow, the mass flow rate, volumetric fraction, and velocity of each phase. Results showed that based on the analysis of these simulation studies, a coarser full-scale model of the wellbore, including chemical modeling established. The focus of the investigations was put on the near drill bit section. This inflow area shows certain characteristics that are dominated by the inflow conditions of the gas as well as by the configuration of the mud stream entering the annulus. Without considering the gas solubility effect, the bottom hole pressure could be underestimated by 4.2%, while the bottom hole temperature is overestimated by 3.2%. and without considering the heat transfer effect, the bottom hole pressure could be overestimated by 11.4% under steady flow conditions. Besides, larger reservoir pressure leads to a larger gas fraction in the wellbore. However, reservoir pressure has a minor effect on the steady wellbore temperature. Also as choke pressure increases, less gas will exist in the annulus in the form of free gas.

Keywords: multiphase flow, well- control, STARCCM+, petroleum engineering and gas technology, computational fluid dynamic

Procedia PDF Downloads 119
123 The Effects of Collaborative Videogame Play on Flow Experience and Mood

Authors: Eva Nolan, Timothy Mcnichols

Abstract:

Gamers spend over 3 billion hours collectively playing video games a week, which is arguably not nearly enough time to indulge in the many benefits gaming has to offer. Much of the previous research on video gaming is centered on the effects of playing violent video games and the negative impacts they have on the individual. However, there is a dearth of research in the area of non-violent video games, specifically the emotional and cognitive benefits playing non-violent games can offer individuals. Current research in the area of video game play suggests there are many benefits to playing for an individual, such as decreasing symptoms of depression, decreasing stress, increasing positive emotions, inducing relaxation, decreasing anxiety, and particularly improving mood. One suggestion as to why video games may offer such benefits is that they possess ideal characteristics to create and maintain flow experiences, which in turn, is the subjective experience where an individual obtains a heightened and improved state of mind while they are engaged in a task where a balance of challenge and skill is found. Many video games offer a platform for collaborative gameplay, which can enhance the emotional experience of gaming through the feeling of social support and social inclusion. The present study was designed to examine the effects of collaborative gameplay and flow experience on participants’ perceived mood. To investigate this phenomenon, an in-between subjects design involving forty participants were randomly divided into two groups where they engaged in solo or collaborative gameplay. Each group represented an even number of frequent gamers and non-frequent gamers. Each participant played ‘The Lego Movie Videogame’ on the Playstation 4 console. The participant’s levels of flow experience and perceived mood were measured by the Flow State Scale (FSS) and the Positive and Negative Affect Schedule (PANAS). The following research hypotheses were investigated: (i.) participants in the collaborative gameplay condition will experience higher levels of flow experience and higher levels of mood than those in the solo gameplay condition; (ii.) participants who are frequent gamers will experience higher levels of flow experience and higher levels of mood than non-frequent gamers; and (iii.) there will be a significant positive relationship between flow experience and mood. If the estimated findings are supported, this suggests that engaging in collaborative gameplay can be beneficial for an individual’s mood and that experiencing a state of flow can also enhance an individual’s mood. Hence, collaborative gaming can be beneficial to promote positive emotions (higher levels of mood) through engaging an individual’s flow state.

Keywords: collaborative gameplay, flow experience, mood, games, positive emotions

Procedia PDF Downloads 335
122 Evotrader: Bitcoin Trading Using Evolutionary Algorithms on Technical Analysis and Social Sentiment Data

Authors: Martin Pellon Consunji

Abstract:

Due to the rise in popularity of Bitcoin and other crypto assets as a store of wealth and speculative investment, there is an ever-growing demand for automated trading tools, such as bots, in order to gain an advantage over the market. Traditionally, trading in the stock market was done by professionals with years of training who understood patterns and exploited market opportunities in order to gain a profit. However, nowadays a larger portion of market participants are at minimum aided by market-data processing bots, which can generally generate more stable signals than the average human trader. The rise in trading bot usage can be accredited to the inherent advantages that bots have over humans in terms of processing large amounts of data, lack of emotions of fear or greed, and predicting market prices using past data and artificial intelligence, hence a growing number of approaches have been brought forward to tackle this task. However, the general limitation of these approaches can still be broken down to the fact that limited historical data doesn’t always determine the future, and that a lot of market participants are still human emotion-driven traders. Moreover, developing markets such as those of the cryptocurrency space have even less historical data to interpret than most other well-established markets. Due to this, some human traders have gone back to the tried-and-tested traditional technical analysis tools for exploiting market patterns and simplifying the broader spectrum of data that is involved in making market predictions. This paper proposes a method which uses neuro evolution techniques on both sentimental data and, the more traditionally human-consumed, technical analysis data in order to gain a more accurate forecast of future market behavior and account for the way both automated bots and human traders affect the market prices of Bitcoin and other cryptocurrencies. This study’s approach uses evolutionary algorithms to automatically develop increasingly improved populations of bots which, by using the latest inflows of market analysis and sentimental data, evolve to efficiently predict future market price movements. The effectiveness of the approach is validated by testing the system in a simulated historical trading scenario, a real Bitcoin market live trading scenario, and testing its robustness in other cryptocurrency and stock market scenarios. Experimental results during a 30-day period show that this method outperformed the buy and hold strategy by over 260% in terms of net profits, even when taking into consideration standard trading fees.

Keywords: neuro-evolution, Bitcoin, trading bots, artificial neural networks, technical analysis, evolutionary algorithms

Procedia PDF Downloads 123
121 Adding a Degree of Freedom to Opinion Dynamics Models

Authors: Dino Carpentras, Alejandro Dinkelberg, Michael Quayle

Abstract:

Within agent-based modeling, opinion dynamics is the field that focuses on modeling people's opinions. In this prolific field, most of the literature is dedicated to the exploration of the two 'degrees of freedom' and how they impact the model’s properties (e.g., the average final opinion, the number of final clusters, etc.). These degrees of freedom are (1) the interaction rule, which determines how agents update their own opinion, and (2) the network topology, which defines the possible interaction among agents. In this work, we show that the third degree of freedom exists. This can be used to change a model's output up to 100% of its initial value or to transform two models (both from the literature) into each other. Since opinion dynamics models are representations of the real world, it is fundamental to understand how people’s opinions can be measured. Even for abstract models (i.e., not intended for the fitting of real-world data), it is important to understand if the way of numerically representing opinions is unique; and, if this is not the case, how the model dynamics would change by using different representations. The process of measuring opinions is non-trivial as it requires transforming real-world opinion (e.g., supporting most of the liberal ideals) to a number. Such a process is usually not discussed in opinion dynamics literature, but it has been intensively studied in a subfield of psychology called psychometrics. In psychometrics, opinion scales can be converted into each other, similarly to how meters can be converted to feet. Indeed, psychometrics routinely uses both linear and non-linear transformations of opinion scales. Here, we analyze how this transformation affects opinion dynamics models. We analyze this effect by using mathematical modeling and then validating our analysis with agent-based simulations. Firstly, we study the case of perfect scales. In this way, we show that scale transformations affect the model’s dynamics up to a qualitative level. This means that if two researchers use the same opinion dynamics model and even the same dataset, they could make totally different predictions just because they followed different renormalization processes. A similar situation appears if two different scales are used to measure opinions even on the same population. This effect may be as strong as providing an uncertainty of 100% on the simulation’s output (i.e., all results are possible). Still, by using perfect scales, we show that scales transformations can be used to perfectly transform one model to another. We test this using two models from the standard literature. Finally, we test the effect of scale transformation in the case of finite precision using a 7-points Likert scale. In this way, we show how a relatively small-scale transformation introduces both changes at the qualitative level (i.e., the most shared opinion at the end of the simulation) and in the number of opinion clusters. Thus, scale transformation appears to be a third degree of freedom of opinion dynamics models. This result deeply impacts both theoretical research on models' properties and on the application of models on real-world data.

Keywords: degrees of freedom, empirical validation, opinion scale, opinion dynamics

Procedia PDF Downloads 119
120 Response Surface Methodology for the Optimization of Radioactive Wastewater Treatment with Chitosan-Argan Nutshell Beads

Authors: Fatima Zahra Falah, Touria El. Ghailassi, Samia Yousfi, Ahmed Moussaif, Hasna Hamdane, Mouna Latifa Bouamrani

Abstract:

The management and treatment of radioactive wastewater pose significant challenges to environmental safety and public health. This study presents an innovative approach to optimizing radioactive wastewater treatment using a novel biosorbent: chitosan-argan nutshell beads. By employing Response Surface Methodology (RSM), we aimed to determine the optimal conditions for maximum removal efficiency of radioactive contaminants. Chitosan, a biodegradable and non-toxic biopolymer, was combined with argan nutshell powder to create composite beads. The argan nutshell, a waste product from argan oil production, provides additional adsorption sites and mechanical stability to the biosorbent. The beads were characterized using Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and X-ray Diffraction (XRD) to confirm their structure and composition. A three-factor, three-level Box-Behnken design was utilized to investigate the effects of pH (3-9), contact time (30-150 minutes), and adsorbent dosage (0.5-2.5 g/L) on the removal efficiency of radioactive isotopes, primarily focusing on cesium-137. Batch adsorption experiments were conducted using synthetic radioactive wastewater with known concentrations of these isotopes. The RSM analysis revealed that all three factors significantly influenced the adsorption process. A quadratic model was developed to describe the relationship between the factors and the removal efficiency. The model's adequacy was confirmed through analysis of variance (ANOVA) and various diagnostic plots. Optimal conditions for maximum removal efficiency were pH 6.8, a contact time of 120 minutes, and an adsorbent dosage of 0.8 g/L. Under these conditions, the experimental removal efficiency for cesium-137 was 94.7%, closely matching the model's predictions. Adsorption isotherms and kinetics were also investigated to elucidate the mechanism of the process. The Langmuir isotherm and pseudo-second-order kinetic model best described the adsorption behavior, indicating a monolayer adsorption process on a homogeneous surface. This study demonstrates the potential of chitosan-argan nutshell beads as an effective and sustainable biosorbent for radioactive wastewater treatment. The use of RSM allowed for the efficient optimization of the process parameters, potentially reducing the time and resources required for large-scale implementation. Future work will focus on testing the biosorbent's performance with real radioactive wastewater samples and investigating its regeneration and reusability for long-term applications.

Keywords: adsorption, argan nutshell, beads, chitosan, mechanism, optimization, radioactive wastewater, response surface methodology

Procedia PDF Downloads 35
119 Assessment on the Conduct of Arnis Competition in Pasuc National Olympics 2015: Basis for Improvement of Rules in Competition

Authors: Paulo O. Motita

Abstract:

The Philippine Association of State Colleges and University (PASUC) is an association of State owned and operated higher learning institutions in the Philippines, it is the association that spearhead the conduct of the Annual National Athletic competitions for State Colleges and Universities and Arnis is one of the regular sports. In 2009, Republic Act 9850 also known as declared Arnis as the National Sports and Martial arts of the Philippines. Arnis an ancient Filipino Martial Arts is the major sports in the Annual Palarong Pambansa and other school based sports events. The researcher as a Filipino Martial Arts master and a former athlete desired to determine the extent of acceptability of the arnis rules in competition which serves as the basis for the development of arnis rules. The study aimed to assess the conduct of Arnis competition in PASUC Olympics 2015 in Tugegarao City, Cagayan, Philippines.the rules and conduct itself as perceived by Officiating officials, Coaches and Athletes during the competition last February 7-15, 2015. The descriptive method of research was used, the survey questionnaire as the data gathering instrument was validated. The respondents were composed of 12 Officiating officials, 19 coaches and 138 athletes representing the different regions. Their responses were treated using the Mean, Percentage and One-way Analysis of Variance. The study revealed that the conduct of Arnis competition in PASUC Olympics 2015 was at the low extent to moderate extent as perceived by the three groups of respondents in terms of officiating, scoring and giving violations. Furthermore there is no significant difference in the assessment of the three groups of respondents in the assessment of Anyo and Labanan. Considering the findings of the study, the following conclusions were drawn: 1). There is a need to identify the criteria for judging in Anyo and a tedious scrutiny on the rules of the game for labanan. 2) The three groups of respondents have similar views towards the assessment on the overall competitions for anyo that there were no clear technical guidelines for judging the performance of anyo event. 3). The three groups of respondents have similar views towards the assessment on the overall competitions for labanan that there were no clear technical guidelines for majority rule of giving scores in labanan. 4) The Anyo performance should be rated according to effectiveness of techniques and performance of weapon/s that are being used. 5) On other issues and concern towards the rules of competitions, labanan should be addressed in improving rules of competitions, focus on the applications of majority rules for scoring, players shall be given rest interval, a clear guidelines and set a standard qualifications for officiating officials.

Keywords: PASUC Olympics 2015, Arnis rules of competition, Anyo, Labanan, officiating

Procedia PDF Downloads 458
118 Streamlining the Fuzzy Front-End and Improving the Usability of the Tools Involved

Authors: Michael N. O'Sullivan, Con Sheahan

Abstract:

Researchers have spent decades developing tools and techniques to aid teams in the new product development (NPD) process. Despite this, it is evident that there is a huge gap between their academic prevalence and their industry adoption. For the fuzzy front-end, in particular, there is a wide range of tools to choose from, including the Kano Model, the House of Quality, and many others. In fact, there are so many tools that it can often be difficult for teams to know which ones to use and how they interact with one another. Moreover, while the benefits of using these tools are obvious to industrialists, they are rarely used as they carry a learning curve that is too steep and they become too complex to manage over time. In essence, it is commonly believed that they are simply not worth the effort required to learn and use them. This research explores a streamlined process for the fuzzy front-end, assembling the most effective tools and making them accessible to everyone. The process was developed iteratively over the course of 3 years, following over 80 final year NPD teams from engineering, design, technology, and construction as they carried a product from concept through to production specification. Questionnaires, focus groups, and observations were used to understand the usability issues with the tools involved, and a human-centred design approach was adopted to produce a solution to these issues. The solution takes the form of physical toolkit, similar to a board game, which allows the team to play through an example of a new product development in order to understand the process and the tools, before using it for their own product development efforts. A complimentary website is used to enhance the physical toolkit, and it provides more examples of the tools being used, as well as deeper discussions on each of the topics, allowing teams to adapt the process to their skills, preferences and product type. Teams found the solution very useful and intuitive and experienced significantly less confusion and mistakes with the process than teams who did not use it. Those with a design background found it especially useful for the engineering principles like Quality Function Deployment, while those with an engineering or technology background found it especially useful for design and customer requirements acquisition principles, like Voice of the Customer. Products developed using the toolkit are added to the website as more examples of how it can be used, creating a loop which helps future teams understand how the toolkit can be adapted to their project, whether it be a small consumer product or a large B2B service. The toolkit unlocks the potential of these beneficial tools to those in industry, both for large, experienced teams and for inexperienced start-ups. It allows users to assess the market potential of their product concept faster and more effectively, arriving at the product design stage with technical requirements prioritized according to their customers’ needs and wants.

Keywords: new product development, fuzzy front-end, usability, Kano model, quality function deployment, voice of customer

Procedia PDF Downloads 108
117 Mesoporous BiVO4 Thin Films as Efficient Visible Light Driven Photocatalyst

Authors: Karolina Ordon, Sandrine Coste, Malgorzata Makowska-Janusik, Abdelhadi Kassiba

Abstract:

Photocatalytic processes play key role in the production of a new source of energy (as hydrogen), design of self-cleaning surfaces or for the environment preservation. The most challenging task deals with the purification of water distinguished by high efficiency. In the mentioned process, organic pollutants in solutions are decomposed to the simple, non-toxic compounds as H2O and CO2. The most known photocatalytic materials are ZnO, CdS and TiO2 semiconductors with a particular involvement of TiO2 as an efficient photocatalysts even with a high band gap equal to 3.2 eV which exploit only UV radiation from solar emitted spectrum. However, promising material with visible light induced photoactivity was searched through the monoclinic polytype of BiVO4 which has energy gap about 2.4 eV. As required in heterogeneous photocatalysis, the high contact surface is required. Also, BiVO4 as photocatalyst can be optimized by increasing its surface area by achieving the mesoporous structure synthesize. The main goal of the present work consists in the synthesis and characterization of BiVO4 mesoporous thin film. The synthesis method based on sol-gel was carried out using a standard surfactants such as P123 and F127. The thin film was deposited by spin and dip coating method. Then, the structural analysis of the obtained material was performed thanks to X-ray diffraction (XRD) and Raman spectroscopy. The surface of resulting structure was investigated using a scanning electron microscopy (SEM). The computer simulations based on modeling the optical and electronic properties of bulk BiVO4 by using DFT (density functional theory) methodology were carried out. The semiempirical parameterized method PM6 was used to compute the physical properties of BiVO4 nanostructures. The Raman and IR absorption spectra were also measured for synthesized mesoporous material, and the results were compared with the theoretical predictions. The simulations of nanostructured BiVO4 have pointed out the occurrence of quantum confinement for nanosized clusters leading to widening of the band gap. This result overcame the relevance of nanosized objects to harvest wide part of the solar spectrum. Also, a balance was searched experimentally through the mesoporous nature of the films devoted to enhancing the contact surface as required for heterogeneous catalysis without to lower the nanocrystallite size under some critical sizes inducing an increased band gap. The present contribution will discuss the relevant features of the mesoporous films with respect to their photocatalytic responses.

Keywords: bismuth vanadate, photocatalysis, thin film, quantum-chemical calculations

Procedia PDF Downloads 324
116 A Non-Invasive Method for Assessing the Adrenocortical Function in the Roan Antelope (Hippotragus equinus)

Authors: V. W. Kamgang, A. Van Der Goot, N. C. Bennett, A. Ganswindt

Abstract:

The roan antelope (Hippotragus equinus) is the second largest antelope species in Africa. These past decades, populations of roan antelope are declining drastically throughout Africa. This situation resulted in the development of intensive breeding programmes for this species in Southern African, where they are popular game ranching herbivores in with increasing numbers in captivity. Nowadays, avoidance of stress is important when managing wildlife to ensure animal welfare. In this regard, a non-invasive approach to monitor the adrenocortical function as a measure of stress would be preferable, since animals are not disturbed during sample collection. However, to date, a non-invasive method has not been established for the roan antelope. In this study, we validated a non-invasive technique to monitor the adrenocortical function in this species. Herein, we performed an adrenocorticotropic hormone (ACTH) stimulation test at Lapalala reserve Wilderness, South Africa, using adult captive roan antelopes to determine the stress-related physiological responses. Two individually housed roan antelope (a male and a female) received an intramuscular injection with Synacthen depot (Norvatis) loaded into a 3ml syringe (Pneu-Dart) at an estimated dose of 1 IU/kg. A total number of 86 faecal samples (male: 46, female: 40) were collected 5 days before and 3 days post-injection. All samples were then lyophilised, pulverized and extracted with 80% ethanol (0,1g/3ml) and the resulting faecal extracts were analysed for immunoreactive faecal glucocorticoid metabolite (fGCM) concentrations using five enzyme immunoassays (EIAs); (i) 11-oxoaetiocholanolone I (detecting 11,17 dioxoandrostanes), (ii) 11-oxoaetiocholanolone II (detecting fGCM with a 5α-pregnane-3α-ol-11one structure), (iii) a 5α-pregnane-3β-11β,21-triol-20-one (measuring 3β,11β-diol CM), (iv) a cortisol and (v) a corticosterone. In both animals, all EIAs detected an increase in fGCM concentration 100% post-ACTH administration. However, the 11-oxoaetiocholanolone I EIA performed best, with a 20-fold increase in the male (baseline: 0.384 µg/g, DW; peak: 8,585 µg/g DW) and a 17-fold in the female (baseline: 0.323 µg/g DW, peak: 7,276 µg/g DW), measured 17 hours and 12 hours post-administration respectively. These results are important as the ability to assess adrenocortical function non-invasively in roan can now be used as an essential prerequisite to evaluate the effects of stressful circumstances; such as variation of environmental conditions or reproduction in other to improve management strategies for the conservation of this iconic antelope species.

Keywords: adrenocorticotropic hormone challenge, adrenocortical function, captive breeding, non-invasive method, roan antelope

Procedia PDF Downloads 145
115 Exploring Instructional Designs on the Socio-Scientific Issues-Based Learning Method in Respect to STEM Education for Measuring Reasonable Ethics on Electromagnetic Wave through Science Attitudes toward Physics

Authors: Adisorn Banhan, Toansakul Santiboon, Prasong Saihong

Abstract:

Using the Socio-Scientific Issues-Based Learning Method is to compare of the blended instruction of STEM education with a sample consisted of 84 students in 2 classes at the 11th grade level in Sarakham Pittayakhom School. The 2-instructional models were managed of five instructional lesson plans in the context of electronic wave issue. These research procedures were designed of each instructional method through two groups, the 40-experimental student group was designed for the instructional STEM education (STEMe) and 40-controlling student group was administered with the Socio-Scientific Issues-Based Learning (SSIBL) methods. Associations between students’ learning achievements of each instructional method and their science attitudes of their predictions to their exploring activities toward physics with the STEMe and SSIBL methods were compared. The Measuring Reasonable Ethics Test (MRET) was assessed students’ reasonable ethics with the STEMe and SSIBL instructional design methods on two each group. Using the pretest and posttest technique to monitor and evaluate students’ performances of their reasonable ethics on electromagnetic wave issue in the STEMe and SSIBL instructional classes were examined. Students were observed and gained experience with the phenomena being studied with the Socio-Scientific Issues-Based Learning method Model. To support with the STEM that it was not just teaching about Science, Technology, Engineering, and Mathematics; it is a culture that needs to be cultivated to help create a problem solving, creative, critical thinking workforce for tomorrow in physics. Students’ attitudes were assessed with the Test Of Physics-Related Attitude (TOPRA) modified from the original Test Of Science-Related Attitude (TOSRA). Comparisons between students’ learning achievements of their different instructional methods on the STEMe and SSIBL were analyzed. Associations between students’ performances the STEMe and SSIBL instructional design methods of their reasonable ethics and their science attitudes toward physics were associated. These findings have found that the efficiency of the SSIBL and the STEMe innovations were based on criteria of the IOC value higher than evidence as 80/80 standard level. Statistically significant of students’ learning achievements to their later outcomes on the controlling and experimental groups with the SSIBL and STEMe were differentiated between students’ learning achievements at the .05 level. To compare between students’ reasonable ethics with the SSIBL and STEMe of students’ responses to their instructional activities in the STEMe is higher than the SSIBL instructional methods. Associations between students’ later learning achievements with the SSIBL and STEMe, the predictive efficiency values of the R2 indicate that 67% and 75% for the SSIBL, and indicate that 74% and 81% for the STEMe of the variances were attributable to their developing reasonable ethics and science attitudes toward physics, consequently.

Keywords: socio-scientific issues-based learning method, STEM education, science attitudes, measurement, reasonable ethics, physics classes

Procedia PDF Downloads 292
114 The Roman Fora in North Africa Towards a Supportive Protocol to the Decision for the Morphological Restitution

Authors: Dhouha Laribi Galalou, Najla Allani Bouhoula, Atef Hammouda

Abstract:

This research delves into the fundamental question of the morphological restitution of built archaeology in order to place it in its paradigmatic context and to seek answers to it. Indeed, the understanding of the object of the study, its analysis, and the methodology of solving the morphological problem posed, are manageable aspects only by means of a thoughtful strategy that draws on well-defined epistemological scaffolding. In this stream, the crisis of natural reasoning in archaeology has generated multiple changes in this field, ranging from the use of new tools to the integration of an archaeological information system where urbanization involves the interplay of several disciplines. The built archaeological topic is also an architectural and morphological object. It is also a set of articulated elementary data, the understanding of which is about to be approached from a logicist point of view. Morphological restitution is no exception to the rule, and the inter-exchange between the different disciplines uses the capacity of each to frame the reflection on the incomplete elements of a given architecture or on its different phases and multiple states of existence. The logicist sequence is furnished by the set of scattered or destroyed elements found, but also by what can be called a rule base which contains the set of rules for the architectural construction of the object. The knowledge base built from the archaeological literature also provides a reference that enters into the game of searching for forms and articulations. The choice of the Roman Forum in North Africa is justified by the great urban and architectural characteristics of this entity. The research on the forum involves both a fairly large knowledge base but also provides the researcher with material to study - from a morphological and architectural point of view - starting from the scale of the city down to the architectural detail. The experimentation of the knowledge deduced on the paradigmatic level, as well as the deduction of an analysis model, is then carried out on the basis of a well-defined context which contextualises the experimentation from the elaboration of the morphological information container attached to the rule base and the knowledge base. The use of logicist analysis and artificial intelligence has allowed us to first question the aspects already known in order to measure the credibility of our system, which remains above all a decision support tool for the morphological restitution of Roman Fora in North Africa. This paper presents a first experimentation of the model elaborated during this research, a model framed by a paradigmatic discussion and thus trying to position the research in relation to the existing paradigmatic and experimental knowledge on the issue.

Keywords: classical reasoning, logicist reasoning, archaeology, architecture, roman forum, morphology, calculation

Procedia PDF Downloads 147
113 Mechanisms Underlying the Effects of School-Based Internet Intervention for Alcohol Drinking Behaviours among Chinese Adolescent

Authors: Keith T. S. Tung, Frederick K. Ho, Rosa S. Wong, Camilla K. M. Lo, Wilfred H. S. Wong, C. B. Chow, Patrick Ip

Abstract:

Objectives: Underage drinking is an important public health problem both locally and globally. Conventional prevention/intervention relies on unidirectional knowledge transfer such as mail leaflets or health talks which showed mixed results in changing the target behaviour. Previously, we conducted a school internet-based intervention which was found to be effective in reducing alcohol use among adolescents, yet the underlying mechanisms have not been properly investigated. This study, therefore, examined the mechanisms that explain how the intervention produced a change in alcohol drinking behaviours among Chinese adolescent as observed in our previous clustered randomised controlled trial (RCT) study. Methods: This is a cluster randomised controlled trial with parallel group design. Participating schools were randomised to the Internet intervention or the conventional health education group (control) with a 1:1 allocation ratio. Secondary 1–3 students of the participating schools were enrolled in this study. The Internet intervention was a web-based quiz game competition, in which participating students would answer 1,000 alcohol-related multiple-choice quiz questions. Conventional health education group received a promotional package on equivalent alcohol-related knowledge. The participants’ alcohol-related attitude, knowledge, and perceived behavioural control were self-reported before the intervention (baseline) and one month and three months after the intervention. Results: Our RCT results showed that participants in the Internet group were less likely to drink (risk ratio [RR] 0.79, p < 0.01) as well as in lesser amount (β -0.06, p < 0.05) compared to those in the control group at both post-intervention follow-ups. Within the intervention group, regression analyses showed that high quiz scorer had greater improvement in alcohol-related knowledge (β 0.28, p < 0.01) and attitude (β -0.26, p < 0.01) at 1 month after intervention, which in turn increased their perceived behavioural control against alcohol use (β 0.10 and -0.26, both p < 0.01). Attitude, compared to knowledge, was found to be a stronger contributor to the intervention effect on perceived behavioural control. Conclusions: Our internet-based intervention has demonstrated effectiveness in reducing the risk of underage drinking when compared with conventional health education. Our study results further showed an attitude to be a more important factor than knowledge in changing health-related behaviour. This has an important implication for future prevention/intervention on an underage drinking problem.

Keywords: adolescents, internet-based intervention, randomized controlled trial, underage drinking

Procedia PDF Downloads 164
112 The Effect of Information vs. Reasoning Gap Tasks on the Frequency of Conversational Strategies and Accuracy in Speaking among Iranian Intermediate EFL Learners

Authors: Hooriya Sadr Dadras, Shiva Seyed Erfani

Abstract:

Speaking skills merit meticulous attention both on the side of the learners and the teachers. In particular, accuracy is a critical component to guarantee the messages to be conveyed through conversation because a wrongful change may adversely alter the content and purpose of the talk. Different types of tasks have served teachers to meet numerous educational objectives. Besides, negotiation of meaning and the use of different strategies have been areas of concern in socio-cultural theories of SLA. Negotiation of meaning is among the conversational processes which have a crucial role in facilitating the understanding and expression of meaning in a given second language. Conversational strategies are used during interaction when there is a breakdown in communication that leads to the interlocutor attempting to remedy the gap through talk. Therefore, this study was an attempt to investigate if there was any significant difference between the effect of reasoning gap tasks and information gap tasks on the frequency of conversational strategies used in negotiation of meaning in classrooms on one hand, and on the accuracy in speaking of Iranian intermediate EFL learners on the other. After a pilot study to check the practicality of the treatments, at the outset of the main study, the Preliminary English Test was administered to ensure the homogeneity of 87 out of 107 participants who attended the intact classes of a 15 session term in one control and two experimental groups. Also, speaking sections of PET were used as pretest and posttest to examine their speaking accuracy. The tests were recorded and transcribed to estimate the percentage of the number of the clauses with no grammatical errors in the total produced clauses to measure the speaking accuracy. In all groups, the grammatical points of accuracy were instructed and the use of conversational strategies was practiced. Then, different kinds of reasoning gap tasks (matchmaking, deciding on the course of action, and working out a time table) and information gap tasks (restoring an incomplete chart, spot the differences, arranging sentences into stories, and guessing game) were manipulated in experimental groups during treatment sessions, and the students were required to practice conversational strategies when doing speaking tasks. The conversations throughout the terms were recorded and transcribed to count the frequency of the conversational strategies used in all groups. The results of statistical analysis demonstrated that applying both the reasoning gap tasks and information gap tasks significantly affected the frequency of conversational strategies through negotiation. In the face of the improvements, the reasoning gap tasks had a more significant impact on encouraging the negotiation of meaning and increasing the number of conversational frequencies every session. The findings also indicated both task types could help learners significantly improve their speaking accuracy. Here, applying the reasoning gap tasks was more effective than the information gap tasks in improving the level of learners’ speaking accuracy.

Keywords: accuracy in speaking, conversational strategies, information gap tasks, reasoning gap tasks

Procedia PDF Downloads 309
111 Predicting Blockchain Technology Installation Cost in Supply Chain System through Supervised Learning

Authors: Hossein Havaeji, Tony Wong, Thien-My Dao

Abstract:

1. Research Problems and Research Objectives: Blockchain Technology-enabled Supply Chain System (BT-enabled SCS) is the system using BT to drive SCS transparency, security, durability, and process integrity as SCS data is not always visible, available, or trusted. The costs of operating BT in the SCS are a common problem in several organizations. The costs must be estimated as they can impact existing cost control strategies. To account for system and deployment costs, it is necessary to overcome the following hurdle. The problem is that the costs of developing and running a BT in SCS are not yet clear in most cases. Many industries aiming to use BT have special attention to the importance of BT installation cost which has a direct impact on the total costs of SCS. Predicting BT installation cost in SCS may help managers decide whether BT is to be an economic advantage. The purpose of the research is to identify some main BT installation cost components in SCS needed for deeper cost analysis. We then identify and categorize the main groups of cost components in more detail to utilize them in the prediction process. The second objective is to determine the suitable Supervised Learning technique in order to predict the costs of developing and running BT in SCS in a particular case study. The last aim is to investigate how the running BT cost can be involved in the total cost of SCS. 2. Work Performed: Applied successfully in various fields, Supervised Learning is a method to set the data frame, treat the data, and train/practice the method sort. It is a learning model directed to make predictions of an outcome measurement based on a set of unforeseen input data. The following steps must be conducted to search for the objectives of our subject. The first step is to make a literature review to identify the different cost components of BT installation in SCS. Based on the literature review, we should choose some Supervised Learning methods which are suitable for BT installation cost prediction in SCS. According to the literature review, some Supervised Learning algorithms which provide us with a powerful tool to classify BT installation components and predict BT installation cost are the Support Vector Regression (SVR) algorithm, Back Propagation (BP) neural network, and Artificial Neural Network (ANN). Choosing a case study to feed data into the models comes into the third step. Finally, we will propose the best predictive performance to find the minimum BT installation costs in SCS. 3. Expected Results and Conclusion: This study tends to propose a cost prediction of BT installation in SCS with the help of Supervised Learning algorithms. At first attempt, we will select a case study in the field of BT-enabled SCS, and then use some Supervised Learning algorithms to predict BT installation cost in SCS. We continue to find the best predictive performance for developing and running BT in SCS. Finally, the paper will be presented at the conference.

Keywords: blockchain technology, blockchain technology-enabled supply chain system, installation cost, supervised learning

Procedia PDF Downloads 122
110 Supply Chain Analysis with Product Returns: Pricing and Quality Decisions

Authors: Mingming Leng

Abstract:

Wal-Mart has allocated considerable human resources for its quality assurance program, in which the largest retailer serves its supply chains as a quality gatekeeper. Asda Stores Ltd., the second largest supermarket chain in Britain, is now investing £27m in significantly increasing the frequency of quality control checks in its supply chains and thus enhancing quality across its fresh food business. Moreover, Tesco, the largest British supermarket chain, already constructed a quality assessment center to carry out its gatekeeping responsibility. Motivated by the above practices, we consider a supply chain in which a retailer plays the gatekeeping role in quality assurance by identifying defects among a manufacturer's products prior to selling them to consumers. The impact of a retailer's gatekeeping activity on pricing and quality assurance in a supply chain has not been investigated in the operations management area. We draw a number of managerial insights that are expected to help practitioners judiciously consider the quality gatekeeping effort at the retail level. As in practice, when the retailer identifies a defective product, she immediately returns it to the manufacturer, who then replaces the defect with a good quality product and pays a penalty to the retailer. If the retailer does not recognize a defect but sells it to a consumer, then the consumer will identify the defect and return it to the retailer, who then passes the returned 'unidentified' defect to the manufacturer. The manufacturer also incurs a penalty cost. Accordingly, we analyze a two-stage pricing and quality decision problem, in which the manufacturer and the retailer bargain over the manufacturer's average defective rate and wholesale price at the first stage, and the retailer decides on her optimal retail price and gatekeeping intensity at the second stage. We also compare the results when the retailer performs quality gatekeeping with those when the retailer does not. Our supply chain analysis exposes some important managerial insights. For example, the retailer's quality gatekeeping can effectively reduce the channel-wide defective rate, if her penalty charge for each identified de-fect is larger than or equal to the market penalty for each unidentified defect. When the retailer imple-ments quality gatekeeping, the change in the negotiated wholesale price only depends on the manufac-turer's 'individual' benefit, and the change in the retailer's optimal retail price is only related to the channel-wide benefit. The retailer is willing to take on the quality gatekeeping responsibility, when the impact of quality relative to retail price on demand is high and/or the retailer has a strong bargaining power. We conclude that the retailer's quality gatekeeping can help reduce the defective rate for consumers, which becomes more significant when the retailer's bargaining position in her supply chain is stronger. Retailers with stronger bargaining powers can benefit more from their quality gatekeeping in supply chains.

Keywords: bargaining, game theory, pricing, quality, supply chain

Procedia PDF Downloads 277
109 Investigation of Permeate Flux through DCMD Module by Inserting S-Ribs Carbon-Fiber Promoters with Ascending and Descending Hydraulic Diameters

Authors: Chii-Dong Ho, Jian-Har Chen

Abstract:

The decline in permeate flux across membrane modules is attributed to the increase in temperature polarization resistance in flat-plate Direct Contact Membrane Distillation (DCMD) modules for pure water productivity. Researchers have discovered that this effect can be diminished by embedding turbulence promoters, which augment turbulence intensity at the cost of increased power consumption, thereby improving vapor permeate flux. The device performance of DCMD modules for permeate flux was further enhanced by shrinking the hydraulic diameters of inserted S-ribs carbon-fiber promoters as well as considering the energy consumption increment. The mass-balance formulation, based on the resistance-in-series model by energy conservation in one-dimensional governing equations, was developed theoretically and conducted experimentally on a flat-plate polytetrafluoroethylene/polypropylene (PTFE/PP) membrane module to predict permeate flux and temperature distributions. The ratio of permeate flux enhancement to energy consumption increment, as referred to an assessment on economic viewpoint and technical feasibilities, was calculated to determine the suitable design parameters for DCMD operations with the insertion of S-ribs carbon-fiber turbulence promoters. An economic analysis was also performed, weighing both permeate flux improvement and energy consumption increment on modules with promoter-filled channels by different array configurations and various hydraulic diameters of turbulence promoters. Results showed that the ratio of permeate flux improvement to energy consumption increment in descending hydraulic-diameter modules is higher than in uniform hydraulic-diameter modules. The fabrication details of the DCMD module filaments implementing the S-ribs carbon-fiber filaments and the schematic configuration of the flat-plate DCMD experimental setup with presenting acrylic plates as external walls were demonstrated in the present study. The S-ribs carbon fibers perform as turbulence promoters incorporated into the artificial hot saline feed stream, which was prepared by adding inorganic salts (NaCl) to distilled water. Theoretical predictions and experimental results exhibited a great accomplishment to considerably achieve permeate flux enhancement, such as the new design of the DCMD module with inserting S-ribs carbon-fiber promoters. Additionally, the Nusselt number for the water vapor transferring membrane module with inserted S-ribs carbon-fiber promoters was generalized into a simplified expression to predict the heat transfer coefficient and permeate flux as well.

Keywords: permeate flux, Nusselt number, DCMD module, temperature polarization, hydraulic diameters

Procedia PDF Downloads 8
108 Machine Learning Techniques in Seismic Risk Assessment of Structures

Authors: Farid Khosravikia, Patricia Clayton

Abstract:

The main objective of this work is to evaluate the advantages and disadvantages of various machine learning techniques in two key steps of seismic hazard and risk assessment of different types of structures. The first step is the development of ground-motion models, which are used for forecasting ground-motion intensity measures (IM) given source characteristics, source-to-site distance, and local site condition for future events. IMs such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available. Second, it is investigated how machine learning techniques could be beneficial for developing probabilistic seismic demand models (PSDMs), which provide the relationship between the structural demand responses (e.g., component deformations, accelerations, internal forces, etc.) and the ground motion IMs. In the risk framework, such models are used to develop fragility curves estimating exceeding probability of damage for pre-defined limit states, and therefore, control the reliability of the predictions in the risk assessment. In this study, machine learning algorithms like artificial neural network, random forest, and support vector machine are adopted and trained on the demand parameters to derive PSDMs for them. It is observed that such models can provide more accurate estimates of prediction in relatively shorter about of time compared to conventional methods. Moreover, they can be used for sensitivity analysis of fragility curves with respect to many modeling parameters without necessarily requiring more intense numerical response-history analysis.

Keywords: artificial neural network, machine learning, random forest, seismic risk analysis, seismic hazard analysis, support vector machine

Procedia PDF Downloads 106
107 Learning to Translate by Learning to Communicate to an Entailment Classifier

Authors: Szymon Rutkowski, Tomasz Korbak

Abstract:

We present a reinforcement-learning-based method of training neural machine translation models without parallel corpora. The standard encoder-decoder approach to machine translation suffers from two problems we aim to address. First, it needs parallel corpora, which are scarce, especially for low-resource languages. Second, it lacks psychological plausibility of learning procedure: learning a foreign language is about learning to communicate useful information, not merely learning to transduce from one language’s 'encoding' to another. We instead pose the problem of learning to translate as learning a policy in a communication game between two agents: the translator and the classifier. The classifier is trained beforehand on a natural language inference task (determining the entailment relation between a premise and a hypothesis) in the target language. The translator produces a sequence of actions that correspond to generating translations of both the hypothesis and premise, which are then passed to the classifier. The translator is rewarded for classifier’s performance on determining entailment between sentences translated by the translator to disciple’s native language. Translator’s performance thus reflects its ability to communicate useful information to the classifier. In effect, we train a machine translation model without the need for parallel corpora altogether. While similar reinforcement learning formulations for zero-shot translation were proposed before, there is a number of improvements we introduce. While prior research aimed at grounding the translation task in the physical world by evaluating agents on an image captioning task, we found that using a linguistic task is more sample-efficient. Natural language inference (also known as recognizing textual entailment) captures semantic properties of sentence pairs that are poorly correlated with semantic similarity, thus enforcing basic understanding of the role played by compositionality. It has been shown that models trained recognizing textual entailment produce high-quality general-purpose sentence embeddings transferrable to other tasks. We use stanford natural language inference (SNLI) dataset as well as its analogous datasets for French (XNLI) and Polish (CDSCorpus). Textual entailment corpora can be obtained relatively easily for any language, which makes our approach more extensible to low-resource languages than traditional approaches based on parallel corpora. We evaluated a number of reinforcement learning algorithms (including policy gradients and actor-critic) to solve the problem of translator’s policy optimization and found that our attempts yield some promising improvements over previous approaches to reinforcement-learning based zero-shot machine translation.

Keywords: agent-based language learning, low-resource translation, natural language inference, neural machine translation, reinforcement learning

Procedia PDF Downloads 128
106 A Study of the Prevalence of Trichinellosis in Domestic and Wild Animals for the Region of Sofia, Bulgaria

Authors: Valeria Dilcheva, Svetlozara Petkova, Ivelin Vladov

Abstract:

Nemathodes of the genus Trichinella are zoonotic parasites with a cosmopolitan distribution. More than 100 species of mammals, birds and reptiles are involved in the natural cycle of this nematode. At present, T. spiralis, T. pseudospiralis, and T. britovi have been found in Bulgaria. The existence of natural wildlife and domestic reservoirs of Trichinella spp. can be a serious threat to human health. Three trichinella isolates caused human trichinella infection outbreaks from three regions of Sofia City Province were used for the research: sample No. 1 - Ratus norvegicus, sample No. 2 – domestic pig (Sus scrofa domestica), sample No. 3 - domestic pig (Sus scrofa domestica). Trichinella larvae of the studied species were isolated via digestive method (pepsin, hydrochloric acid, water) at 37ºC by standard procedure and were determined by gender (male and female) based on their morphological characteristics. As a reference trichinella species were used: T. spiralis, T. pseudospiralis, T. nativa and T. britovi. Single male and female larvae of the three isolates were crossed with single male and female larvae of the reference trichinella species as well as reciprocally. As a result of cross-breeding, offspring of muscular larvae with T. spiralis and T. britovi were obtained, while in experiments with T. pseudospiralis and T. nativa, trichinella larvae were not found in the laboratory mice. The results obtained in the control groups indicate that the trichinella larvae used from the isolates and the four trichinella species are infective. Also, the infective ability of the F1 offspring from the successful cross-breeding between isolates and reference species was investigated. Through the data obtained in the experiment was found that isolates No. 1 and No. 2 belong to the species T. spiralis, and isolate No. 3 belongs to the species T. britovi. The results were confirmed by PCR and real-time PCR analysis. Thus the presence and circulation of the species T. spiralis and T. britovi in Bulgaria was confirmed. Probably the rodents (rats) are involved in the distribution of T. spiralis in urban environment. The species T. britovi found in a domestic pig speaks of some contact with wild animals for which T. britovi is characteristic. The probable reason is that a large number of farmers in Bulgaria practice the free-range breeding of domestic pigs. Part of the farmers also used as food for domestic pigs waste products from the game (foxes, jackals, bears, wolves) and probably thus the infection was obtained. The distribution range of trichinella species in Bulgaria is not strictly outlined. It is believed that T. spiralis is most common in domestic animals and T. britovi and T. pseudospiralis are characteristic of wildlife. To answer the question whether wild and synanthropic animals are infected with the same or different trichinella species, which species predominate in nature and what their distribution among different hosts is, further research is required.

Keywords: cross-breeding, Sofia, trichinellosis, Trichinella britovi, Trichinella spiralis

Procedia PDF Downloads 189
105 Contrastive Focus Marking in Brazilian Children under Typical and Atypical Phonological Development

Authors: Geovana Soncin, Larissa Berti

Abstract:

Some aspects of prosody acquisition remain still unclear, especially regarding atypical speech development processes. This work deals with prosody acquisition and its implications for clinical purposes. Therefore, we analyze speech samples produced by adult speakers, children in typical language development, and children with phonological disorders. Phonological disorder comprises deviating manifestations characterized by inconsistencies in the phonological representation of a linguistic system under acquisition. The clinical assessment is performed mostly based on contrasts whose manifestations occur in the segmental level of a phonological system. Prosodic organization of spoken utterances is not included in the standard assessment. However, assuming that prosody is part of the phonological system, it was hypothesized that children with Phonological Disorders could present inconsistencies that also occur at a prosodic level. Based on this hypothesis, the paper aims to analyze contrastive focus marking in the speech of children with Phonological Disorders in comparison with the speech of children under Typical Language Development and adults. The participants of all groups were native speakers of Brazilian Portuguese. The investigation was designed in such a way as to identify differences and similarities among the groups that could be interpreted as clues of normal or deviant processes of prosody acquisition. Contrastive focus in Brazilian Portuguese is marked by increasing duration, f0, and intensity on the focused element as well as by a particular type of pitch accent (L*+H). Thirty-nine subjects participated, thirteen from each group. Acoustic analysis was performed, considering duration, intensity, and intonation as parameters. Children with PD were recruited in sessions from a service provided by Speech-Language Pathology Therapy; children in TD, paired in age and sex with the first group, were recruited in a regular school; and 20-24 years old adults were recruited from a University class. In a game prepared to elicit focused sentences, all of them produced the sentence “Girls love red dress,” marking focus on different syntactic positions: subject, verb, and object. Results showed that adults, children in typical language development, and children with Phonological Disorders marked contrastive focus differently: typical children used all parameters like adults do; however, in comparison with them, they exaggerated duration and, in the opposite direction, they did not increase f0 in a sufficient magnitude as adults; children with Phonological Disorder presented inconsistencies in duration, not increasing it in some syntactic positions, and also in intonation, not producing the representative pitch accent of contrastive focus. The results suggest prosody is also affected by phonological disorder and give clues of developmental processes of prosody acquisition.

Keywords: Brazilian Portuguese, contrastive focus, phonological disorder, prosody acquisition

Procedia PDF Downloads 86
104 Predicting OpenStreetMap Coverage by Means of Remote Sensing: The Case of Haiti

Authors: Ran Goldblatt, Nicholas Jones, Jennifer Mannix, Brad Bottoms

Abstract:

Accurate, complete, and up-to-date geospatial information is the foundation of successful disaster management. When the 2010 Haiti Earthquake struck, accurate and timely information on the distribution of critical infrastructure was essential for the disaster response community for effective search and rescue operations. Existing geospatial datasets such as Google Maps did not have comprehensive coverage of these features. In the days following the earthquake, many organizations released high-resolution satellite imagery, catalyzing a worldwide effort to map Haiti and support the recovery operations. Of these organizations, OpenStreetMap (OSM), a collaborative project to create a free editable map of the world, used the imagery to support volunteers to digitize roads, buildings, and other features, creating the most detailed map of Haiti in existence in just a few weeks. However, large portions of the island are still not fully covered by OSM. There is an increasing need for a tool to automatically identify which areas in Haiti, as well as in other countries vulnerable to disasters, that are not fully mapped. The objective of this project is to leverage different types of remote sensing measurements, together with machine learning approaches, in order to identify geographical areas where OSM coverage of building footprints is incomplete. Several remote sensing measures and derived products were assessed as potential predictors of OSM building footprints coverage, including: intensity of light emitted at night (based on VIIRS measurements), spectral indices derived from Sentinel-2 satellite (normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), soil-adjusted vegetation index (SAVI), urban index (UI)), surface texture (based on Sentinel-1 SAR measurements)), elevation and slope. Additional remote sensing derived products, such as Hansen Global Forest Change, DLR`s Global Urban Footprint (GUF), and World Settlement Footprint (WSF), were also evaluated as predictors, as well as OSM street and road network (including junctions). Using a supervised classification with a random forest classifier resulted in the prediction of 89% of the variation of OSM building footprint area in a given cell. These predictions allowed for the identification of cells that are predicted to be covered but are actually not mapped yet. With these results, this methodology could be adapted to any location to assist with preparing for future disastrous events and assure that essential geospatial information is available to support the response and recovery efforts during and following major disasters.

Keywords: disaster management, Haiti, machine learning, OpenStreetMap, remote sensing

Procedia PDF Downloads 125
103 Reducing the Computational Cost of a Two-way Coupling CFD-FEA Model via a Multi-scale Approach for Fire Determination

Authors: Daniel Martin Fellows, Sean P. Walton, Jennifer Thompson, Oubay Hassan, Kevin Tinkham, Ella Quigley

Abstract:

Structural integrity for cladding products is a key performance parameter, especially concerning fire performance. Cladding products such as PIR-based sandwich panels are tested rigorously, in line with industrial standards. Physical fire tests are necessary to ensure the customer's safety but can give little information about critical behaviours that can help develop new materials. Numerical modelling is a tool that can help investigate a fire's behaviour further by replicating the fire test. However, fire is an interdisciplinary problem as it is a chemical reaction that behaves fluidly and impacts structural integrity. An analysis using Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) is needed to capture all aspects of a fire performance test. One method is a two-way coupling analysis that imports the updated changes in thermal data, due to the fire's behaviour, to the FEA solver in a series of iterations. In light of our recent work with Tata Steel U.K using a two-way coupling methodology to determine the fire performance, it has been shown that a program called FDS-2-Abaqus can make predictions of a BS 476 -22 furnace test with a degree of accuracy. The test demonstrated the fire performance of Tata Steel U.K Trisomet product, a Polyisocyanurate (PIR) based sandwich panel used for cladding. Previous works demonstrated the limitations of the current version of the program, the main limitation being the computational cost of modelling three Trisomet panels, totalling an area of 9 . The computational cost increases substantially, with the intention to scale up to an LPS 1181-1 test, which includes a total panel surface area of 200 .The FDS-2-Abaqus program is developed further within this paper to overcome this obstacle and better accommodate Tata Steel U.K PIR sandwich panels. The new developments aim to reduce the computational cost and error margin compared to experimental data. One avenue explored is a multi-scale approach in the form of Reduced Order Modeling (ROM). The approach allows the user to include refined details of the sandwich panels, such as the overlapping joints, without a computationally costly mesh size.Comparative studies will be made between the new implementations and the previous study completed using the original FDS-2-ABAQUS program. Validation of the study will come from physical experiments in line with governing body standards such as BS 476 -22 and LPS 1181-1. The physical experimental data includes the panels' gas and surface temperatures and mechanical deformation. Conclusions are drawn, noting the new implementations' impact factors and discussing the reasonability for scaling up further to a whole warehouse.

Keywords: fire testing, numerical coupling, sandwich panels, thermo fluids

Procedia PDF Downloads 79
102 Evaluation of the Boiling Liquid Expanding Vapor Explosion Thermal Effects in Hassi R'Mel Gas Processing Plant Using Fire Dynamics Simulator

Authors: Brady Manescau, Ilyas Sellami, Khaled Chetehouna, Charles De Izarra, Rachid Nait-Said, Fati Zidani

Abstract:

During a fire in an oil and gas refinery, several thermal accidents can occur and cause serious damage to people and environment. Among these accidents, the BLEVE (Boiling Liquid Expanding Vapor Explosion) is most observed and remains a major concern for risk decision-makers. It corresponds to a violent vaporization of explosive nature following the rupture of a vessel containing a liquid at a temperature significantly higher than its normal boiling point at atmospheric pressure. Their effects on the environment generally appear in three ways: blast overpressure, radiation from the fireball if the liquid involved is flammable and fragment hazards. In order to estimate the potential damage that would be caused by such an explosion, risk decision-makers often use quantitative risk analysis (QRA). This analysis is a rigorous and advanced approach that requires a reliable data in order to obtain a good estimate and control of risks. However, in most cases, the data used in QRA are obtained from the empirical correlations. These empirical correlations generally overestimate BLEVE effects because they are based on simplifications and do not take into account real parameters like the geometry effect. Considering that these risk analyses are based on an assessment of BLEVE effects on human life and plant equipment, more precise and reliable data should be provided. From this point of view, the CFD modeling of BLEVE effects appears as a solution to the empirical law limitations. In this context, the main objective is to develop a numerical tool in order to predict BLEVE thermal effects using the CFD code FDS version 6. Simulations are carried out with a mesh size of 1 m. The fireball source is modeled as a vertical release of hot fuel in a short time. The modeling of fireball dynamics is based on a single step combustion using an EDC model coupled with the default LES turbulence model. Fireball characteristics (diameter, height, heat flux and lifetime) issued from the large scale BAM experiment are used to demonstrate the ability of FDS to simulate the various steps of the BLEVE phenomenon from ignition up to total burnout. The influence of release parameters such as the injection rate and the radiative fraction on the fireball heat flux is also presented. Predictions are very encouraging and show good agreement in comparison with BAM experiment data. In addition, a numerical study is carried out on an operational propane accumulator in an Algerian gas processing plant of SONATRACH company located in the Hassi R’Mel Gas Field (the largest gas field in Algeria).

Keywords: BLEVE effects, CFD, FDS, fireball, LES, QRA

Procedia PDF Downloads 186
101 Automated Evaluation Approach for Time-Dependent Question Answering Pairs on Web Crawler Based Question Answering System

Authors: Shraddha Chaudhary, Raksha Agarwal, Niladri Chatterjee

Abstract:

This work demonstrates a web crawler-based generalized end-to-end open domain Question Answering (QA) system. An efficient QA system requires a significant amount of domain knowledge to answer any question with the aim to find an exact and correct answer in the form of a number, a noun, a short phrase, or a brief piece of text for the user's questions. Analysis of the question, searching the relevant document, and choosing an answer are three important steps in a QA system. This work uses a web scraper (Beautiful Soup) to extract K-documents from the web. The value of K can be calibrated on the basis of a trade-off between time and accuracy. This is followed by a passage ranking process using the MS-Marco dataset trained on 500K queries to extract the most relevant text passage, to shorten the lengthy documents. Further, a QA system is used to extract the answers from the shortened documents based on the query and return the top 3 answers. For evaluation of such systems, accuracy is judged by the exact match between predicted answers and gold answers. But automatic evaluation methods fail due to the linguistic ambiguities inherent in the questions. Moreover, reference answers are often not exhaustive or are out of date. Hence correct answers predicted by the system are often judged incorrect according to the automated metrics. One such scenario arises from the original Google Natural Question (GNQ) dataset which was collected and made available in the year 2016. Use of any such dataset proves to be inefficient with respect to any questions that have time-varying answers. For illustration, if the query is where will be the next Olympics? Gold Answer for the above query as given in the GNQ dataset is “Tokyo”. Since the dataset was collected in the year 2016, and the next Olympics after 2016 were in 2020 that was in Tokyo which is absolutely correct. But if the same question is asked in 2022 then the answer is “Paris, 2024”. Consequently, any evaluation based on the GNQ dataset will be incorrect. Such erroneous predictions are usually given to human evaluators for further validation which is quite expensive and time-consuming. To address this erroneous evaluation, the present work proposes an automated approach for evaluating time-dependent question-answer pairs. In particular, it proposes a metric using the current timestamp along with top-n predicted answers from a given QA system. To test the proposed approach GNQ dataset has been used and the system achieved an accuracy of 78% for a test dataset comprising 100 QA pairs. This test data was automatically extracted using an analysis-based approach from 10K QA pairs of the GNQ dataset. The results obtained are encouraging. The proposed technique appears to have the possibility of developing into a useful scheme for gathering precise, reliable, and specific information in a real-time and efficient manner. Our subsequent experiments will be guided towards establishing the efficacy of the above system for a larger set of time-dependent QA pairs.

Keywords: web-based information retrieval, open domain question answering system, time-varying QA, QA evaluation

Procedia PDF Downloads 101
100 Reinventing Smart Tourism via Use of Smart Gamified and Gaming Applications in Greece

Authors: Sofia Maria Poulimenou, Ioannis Deliyannis, Elisavet Filippidou, Stamatella Laboura

Abstract:

Smart technologies are being actively used to improve the experience of travel and promote or demote a destination’s reputation via a wide variety of social media applications and platforms. This paper conceptualises the design and deployment of smart management apps to promote culture, sustainability and accessibility within two destinations in Greece that represent the extremes of visiting scale. One is the densely visited Corfu, which is a UNESCO’s heritage site. The problems caused by the lack of organisation of the visiting experience and infrastructures affect all parties interacting within the site: visitors, citizens, public and private sector. Second is Kilkis, a low tourism destination with high seasonality and mostly inbound tourism. Here the issue faced is that traditional approaches to inform and motivate locals and visitors to explore and taste of the culture have not flourished. The problem is apprehended via the design and development of two systems named “Hologrammatic Corfu” for Corfu old town and “BRENDA” for the area of Kilkis. Although each system is designed independently, featuring different solutions to the problems, both approaches have been designed by the same team and a novel gaming and gamification methodology. The “Hologramatic Corfu” application has been designed, for the exploration of the site covering user requirments before, during and after the trip, with the use of transmedia content such as photos, 360-degree videos, augmented reality and hologrammatic videos. Also, a statistical analysis of travellers’ visits to specific points of interest is actively utilized enabling visitors to dynamically re-rooted during their visit, safeguarding sustainability and accessibility and inclusivity along the entire tourism cycle. “BRENDA” is designed specifically to promote gastronomic and historical tourism. This serious game implements and combines gaming and gamification elements in order to connect local businesses with cultural points of interest. As the environment of the project has a strong touristic orientation, “BRENDA” supports food-related gamified processes and historical games involving active participation of both local communities (content providers) and visitors (players) which are more likely to be successfully performed in the informal environment of travelling and promote sustainable tourism experiences. Finally, the paper presents the ability to re-use existing gaming components within new areas of interest via minimal adaptation and the use of transmedia aspects that enables destinations to be rebranded into smart destinations.

Keywords: smart tourism, gamification, user experience, transmedia content

Procedia PDF Downloads 173
99 An Overview of Bioinformatics Methods to Detect Novel Riboswitches Highlighting the Importance of Structure Consideration

Authors: Danny Barash

Abstract:

Riboswitches are RNA genetic control elements that were originally discovered in bacteria and provide a unique mechanism of gene regulation. They work without the participation of proteins and are believed to represent ancient regulatory systems in the evolutionary timescale. One of the biggest challenges in riboswitch research is that many are found in prokaryotes but only a small percentage of known riboswitches have been found in certain eukaryotic organisms. The few examples of eukaryotic riboswitches were identified using sequence-based bioinformatics search methods that include some slight structural considerations. These pattern-matching methods were the first ones to be applied for the purpose of riboswitch detection and they can also be programmed very efficiently using a data structure called affix arrays, making them suitable for genome-wide searches of riboswitch patterns. However, they are limited by their ability to detect harder to find riboswitches that deviate from the known patterns. Several methods have been developed since then to tackle this problem. The most commonly used by practitioners is Infernal that relies on Hidden Markov Models (HMMs) and Covariance Models (CMs). Profile Hidden Markov Models were also carried out in the pHMM Riboswitch Scanner web application, independently from Infernal. Other computational approaches that have been developed include RMDetect by the use of 3D structural modules and RNAbor that utilizes Boltzmann probability of structural neighbors. We have tried to incorporate more sophisticated secondary structure considerations based on RNA folding prediction using several strategies. The first idea was to utilize window-based methods in conjunction with folding predictions by energy minimization. The moving window approach is heavily geared towards secondary structure consideration relative to sequence that is treated as a constraint. However, the method cannot be used genome-wide due to its high cost because each folding prediction by energy minimization in the moving window is computationally expensive, enabling to scan only at the vicinity of genes of interest. The second idea was to remedy the inefficiency of the previous approach by constructing a pipeline that consists of inverse RNA folding considering RNA secondary structure, followed by a BLAST search that is sequence-based and highly efficient. This approach, which relies on inverse RNA folding in general and our own in-house fragment-based inverse RNA folding program called RNAfbinv in particular, shows capability to find attractive candidates that are missed by Infernal and other standard methods being used for riboswitch detection. We demonstrate attractive candidates found by both the moving-window approach and the inverse RNA folding approach performed together with BLAST. We conclude that structure-based methods like the two strategies outlined above hold considerable promise in detecting riboswitches and other conserved RNAs of functional importance in a variety of organisms.

Keywords: riboswitches, RNA folding prediction, RNA structure, structure-based methods

Procedia PDF Downloads 234
98 Analysis of Overall Thermo-Elastic Properties of Random Particulate Nanocomposites with Various Interphase Models

Authors: Lidiia Nazarenko, Henryk Stolarski, Holm Altenbach

Abstract:

In the paper, a (hierarchical) approach to analysis of thermo-elastic properties of random composites with interphases is outlined and illustrated. It is based on the statistical homogenization method – the method of conditional moments – combined with recently introduced notion of the energy-equivalent inhomogeneity which, in this paper, is extended to include thermal effects. After exposition of the general principles, the approach is applied in the investigation of the effective thermo-elastic properties of a material with randomly distributed nanoparticles. The basic idea of equivalent inhomogeneity is to replace the inhomogeneity and the surrounding it interphase by a single equivalent inhomogeneity of constant stiffness tensor and coefficient of thermal expansion, combining thermal and elastic properties of both. The equivalent inhomogeneity is then perfectly bonded to the matrix which allows to analyze composites with interphases using techniques devised for problems without interphases. From the mechanical viewpoint, definition of the equivalent inhomogeneity is based on Hill’s energy equivalence principle, applied to the problem consisting only of the original inhomogeneity and its interphase. It is more general than the definitions proposed in the past in that, conceptually and practically, it allows to consider inhomogeneities of various shapes and various models of interphases. This is illustrated considering spherical particles with two models of interphases, Gurtin-Murdoch material surface model and spring layer model. The resulting equivalent inhomogeneities are subsequently used to determine effective thermo-elastic properties of randomly distributed particulate composites. The effective stiffness tensor and coefficient of thermal extension of the material with so defined equivalent inhomogeneities are determined by the method of conditional moments. Closed-form expressions for the effective thermo-elastic parameters of a composite consisting of a matrix and randomly distributed spherical inhomogeneities are derived for the bulk and the shear moduli as well as for the coefficient of thermal expansion. Dependence of the effective parameters on the interphase properties is included in the resulting expressions, exhibiting analytically the nature of the size-effects in nanomaterials. As a numerical example, the epoxy matrix with randomly distributed spherical glass particles is investigated. The dependence of the effective bulk and shear moduli, as well as of the effective thermal expansion coefficient on the particle volume fraction (for different radii of nanoparticles) and on the radius of nanoparticle (for fixed volume fraction of nanoparticles) for different interphase models are compared to and discussed in the context of other theoretical predictions. Possible applications of the proposed approach to short-fiber composites with various types of interphases are discussed.

Keywords: effective properties, energy equivalence, Gurtin-Murdoch surface model, interphase, random composites, spherical equivalent inhomogeneity, spring layer model

Procedia PDF Downloads 185
97 Assessment of Taiwan Railway Occurrences Investigations Using Causal Factor Analysis System and Bayesian Network Modeling Method

Authors: Lee Yan Nian

Abstract:

Safety investigation is different from an administrative investigation in that the former is conducted by an independent agency and the purpose of such investigation is to prevent accidents in the future and not to apportion blame or determine liability. Before October 2018, Taiwan railway occurrences were investigated by local supervisory authority. Characteristics of this kind of investigation are that enforcement actions, such as administrative penalty, are usually imposed on those persons or units involved in occurrence. On October 21, 2018, due to a Taiwan Railway accident, which caused 18 fatalities and injured another 267, establishing an agency to independently investigate this catastrophic railway accident was quickly decided. The Taiwan Transportation Safety Board (TTSB) was then established on August 1, 2019 to take charge of investigating major aviation, marine, railway and highway occurrences. The objective of this study is to assess the effectiveness of safety investigations conducted by the TTSB. In this study, the major railway occurrence investigation reports published by the TTSB are used for modeling and analysis. According to the classification of railway occurrences investigated by the TTSB, accident types of Taiwan railway occurrences can be categorized into: derailment, fire, Signal Passed at Danger and others. A Causal Factor Analysis System (CFAS) developed by the TTSB is used to identify the influencing causal factors and their causal relationships in the investigation reports. All terminologies used in the CFAS are equivalent to the Human Factors Analysis and Classification System (HFACS) terminologies, except for “Technical Events” which was added to classify causal factors resulting from mechanical failure. Accordingly, the Bayesian network structure of each occurrence category is established based on the identified causal factors in the CFAS. In the Bayesian networks, the prior probabilities of identified causal factors are obtained from the number of times in the investigation reports. Conditional Probability Table of each parent node is determined from domain experts’ experience and judgement. The resulting networks are quantitatively assessed under different scenarios to evaluate their forward predictions and backward diagnostic capabilities. Finally, the established Bayesian network of derailment is assessed using investigation reports of the same accident which was investigated by the TTSB and the local supervisory authority respectively. Based on the assessment results, findings of the administrative investigation is more closely tied to errors of front line personnel than to organizational related factors. Safety investigation can identify not only unsafe acts of individual but also in-depth causal factors of organizational influences. The results show that the proposed methodology can identify differences between safety investigation and administrative investigation. Therefore, effective intervention strategies in associated areas can be better addressed for safety improvement and future accident prevention through safety investigation.

Keywords: administrative investigation, bayesian network, causal factor analysis system, safety investigation

Procedia PDF Downloads 123