Search results for: experiential versus material jobs
7053 Thermal and Geometric Effects on Nonlinear Response of Incompressible Hyperelastic Cylindrical Shells
Authors: Morteza Shayan Arani, Mohammadamin Esmailzadehazimi, Mohammadreza Moeini, Mohammad Toorani, Aouni A. Lakis
Abstract:
This paper investigates the nonlinear response of thin, incompressible, hyperelastic cylindrical shells in the presence of a time-varying temperature field while considering initial geometric imperfections. The governing equations of motion are derived using an improved Donnell's shallow shell theory. The hyperelastic material is modeled using the Mooney-Rivlin model with two parameters, incorporating temperature-dependent terms. The Lagrangian method is applied to obtain the equation of motion. The resulting governing equation is addressed through the Lindstedt-Poincaré and Multiple Scale methods. The linear and nonlinear models presented in this study are verified against existing open literature, demonstrating the accuracy and reliability of the presented model. The study focuses on understanding the influence of temperature variations and geometrical imperfections on the natural frequency and amplitude-frequency response of the systems. Notably, the investigation reveals the coexistence of hardening and softening peaks in the amplitude-frequency response, which vary in magnitude depending on these parameters. Additionally, resonance peaks exhibit changes as a result of temperature and geometric imperfections.Keywords: hyperelastic material, cylindrical shell, geometrical nonlinearity, material naolinearity, initial geometric imperfection, temperature gradient, hardening and softening
Procedia PDF Downloads 727052 Ibn Sina’s Necessary Existence versus Ibn ‘Arabi’s Necessary Mercy: An Exploration of Precedents and Influences
Authors: Reham Alwazzan
Abstract:
Ibn Sina (d. 1037) is perhaps the most important philosopher of the pre-modern era. Among his many contributions, the proof for the existence of the necessary existent stands out. Ibn Sina proceeds to extract each of God’s attributes (sifat) from His necessary existence. Although his ideas met with resistance in some quarters, they found a warm reception in the Akbarian school, particularly in the works of Sadr al-Din al-Qunawi (d. 1274) and ‘Abd al-Razzaq al-Qashani (d. 1335). This paper argues that the influence of Ibn Sina’s concept of necessity (wujub) had a great impact on the founder of the Akbarian school, Muhyi al-Din ibn ‘Arabi (d. 1240). Ibn ‘Arabi reformulates God’s necessary existence (wujud) as God’s necessary/metaphysical mercy (rahma) in order to extract all of the divine names from this primary attribute of God. Even as he denies all influences and insists his work is the product of spiritual unveiling (kashf), Ibn ‘Arabi seems to be following the same path delineated by his illustrious predecessor, if in his own way.Keywords: existence, Ibn ‘Arabi, Ibn Sina, mercy, necessity
Procedia PDF Downloads 1477051 Analysis of Fault Tolerance on Grid Computing in Real Time Approach
Authors: Parampal Kaur, Deepak Aggarwal
Abstract:
In the computational Grid, fault tolerance is an imperative issue to be considered during job scheduling. Due to the widespread use of resources, systems are highly prone to errors and failures. Hence, fault tolerance plays a key role in the grid to avoid the problem of unreliability. Scheduling the task to the appropriate resource is a vital requirement in computational Grid. The fittest resource scheduling algorithm searches for the appropriate resource based on the job requirements, in contrary to the general scheduling algorithms where jobs are scheduled to the resources with best performance factor. The proposed method is to improve the fault tolerance of the fittest resource scheduling algorithm by scheduling the job in coordination with job replication when the resource has low reliability. Based on the reliability index of the resource, the resource is identified as critical. The tasks are scheduled based on the criticality of the resources. Results show that the execution time of the tasks is comparatively reduced with the proposed algorithm using real-time approach rather than a simulator.Keywords: computational grid, fault tolerance, task replication, job scheduling
Procedia PDF Downloads 4367050 Application of Nanoparticles on Surface of Commercial Carbon-Based Adsorbent for Removal of Contaminants from Water
Authors: Ahmad Kayvani Fard, Gordon Mckay, Muataz Hussien
Abstract:
Adsorption/sorption is believed to be one of the optimal processes for the removal of heavy metals from water due to its low operational and capital cost as well as its high removal efficiency. Different materials have been reported in literature as adsorbent for heavy metal removal in waste water such as natural sorbents, organic polymers (synthetic) and mineral materials (inorganic). The selection of adsorbents and development of new functional materials that can achieve good removal of heavy metals from water is an important practice and depends on many factors, such as the availability of the material, cost of material, and material safety and etc. In this study we reported the synthesis of doped Activated carbon and Carbon nanotube (CNT) with different loading of metal oxide nanoparticles such as Fe2O3, Fe3O4, Al2O3, TiO2, SiO2 and Ag nanoparticles and their application in removal of heavy metals, hydrocarbon, and organics from waste water. Commercial AC and CNT with different loadings of mentioned nanoparticle were prepared and effect of pH, adsorbent dosage, sorption kinetic, and concentration effects are studied and optimum condition for removal of heavy metals from water is reported. The prepared composite sorbent is characterized using field emission scanning electron microscopy (FE-SEM), high transmission electron microscopy (HR-TEM), thermogravimetric analysis (TGA), X-ray diffractometer (XRD), the Brunauer, Emmett and Teller (BET) nitrogen adsorption technique, and Zeta potential. The composite materials showed higher removal efficiency and superior adsorption capacity compared to commercially available carbon based adsorbent. The specific surface area of AC increased by 50% reaching up to 2000 m2/g while the CNT specific surface area of CNT increased by more than 8 times reaching value of 890 m2/g. The increased surface area is one of the key parameters along with surface charge of the material determining the removal efficiency and removal efficiency. Moreover, the surface charge density of the impregnated CNT and AC have enhanced significantly where can benefit the adsorption process. The nanoparticles also enhance the catalytic activity of material and reduce the agglomeration and aggregation of material which provides more active site for adsorbing the contaminant from water. Some of the results for treating wastewater includes 100% removal of BTEX, arsenic, strontium, barium, phenolic compounds, and oil from water. The results obtained are promising for the use of AC and CNT loaded with metal oxide nanoparticle in treatment and pretreatment of waste water and produced water before desalination process. Adsorption can be very efficient with low energy consumption and economic feasibility.Keywords: carbon nanotube, activated carbon, adsorption, heavy metal, water treatment
Procedia PDF Downloads 2347049 Thermochemical Study of the Degradation of the Panels of Wings in a Space Shuttle by Utilization of HSC Chemistry Software and Its Database
Authors: Ahmed Ait Hou
Abstract:
The wing leading edge and nose cone of the space shuttle are fabricated from a reinforced carbon/carbon material. This material attains its durability from a diffusion coating of silicon carbide (SiC) and a glass sealant. During re-entry into the atmosphere, this material is subject to an oxidizing high-temperature environment. The use of thermochemical calculations resulting at the HSC CHEMISTRY software and its database allows us to interpret the phenomena of oxidation and chloridation observed on the wing leading edge and nose cone of the space shuttle during its mission in space. First study is the monitoring of the oxidation reaction of SiC. It has been demonstrated that thermal oxidation of the SiC gives the two compounds SiO₂(s) and CO(g). In the extreme conditions of very low oxygen partial pressures and high temperatures, there is a reaction between SiC and SiO₂, leading to SiO(g) and CO(g). We had represented the phase stability diagram of Si-C-O system calculated by the use of the HSC Chemistry at 1300°C. The principal characteristic of this diagram of predominance is the line of SiC + SiO₂ coexistence. Second study is the monitoring of the chloridation reaction of SiC. The other problem encountered in addition to oxidation is the phenomenon of chloridation due to the presence of NaCl. Indeed, after many missions, the leading edge wing surfaces have exhibited small pinholes. We have used the HSC Chemistry database to analyze these various reactions. Our calculations concorde with the phenomena we announced in research work resulting in NASA LEWIS Research center.Keywords: thermochchemicals calculations, HSC software, oxidation and chloridation, wings in space
Procedia PDF Downloads 1247048 Modeling of a Small Unmanned Aerial Vehicle
Authors: Ahmed Elsayed Ahmed, Ashraf Hafez, A. N. Ouda, Hossam Eldin Hussein Ahmed, Hala Mohamed ABD-Elkader
Abstract:
Unmanned Aircraft Systems (UAS) are playing increasingly prominent roles in defense programs and defense strategies around the world. Technology advancements have enabled the development of it to do many excellent jobs as reconnaissance, surveillance, battle fighters, and communications relays. Simulating a small unmanned aerial vehicle (SUAV) dynamics and analyzing its behavior at the preflight stage is too important and more efficient. The first step in the UAV design is the mathematical modeling of the nonlinear equations of motion. In this paper, a survey with a standard method to obtain the full non-linear equations of motion is utilized,and then the linearization of the equations according to a steady state flight condition (trimming) is derived. This modeling technique is applied to an Ultrastick-25e fixed wing UAV to obtain the valued linear longitudinal and lateral models. At the end, the model is checked by matching between the behavior of the states of the non-linear UAV and the resulted linear model with doublet at the control surfaces.Keywords: UAV, equations of motion, modeling, linearization
Procedia PDF Downloads 7437047 An Evaluation Framework for Virtual Reality Learning Environments in Sports Education
Authors: Jonathan J. Foo, Keng Hao Chew
Abstract:
Interest in virtual reality (VR) technologies as virtual learning environments have been on the rise in recent years. With thanks to the aggressively competitive consumer electronics environment, VR technology has been made affordable and accessible to the average person with developments like Google Cardboard and Oculus Go. While the promise of virtual access to unique virtual learning environments with the benefits of experiential learning sounds extremely attractive, there are still concerns over user comfort in the psychomotor, cognitive, and affective domains. Reports of motion sickness and short durations create doubt and have stunted its growth. In this paper, a multidimensional framework is proposed for the evaluation of VR learning environments within the three dimensions: tactual quality, didactic quality, and autodidactic quality. This paper further proposes a mixed-methods experimental research plan that sets out to evaluate a virtual reality training simulator in the context of amateur sports fencing. The study will investigate if an immersive VR learning environment can effectively simulate an authentic learning environment suitable for instruction, practice, and assessment while providing the user comfort in the tactual, didactic, and autodidactic dimensions. The models and recommendations developed for this study are designed in the context of fencing, but the potential impact is a guide for the future design and evaluation of all VR developments across sports and technical classroom education.Keywords: autodidactic quality, didactic quality, tactual quality, virtual reality
Procedia PDF Downloads 1357046 Sustainable Living Where the Immaterial Matters
Authors: Maria Hadjisoteriou, Yiorgos Hadjichristou
Abstract:
This paper aims to explore and provoke a debate, through the work of the design studio, “living where the immaterial matters” of the architecture department of the University of Nicosia, on the role that the “immaterial matter” can play in enhancing innovative sustainable architecture and viewing the cities as sustainable organisms that always grow and alter. The blurring, juxtaposing binary of immaterial and matter, as the theoretical backbone of the Unit is counterbalanced by the practicalities of the contested sites of the last divided capital Nicosia with its ambiguous green line and the ghost city of Famagusta in the island of Cyprus. Jonathan Hill argues that the ‘immaterial is as important to architecture as the material concluding that ‘Immaterial–Material’ weaves the two together, so that they are in conjunction not opposition’. This understanding of the relationship of the immaterial vs material set the premises and the departing point of our argument, and talks about new recipes for creating hybrid public space that can lead to the unpredictability of a complex and interactive, sustainable city. We hierarchized the human experience as a priority. We distinguish the notion of space and place referring to Heidegger’s ‘building dwelling thinking’: ‘a distinction between space and place, where spaces gain authority not from ‘space’ appreciated mathematically but ‘place’ appreciated through human experience’. Following the above, architecture and the city are seen as one organism. The notions of boundaries, porous borders, fluidity, mobility, and spaces of flows are the lenses of the investigation of the unit’s methodology, leading to the notion of a new hybrid urban environment, where the main constituent elements are in a flux relationship. The material and the immaterial flows of the town are seen interrelated and interwoven with the material buildings and their immaterial contents, yielding to new sustainable human built environments. The above premises consequently led to choices of controversial sites. Indisputably a provoking site was the ghost town of Famagusta where the time froze back in 1974. Inspired by the fact that the nature took over the a literally dormant, decaying city, a sustainable rebirthing was seen as an opportunity where both nature and built environment, material and immaterial are interwoven in a new emergent urban environment. Similarly, we saw the dividing ‘green line’ of Nicosia completely failing to prevent the trespassing of images, sounds and whispers, smells and symbols that define the two prevailing cultures and becoming a porous creative entity which tends to start reuniting instead of separating , generating sustainable cultures and built environments. The authors would like to contribute to the debate by introducing a question about a new recipe of cooking the built environment. Can we talk about a new ‘urban recipe’: ‘cooking architecture and city’ to deliver an ever changing urban sustainable organism, whose identity will mainly depend on the interrelationship of the immaterial and material constituents?Keywords: blurring zones, porous borders, spaces of flow, urban recipe
Procedia PDF Downloads 4207045 Multi-Walled Carbon Nanotube Based Water Filter for Virus Pathogen Removal
Authors: K. Domagala, D. Kata, T. Graule
Abstract:
Diseases caused by contaminated drinking water are the worldwide problem, which leads to the death and severe illnesses for hundreds of millions million people each year. There is an urgent need for efficient water treatment techniques for virus pathogens removal. The aim of the research was to develop safe and economic solution, which help with the water treatment. In this study, the synthesis of copper-based multi-walled carbon nanotube composites is described. Proposed solution utilize combination of a low-cost material with a high active surface area and copper antiviral properties. Removal of viruses from water was possible by adsorption based on electrostatic interactions of negatively charged virus with a positively charged filter material.Keywords: multi walled carbon nanotubes, water purification, virus removal, water treatment
Procedia PDF Downloads 1317044 Geotechnical Education in the USA: A Comparative Analysis of Academic Schooling vs. Industry Needs in the Area of Earth Retaining Structures
Authors: Anne Lemnitzer, Eric Tavarez
Abstract:
The academic rigor of the geotechnical engineering curriculum indicates strong institutional and geographical variations. Geotechnical engineering deals with the most challenging civil engineering material, as opposed to structural engineering, environmental studies, transportation engineering, and water resources. Yet, technical expectations posed by the practicing professional community do not necessarily consider the challenges inherent to the disparity in academic rigor and disciplinary differences. To recognize the skill shortages among current graduates as well as identify opportunities to better equip graduate students in specific fields of geotechnical engineering, a two-part survey was developed in collaboration with the Earth Retaining Structures (ERS) Committee of the American Society of Civil Engineers. Earth Retaining Structures are critical components of infrastructure systems and integral components to many major engineering projects. Within the geotechnical curriculum, Earth Retaining Structures is either taught as a separate course or major subject within a foundation design class. Part 1 of the survey investigated the breadth and depth of the curriculum with respect to ERS by requesting faculty across the United States to provide data on their curricular content, integration of practice-oriented course content, student preparation for professional licensing, and level of technical competency expected upon student graduation. Part 2 of the survey enables a comparison of training provided versus training needed. This second survey addressed practicing geotechnical engineers in all sectors of the profession (e.g., private engineering consulting, governmental agencies, contractors, suppliers/manufacturers) and collected data on the expectations with respect to technical and non-technical skills of engineering graduates entering the professional workforce. Results identified skill shortages in soft skills, critical thinking, analytical and language skills, familiarity with design codes and standards, and communication with various stakeholders. The data will be used to develop educational tools to advance the proficiency and expertise of geotechnical engineering students to meet and exceed the expectations of the profession and to stimulate a lifelong interest in advancing the field of geotechnical engineering.Keywords: geotechnical engineering, academic training, industry requirements, earth retaining structures
Procedia PDF Downloads 1267043 Study of Hot Press Molding Method of Biodegradable Composite, Polypropylene Reinforced Coconut Coir
Authors: Herman Ruswan Suwarman, Ahmad Rivai, Mochamad Saidiman, Kuncoro Diharjo, Dody Ariawan
Abstract:
The use of biodegradable composite to solve ecological and environmental problems has currently risen as a trend. With the increasing use of biodegradable composite comes an increasing need to fabricate it properly. Yet this understanding has remained a challenge for the design engineer. Therefore, this study aims to explore how to combine coconut coir as a reinforcing material and polypropylene (PP) as a biodegradable polymer matrix. By using Hotpress Molding, two methods were developed and compared. The difference between these two methods is not only the step of fabrication but also the raw material. The first method involved a PP sheet and the second used PP pellets directly. Based on the results, it can be concluded that PP pellets yield better results, where the composite was produced in a shorter time, with an evenly distributed coconut coir and a smaller number of voids.Keywords: biodegradable, coconut coir, hot press molding, polypropylene
Procedia PDF Downloads 1477042 Healing (in) Relationship: The Theory and Practice of Inner-Outer Peacebuilding in North-Western India
Authors: Josie Gardner
Abstract:
The overall intention of this research is to reimagine peacebuilding in both in theory and practical application in light of the shortcomings and unsustainability of the current peacebuilding paradigm. These limitations are identified here as an overly rational-material approach to peacebuilding that neglects the inner dimension of peace for a fragmented rather than holistic model, and that espouses a conflict and violence-centric approach to peacebuilding. In counter, this presentation is purposed to investigate the dynamics of inner and outer peace as a holistic, complex system towards ‘inner-outer’ peacebuilding. This paper draws from primary research in the protracted conflict context of north-western India (Jammu, Kashmir & Ladakh) as a case study. This presentation has two central aims. First, to introduce the process of inner (psycho-spiritual) peacebuilding, which has thus far been neglected by mainstream and orthodox literature. Second, to examine why inner peacebuilding is essential for realising sustainable peace on a broader scale as outer (socio-political) peace and to better understand how the inner and outer dynamics of peace relate and affect one another. To these ends, Josephine (the researcher/author/presenter) partnered with Yakjah Reconciliation and Development Network to implement a series of action-oriented workshops and retreats centred around healing, reconciliation, leadership, and personal development for the dual purpose of collaboratively generating data, theory, and insights, as well as providing the youth leaders with an experiential, transformative experience. The research team created and used a novel methodological approach called Mapping Ritual Ecologies, which draws from Participatory Action Research and Digital Ethnography to form a collaborative research model with a group of 20 youth co-researchers who are emerging youth peace leaders in Kashmir, Jammu, and Ladakh. This research found significant intra- and inter-personal shifts towards an experience of inner peace through inner peacebuilding activities. Moreover, this process of inner peacebuilding affected their families and communities through interpersonal healing and peace leadership in an inside-out process of change. These insights have generated rich insights and have supported emerging theories about the dynamics between inner and outer peace, power, justice, and collective healing. This presentation argues that the largely neglected dimension of inner (psycho-spiritual) peacebuilding is imperative for broader socio-political (outer) change. Changing structures of oppression, injustice, and violence—i.e. structures of separation—requires individual, interpersonal, and collective healing. While this presentation primarily examines and advocates for inside-out peacebuilding and social justice, it will also touch upon the effect of systems of separation on the inner condition and human experience. This research reimagines peacebuilding as a holistic inner-outer approach. This offers an alternative path forward those weaves together self-actualisation and social justice. While contextualised within north-western India with a small case study population, the findings speak also to other conflict contexts as well as our global peacebuilding and social justice milieu.Keywords: holistic, inner peacebuilding, psycho-spiritual, systems youth
Procedia PDF Downloads 1207041 Crop Recommendation System Using Machine Learning
Authors: Prathik Ranka, Sridhar K, Vasanth Daniel, Mithun Shankar
Abstract:
With growing global food needs and climate uncertainties, informed crop choices are critical for increasing agricultural productivity. Here we propose a machine learning-based crop recommendation system to help farmers in choosing the most proper crops according to their geographical regions and soil properties. We can deploy algorithms like Decision Trees, Random Forests and Support Vector Machines on a broad dataset that consists of climatic factors, soil characteristics and historical crop yields to predict the best choice of crops. The approach includes first preprocessing the data after assessing them for missing values, unlike in previous jobs where we used all the available information and then transformed because there was no way such a model could have worked with missing data, and normalizing as throughput that will be done over a network to get best results out of our machine learning division. The model effectiveness is measured through performance metrics like accuracy, precision and recall. The resultant app provides a farmer-friendly dashboard through which farmers can enter their local conditions and receive individualized crop suggestions.Keywords: crop recommendation, precision agriculture, crop, machine learning
Procedia PDF Downloads 157040 Weak Mutually Unbiased Bases versus Mutually Unbiased Bases in Terms of T-Designs
Authors: Mohamed Shalaby, Yasser Kamal, Negm Shawky
Abstract:
Mutually unbiased bases (MUBs) have an important role in the field of quantum computation and information. A complete set of these bases can be constructed when the system dimension is the power of the prime. Constructing such complete set in composite dimensions is still an open problem. Recently, the concept of weak mutually unbiased bases (WMUBs) in composite dimensions was introduced. A complete set of such bases can be constructed by combining the MUBs in each subsystem. In this paper, we present a comparative study between MUBs and WMUBs in the context of complex projective t-design. Explicit proofs are presented.Keywords: complex projective t-design, finite quantum systems, mutually unbiased bases, weak mutually unbiased bases
Procedia PDF Downloads 4497039 The Evaluation and Performance of SSRU Employee’s that Influence the Attitude towards Work, Job Satisfaction and Organization Commitment
Authors: Bella Llego
Abstract:
The purpose of this study was to explain and empirically test the influence of attitude towards work, job satisfaction and organizational commitment of SSRU employee’s evaluation and performance. Data used in this study was primary data which were collected through Organizational Commitment Questionnaire with 1-5 Likert Scale. The respondent of this study was 200 managerial and non-managerial staff of SSRU. The statistics to analyze the data provide the descriptive by the mean, standard deviation and test hypothesis by the use of multiple regression. The result of this study is showed that attitude towards work have positive but not significant effect to job satisfaction and employees evaluation and performance. Different with attitude towards work, the organizations commitment has positive and significant influence on job satisfaction and employee performance at SSRU. It means every improvement in organization’s commitment has a positive effect toward job satisfaction and employee evaluation and performance at SSRU.Keywords: attitude towards work, employee’s evaluation and performance, jobs satisfaction, organization commitment
Procedia PDF Downloads 4547038 Yield Onset of Thermo-Mechanical Loading of FGM Thick Walled Cylindrical Pressure Vessels
Authors: S. Ansari Sadrabadi, G. H. Rahimi
Abstract:
In this paper, thick walled Cylindrical tanks or tubes made of functionally graded material under internal pressure and temperature gradient are studied. Material parameters have been considered as power functions. They play important role in the elastoplastic behavior of these materials. To clarify their role, different materials with different parameters have been used under temperature gradient. Finally, their effect and loading effect have been determined in first yield point. Also, the important role of temperature gradient was also shown. At the end the study has been results obtained from changes in the elastic modulus and yield stress. Also special attention is also given to the effects of this internal pressure and temperature gradient in the creation of tensile and compressive stresses.Keywords: FGM, cylindrical pressure tubes, small deformation theory, yield onset, thermal loading
Procedia PDF Downloads 4197037 The Outcome of Early Balance Exercises and Agility Training in Sports Rehabilitation for Patients Post Anterior Cruciate Ligament (ACL) Reconstruction
Authors: S. M. A. Ismail, M. I. Ibrahim, H. Masdar, F. M. Effendi, M. F. Suhaimi, A. Suun
Abstract:
Introduction: It is generally known that the rehabilitation process is as important as the reconstruction surgery. Several literature has focused on how early the rehabilitation modalities can be initiated after the surgery to ensure a safe return of patients to sports or at least regaining the pre-injury level of function following an ACL reconstruction. Objectives: The main objective is to study and evaluate the outcome of early balance exercises and agility training in sports rehabilitation for patients post ACL reconstruction. To compare between early balance exercises and agility training as intervention and control. (material or non-material). All of them were recruited for material exercise (balance exercises and agility training with strengthening) and strengthening only rehabilitation protocol (non-material). Followed the prospective intervention trial. Materials and Methods: Post-operative ACL reconstruction patients performed in Selayang and Sg Buloh Hospitals from 2012 to 2014 were selected for this study. They were taken from Malaysian Knee Ligament Registry (MKLR) and all patients had single bundle reconstruction with autograft hamstring tendon (semitendinosus and gracilis). ACL injury from any type of sports were included. Subjects performed various type of physical activity for rehabilitation in every 18 week for a different type of rehab activity. All subject attended all 18 sessions of rehabilitation exercises and evaluation was done during the first, 9th and 18th session. Evaluation format were based on clinical assessment (anterior drawer, Lachmann, pivot shift, laxity with rolimeter, the end point and thigh circumference) and scoring (Lysholm Knee scoring and Tegner Activity Level scale). Rehabilitation protocol initiated from 24 week after the surgery. Evaluation format were based on clinical assessment (anterior drawer, Lachmann, pivot shift, laxity with rolimeter, the end point and thigh circumference) and scoring (Lysholm Knee scoring and Tegner Activity Level scale). Results and Discussion: 100 patients were selected of which 94 patients are male and 6 female. Age range is 18 to 54 year with the average of 28 years old for included 100 patients. All patients are evaluated after 24 week after the surgery. 50 of them were recruited for material exercise (balance exercises and agility training with strengthening) and 50 for strengthening only rehabilitation protocol (non-material). Demographically showed 85% suffering sports injury mainly from futsal and football. 39 % of them have abnormal BMI (26 – 38) and involving of the left knee. 100% of patient had the basic radiographic x-ray of knee and 98% had MRI. All patients had negative anterior drawer’s, Lachman test and Pivot shift test during the post ACL reconstruction after the complete rehabilitation. There was 95 subject sustained grade I injury, 5 of grade II and 0 of grade III with 90% of them had soft end-point. Overall they scored badly on presentation with 53% of Lysholm score (poor) and Tegner activity score level 3/10. After completing 9 weeks of exercises, of material group 90% had grade I laxity, 75% with firm end-point, Lysholm score 71% (fair) and Tegner activity level 5/10 comparing non-material group who had 62% of grade I laxity , 54% of firm end-point, Lyhslom score 62 % (poor) and Tegner activity level 4/10. After completed 18 weeks of exercises, of material group maintained 90% grade I laxity with 100 % with firm end-point, Lysholm score increase 91% (excellent) and Tegner activity level 7/10 comparing non-material group who had 69% of grade I laxity but maintained 54% of firm end-point, Lysholm score 76% (fair) and Tegner activity level 5/10. These showed the improvement were achieved fast on material group who have achieved satisfactory level after 9th cycle of exercises 75% (15/20) comparing non-material group who only achieved 54% (7/13) after completed 18th session. Most of them were grade I. These concepts are consolidated into our approach to prepare patients for return to play including field testing and maintenance training. Conclusions: The basic approach in ACL rehabilitation is to ensure return to sports at post-operative 6 month. Grade I and II laxity has favourable and early satisfactory outcome base on clinical assessment and Lysholm and Tegner scoring point. Reduction of laxity grading indicates satisfactory outcome. Firm end-point showed the adequacy of rehabilitation before starting previous sports game. Material exercise (balance exercises and agility training with strengthening) were beneficial and reliable in order to achieve favourable and early satisfactory outcome comparing strengthening only (non-material).We have identified that rehabilitation protocol varies between different patients. Therefore future post ACL reconstruction rehabilitation guidelines should look into focusing on rehabilitation techniques instead of time.Keywords: post anterior cruciate ligament (ACL) reconstruction, single bundle, hamstring tendon, sports rehabilitation, balance exercises, agility balance
Procedia PDF Downloads 2557036 Considering Aerosol Processes in Nuclear Transport Package Containment Safety Cases
Authors: Andrew Cummings, Rhianne Boag, Sarah Bryson, Gordon Turner
Abstract:
Packages designed for transport of radioactive material must satisfy rigorous safety regulations specified by the International Atomic Energy Agency (IAEA). Higher Activity Waste (HAW) transport packages have to maintain containment of their contents during normal and accident conditions of transport (NCT and ACT). To ensure containment criteria is satisfied these packages are required to be leak-tight in all transport conditions to meet allowable activity release rates. Package design safety reports are the safety cases that provide the claims, evidence and arguments to demonstrate that packages meet the regulations and once approved by the competent authority (in the UK this is the Office for Nuclear Regulation) a licence to transport radioactive material is issued for the package(s). The standard approach to demonstrating containment in the RWM transport safety case is set out in BS EN ISO 12807. In this document a method for measuring a leak rate from the package is explained by way of a small interspace test volume situated between two O-ring seals on the underside of the package lid. The interspace volume is pressurised and a pressure drop measured. A small interspace test volume makes the method more sensitive enabling the measurement of smaller leak rates. By ascertaining the activity of the contents, identifying a releasable fraction of material and by treating that fraction of material as a gas, allowable leak rates for NCT and ACT are calculated. The adherence to basic safety principles in ISO12807 is very pessimistic and current practice in the demonstration of transport safety, which is accepted by the UK regulator. It is UK government policy that management of HAW will be through geological disposal. It is proposed that the intermediate level waste be transported to the geological disposal facility (GDF) in large cuboid packages. This poses a challenge for containment demonstration because such packages will have long seals and therefore large interspace test volumes. There is also uncertainty on the releasable fraction of material within the package ullage space. This is because the waste may be in many different forms which makes it difficult to define the fraction of material released by the waste package. Additionally because of the large interspace test volume, measuring the calculated leak rates may not be achievable. For this reason a justification for a lower releasable fraction of material is sought. This paper considers the use of aerosol processes to reduce the releasable fraction for both NCT and ACT. It reviews the basic coagulation and removal processes and applies the dynamic aerosol balance equation. The proposed solution includes only the most well understood physical processes namely; Brownian coagulation and gravitational settling. Other processes have been eliminated either on the basis that they would serve to reduce the release to the environment further (pessimistically in keeping with the essence of nuclear transport safety cases) or that they are not credible in the conditions of transport considered.Keywords: aerosol processes, Brownian coagulation, gravitational settling, transport regulations
Procedia PDF Downloads 1177035 Experimental Study of Heat Transfer Enhancement Using Protruded Rectangular Fin
Authors: Tarique Jamil Khan, Swapnil Pande
Abstract:
The investigation deals with the study of heat transfer enhancement using protruded square fin. This study is enough to determine whether protrusion in forced convection is enough to enhance the rate of heat transfer. It includes the results after performing experiments by using a plane rectangular fin of aluminum material and the same dimension rectangular fin of the same material but having protruded circular shape extended normally. The fins made by a sand casting method. The results clearly mentioned that the protruded surface is effective enough to enhance the rate of heat transfer. This research investigates a modern fin topologies heat transfer characteristics that will clearly outdated the conventional fin to increase the rate of heat transfer. Protruded fins improve the rate of heat transfer compared to solid fin by varying shape of the protrusion in diameter and height.Keywords: heat transfer enhancement, forced convection, protruted fin, rectangular fin
Procedia PDF Downloads 3627034 Links between Inflammation and Insulin Resistance in Children with Morbid Obesity and Metabolic Syndrome
Authors: Mustafa M. Donma, Orkide Donma
Abstract:
Obesity is a clinical state associated with low-grade inflammation. It is also a major risk factor for insulin resistance (IR). In its advanced stages, metabolic syndrome (MetS), a much more complicated disease which may lead to life-threatening problems, may develop. Obesity-mediated IR seems to correlate with the inflammation. Human studies performed particularly on pediatric population are scarce. The aim of this study is to detect possible associations between inflammation and IR in terms of some related ratios. 549 children were grouped according to their age- and sex-based body mass index (BMI) percentile tables of WHO. MetS components were determined. Informed consent and approval from the Ethics Committee for Clinical Investigations were obtained. The principles of the Declaration of Helsinki were followed. The exclusion criteria were infection, inflammation, chronic diseases and those under drug treatment. Anthropometric measurements were obtained. Complete blood cell, fasting blood glucose, insulin, and C-reactive protein (CRP) analyses were performed. Homeostasis model assessment of insulin resistance (HOMA-IR), systemic immune inflammation (SII) index, tense index, alanine aminotransferase to aspartate aminotransferase ratio (ALT/AST), neutrophils to lymphocyte (NLR), platelet to lymphocyte, and lymphocyte to monocyte ratios were calculated. Data were evaluated by statistical analyses. The degree for statistical significance was 0.05. Statistically significant differences were found among the BMI values of the groups (p < 0.001). Strong correlations were detected between the BMI and waist circumference (WC) values in all groups. Tense index values were also correlated with both BMI and WC values in all groups except overweight (OW) children. SII index values of children with normal BMI were significantly different from the values obtained in OW, obese, morbid obese and MetS groups. Among all the other lymphocyte ratios, NLR exhibited a similar profile. Both HOMA-IR and ALT/AST values displayed an increasing profile from N towards MetS3 group. BMI and WC values were correlated with HOMA-IR and ALT/AST. Both in morbid obese and MetS groups, significant correlations between CRP versus SII index as well as HOMA-IR versus ALT/AST were found. ALT/AST and HOMA-IR values were correlated with NLR in morbid obese group and with SII index in MetS group, (p < 0.05), respectively. In conclusion, these findings showed that some parameters may exhibit informative differences between the early and late stages of obesity. Important associations among HOMA-IR, ALT/AST, NLR and SII index have come to light in the morbid obese and MetS groups. This study introduced the SII index and NLR as important inflammatory markers for the discrimination of normal and obese children. Interesting links were observed between inflammation and IR in morbid obese children and those with MetS, both being late stages of obesity.Keywords: children, inflammation, insulin resistance, metabolic syndrome, obesity
Procedia PDF Downloads 1377033 Integration of Constraints Related to Composite Materials in the Design of Industrial Products
Authors: A. Boumedine, K. Benfriha, S. Lecheb
Abstract:
Manufacturing methods for products and structures made of composite materials reduce the number of parts and integrate technical functions, this advantage of composite materials leads to a lot of innovation but also to a reduction of costs and a gain in quality. A material has attributes: its density, it’s resistance, it’s cost, it’s resistance to corrosion. For the design of a product, a certain profile of these attributes is required: low density, resistance removed, low cost. The problem is then to identify this attribute profile and to compare it with those of the materials, in order to find the one that comes closest. The aim of this work is to demonstrate the feasibility of characterizing a mini turbine made of 3D printed fiber-filled composite material by the process of additive manufacturing, then compare the performance of the alloy turbine with the composite turbine according to the results of the simulation by Abaqus software.Keywords: additive manufacturing, composite materials, design, 3D printer, turbine
Procedia PDF Downloads 1347032 Two Lessons Learnt in Defining Intersections and Interfaces in Numerical Modeling with Plaxis
Authors: Mahdi Sadeghian, Somaye Sadeghian, Reza Dinarvand
Abstract:
This paper is going to discuss two issues encountered in using PLAXIS. Both issues were monitored during application of PLAXIS to estimate the excavation-induced displacement. Column Soil Mixing (CSM) was applied to stabilise the excavation. It was understood that the estimated excavation induced deformation at the top of the CSM blocks highly depends on the material type defining pavement material adjacent to the CSM blocks. Cohesive material for pavement will result in the unrealistic connection between pavement and CSM even by defining an interface element. To find the most realistic approach, the interface defined in three different manners (1) no interface elements were applied (2) a non-cohesive soil layer was defined between pavement and CSM block to represent the friction between these materials (3) built-in interface elements in PLAXIS was used to define the boundary between the pavement and the CSM block. The result showed that the option 2 would result in more realistic results. The second issue was in the modelling of the contact line between the CSM block and an inclined layer underneath. The analysis result showed that the excavation-induced deformation highly depends on how the PLAXIS user defines the contact area. It was understood that if the contact area had defined as a point in which CSM block had intersected the layer underneath the estimated lateral displacement of CSM block would be unrealistically lower than the model in which the contact area was defined as a line.Keywords: PLAXIS, FEM, CSM, Excavation-Induced Deformation
Procedia PDF Downloads 1627031 A Comparison of Proxemics and Postural Head Movements during Pop Music versus Matched Music Videos
Authors: Harry J. Witchel, James Ackah, Carlos P. Santos, Nachiappan Chockalingam, Carina E. I. Westling
Abstract:
Introduction: Proxemics is the study of how people perceive and use space. It is commonly proposed that when people like or engage with a person/object, they will move slightly closer to it, often quite subtly and subconsciously. Music videos are known to add entertainment value to a pop song. Our hypothesis was that by adding appropriately matched video to a pop song, it would lead to a net approach of the head to the monitor screen compared to simply listening to an audio-only version of the song. Methods: We presented to 27 participants (ages 21.00 ± 2.89, 15 female) seated in front of 47.5 x 27 cm monitor two musical stimuli in a counterbalanced order; all stimuli were based on music videos by the band OK Go: Here It Goes Again (HIGA, boredom ratings (0-100) = 15.00 ± 4.76, mean ± SEM, standard-error-of-the-mean) and Do What You Want (DWYW, boredom ratings = 23.93 ± 5.98), which did not differ in boredom elicited (P = 0.21, rank-sum test). Each participant experienced each song only once, and one song (counterbalanced) as audio-only versus the other song as a music video. The movement was measured by video-tracking using Kinovea 0.8, based on recording from a lateral aspect; before beginning, each participant had a reflective motion tracking marker placed on the outer canthus of the left eye. Analysis of the Kinovea X-Y coordinate output in comma-separated-variables format was performed in Matlab, as were non-parametric statistical tests. Results: We found that the audio-only stimuli (combined for both HIGA and DWYW, mean ± SEM, 35.71 ± 5.36) were significantly more boring than the music video versions (19.46 ± 3.83, P = 0.0066 Wilcoxon Signed Rank Test (WSRT), Cohen's d = 0.658, N = 28). We also found that participants' heads moved around twice as much during the audio-only versions (speed = 0.590 ± 0.095 mm/sec) compared to the video versions (0.301 ± 0.063 mm/sec, P = 0.00077, WSRT). However, the participants' mean head-to-screen distances were not detectably smaller (i.e. head closer to the screen) during the music videos (74.4 ± 1.8 cm) compared to the audio-only stimuli (73.9 ± 1.8 cm, P = 0.37, WSRT). If anything, during the audio-only condition, they were slightly closer. Interestingly, the ranges of the head-to-screen distances were smaller during the music video (8.6 ± 1.4 cm) compared to the audio-only (12.9 ± 1.7 cm, P = 0.0057, WSRT), the standard deviations were also smaller (P = 0.0027, WSRT), and their heads were held 7 mm higher (video 116.1 ± 0.8 vs. audio-only 116.8 ± 0.8 cm above floor, P = 0.049, WSRT). Discussion: As predicted, sitting and listening to experimenter-selected pop music was more boring than when the music was accompanied by a matched, professionally-made video. However, we did not find that the proxemics of the situation led to approaching the screen. Instead, adding video led to efforts to control the head to a more central and upright viewing position and to suppress head fidgeting.Keywords: boredom, engagement, music videos, posture, proxemics
Procedia PDF Downloads 1677030 Energy Harvesting with Zinc Oxide Based Nanogenerator: Design and Simulation Using Comsol-4.3 Software
Authors: Akanksha Rohit, Ujjwala Godavarthi, Anshua Mukherjee
Abstract:
Nanotechnology is one of the promising sustainable solutions in the era of miniaturization due to its multidisciplinary nature. The most interesting aspect about nanotechnology is its wide ranging applications from electronics to military and biomedical. It tries to connect individuals more closely to the environment. In this paper, concept of parasitic energy harvesting is used in designing nanogenerators using COMSOL 4.3 software. The output of the nanogenerator is optimized using following constraints: ease of availability of the material, fabrication process and cost of the material. The nanogenerator is optimized using ZnO based nanowires, PMMA as insulator and aluminum and silicon as metal electrodes. The energy harvested from the model can be used to power nanobots, several other biomedical sensors and eventually to replace batteries. Thus, advancements in this field can be very challenging but it is the future of the nano era.Keywords: zinc oxide, piezoelectric, PMMA, parasitic energy harvesting, renewable energy engineering
Procedia PDF Downloads 3647029 Development of a New Polymeric Material with Controlled Surface Micro-Morphology Aimed for Biosensors Applications
Authors: Elham Farahmand, Fatimah Ibrahim, Samira Hosseini, Ivan Djordjevic, Leo. H. Koole
Abstract:
Compositions of different molar ratios of polymethylmethacrylate-co-methacrylic acid (PMMA-co-MAA) were synthesized via free- radical polymerization. Polymer coated surfaces have been produced on silicon wafers. Coated samples were analyzed by atomic force microscopy (AFM). The results have shown that the roughness of the surfaces have increased by increasing the molar ratio of monomer methacrylic acid (MAA). This study reveals that the gradual increase in surface roughness is due to the fact that carboxylic functional groups have been generated by MAA segments. Such surfaces can be desirable platforms for fabrication of the biosensors for detection of the viruses and diseases.Keywords: polymethylmethacrylate-co-methacrylic acid (PMMA-co-MAA), polymeric material, atomic force microscopy, roughness, carboxylic functional groups
Procedia PDF Downloads 5957028 Engaging Girls in 'Learn Science by Doing' as Strategy for Enhanced Learning Outcome at the Junior High School Level in Nigeria
Authors: Stella Y. Erinosho
Abstract:
In an attempt to impact on girls’ interest in science, an instructional package on ‘Learn Science by Doing (LSD)’ was developed to support science teachers in teaching integrated science at the junior secondary level in Nigeria. LSD provides an instructional framework aimed at actively engaging girls in beginners’ science through activities that are discovery-oriented and allow for experiential learning. The goal of this study was to show the impact of application of LSD on girls’ performance and interest in science. The major hypothesis that was tested in the study was that students would exhibit higher learning outcomes (achievement and attitude) in science as effect of exposure to LSD instructional package. A quasi-experimental design was adopted, incorporating four all-girls schools. Three of the schools (comprising six classes) were randomly designated as experimental and one as the control. The sample comprised 357 girls (275 experimental and 82 control) and nine science teachers drawn from the experimental schools. The questionnaire was designed to gather data on students’ background characteristics and their attitude toward science while the cognitive outcomes were measured using tests, both within a group and between groups, the girls who had exposure to LSD exhibited improved cognitive outcomes and more positive attitude towards science compared with those who had conventional teaching. The data are consistent with previous studies indicating that interactive learning activities increase student performance and interest.Keywords: active learning, school science, teaching and learning, Nigeria
Procedia PDF Downloads 3857027 Design and Simulation of MEMS-Based Capacitive Pressure Sensors
Authors: Kirankumar B. Balavalad, Bhagyashree Mudhol, B. G. Sheeparamatti
Abstract:
MEMS sensor have gained popularity in automotive, biomedical, and industrial applications. In this paper, the design and simulation of conventional, slotted, and perforated MEMS capacitive pressure sensor is proposed. Polysilicon material is used as diaphragm material that deflects due to applied pressure. Better sensitivity is the main advantage of conventional pressure sensor as compared with other two sensors and perforated pressure sensor achieves large operating pressure range. The proposed MEMS sensor demonstrated with diaphragm length 50um, gap depth 3um is being modelled. The simulation is carried out for different types of MEMS capacitive pressure sensor using COMSOL Multiphysics and Coventor ware.Keywords: MEMS, conventional pressure sensor, slotted and perforated diaphragm, COMSOL multiphysics, coventor ware
Procedia PDF Downloads 5087026 Internal and External Validity in Experimental Economics
Authors: Helena Chytilova, Robin Maialeh
Abstract:
Experimental economics is subject to criticism with regards to frequently discussed trade-off between internal and external validity requirements, which seems to be critically flawed. Incompatibility of trade-off condition and condition of internal validity as a prerequisite for external validity is presented. In addition, the imprecise concept of artificiality found to be rather improving external validity, seems to strengthen illusory status of external versus internal validity tension. Internal validity will be further analysed with regards to Duhem-Quine problem, where unpredictability argument is significantly weakened trough application of inductivism within the illustrative hypothetical-deductive model. Discussion outlined above partially weakens critical arguments related to robustness of results in experimental economics, if perfectly controlled experimental environment is secured.Keywords: Duhem-Quine problem, external validity, inductivism, internal validity
Procedia PDF Downloads 2867025 Prediction of the Behavior of 304L Stainless Steel under Uniaxial and Biaxial Cyclic Loading
Authors: Aboussalih Amira, Zarza Tahar, Fedaoui Kamel, Hammoudi Saleh
Abstract:
This work focuses on the simulation of the prediction of the behaviour of austenitic stainless steel (SS) 304L under complex loading in stress and imposed strain. The Chaboche model is a cable to describe the response of the material by the combination of two isotropic and nonlinear kinematic work hardening, the model is implemented in the ZébuLon computer code. First, we represent the evolution of the axial stress as a function of the plastic strain through hysteresis loops revealing a hardening behaviour caused by the increase in stress by stress in the direction of tension/compression. In a second step, the study of the ratcheting phenomenon takes a key place in this work by the appearance of the average stress. In addition to the solicitation of the material in the biaxial direction in traction / torsion.Keywords: damage, 304L, Ratcheting, plastic strain
Procedia PDF Downloads 947024 CuIn₃Se₅ Colloidal Nanocrystals and Its Ink-Coated Films for Photovoltaics
Authors: M. Ghali, M. Elnimr, G. F. Ali, A. M. Eissa, H. Talaat
Abstract:
CuIn₃Se₅ material is indexed as ordered vacancy compounds having excellent matching properties with CuInGaSe (CIGS) solar absorber layer. For example, the valence band offset of CuIn₃Se₅ with CIGS is nearly 0.3 eV, and the lattice mismatch is less than 1%, besides the absence of discontinuity in their conduction bands. Thus, CuIn₃Se₅ can work as a passivation layer for repelling holes from CIGS/CdS interface and hence to reduce the interface carriers recombination and consequently enhancing the efficiency of CIGS/CdS solar cells. Theoretically, it was reported earlier that an improvement in the efficiency of p-CIGS-based solar cell with a thin ~100 nm of n-CuIn₃Se₅ layer is expected. Recently, a reported experiment demonstrated significant improvement in the efficiency of Molecular Beam Epitaxy (MBE) grown CIGS solar cells from 13.4 to 14.5% via inserting a thin layer of MBE-grown Cu(In,Ga)₃Se₅ layer at the CdS/CIGS interface. It should be mentioned that CuIn₃Se₅ material in either bulk or thin film form, are usually fabricated by high vacuum physical vapor deposition techniques (e.g., three-source co-evaporation, RF sputtering, flash evaporation, and molecular beam epitaxy). In addition, achieving photosensitive films of n-CuIn₃Se₅ material is important for new hybrid organic/inorganic structures, where inorganic photo-absorber layer, with n-type conductivity, can form n–p junction with organic p-type material (e.g., conductive polymers). A detailed study of the physical properties of CuIn₃Se₅ is still necessary for better understanding of device operation and further improvement of solar cells performance. Here, we report on the low-cost synthesis of CuIn₃Se₅ material in nano-scale size, with an average diameter ~10nm, using simple solution-based colloidal chemistry. In contrast to traditionally grown bulk tetragonal CuIn₃Se₅ crystals using high Vacuum-based technology, our colloidal CuIn₃Se₅ nanocrystals show cubic crystal structure with a shape of nanoparticles and band gap ~1.33 eV. Ink-coated thin films prepared from these nanocrystals colloids; display n-type character, 1.26 eV band gap and strong photo-responsive behavior with incident white light. This suggests the potential use of colloidal CuIn₃Se₅ as an active layer in all-solution-processed thin film solar cells.Keywords: nanocrystals, CuInSe, thin film, optical properties
Procedia PDF Downloads 155