Search results for: electronic measurement systems
11856 Characterization of the Worn Surfaces of Brake Discs and Friction Materials after Dynobench Tests
Authors: Ana Paula Gomes Nogueira, Pietro Tonolini, Andrea Bonfanti
Abstract:
Automotive braking systems must convert kinetic into thermal energy by friction. Nowadays, the disc brake system is the most widespread configuration on the automotive market, which its specific configuration provides a very efficient heat dissipation. At the same time, both discs and pads wear out. Different wear mechanisms can act during the braking, which makes the understanding of the phenomenon essential for the strategies to be applied when an increased lifetime of the components is required. In this study, a specific characterization approach was conducted to analyze the worn surfaces of commercial pad friction materials and its conterface cast iron disc after dynobench tests. Scanning electronic microscope (SEM), confocal microscope, and focus ion beam microscope (FIB) were used as the main tools of the analysis, and they allowed imaging of the footprint of the different wear mechanisms presenting on the worn surfaces. Aspects such as the temperature and specific ingredients of the pad friction materials are discussed since they play an important role in the wear mechanisms.Keywords: wear mechanism, surface characterization, brake tests, friction materials, disc brake
Procedia PDF Downloads 5311855 Low Cost Technique for Measuring Luminance in Biological Systems
Abstract:
In this work, the relationship between the melanin content in a tissue and subsequent absorption of light through that tissue was determined using a digital camera. This technique proved to be simple, cost effective, efficient and reliable. Tissue phantom samples were created using milk and soy sauce to simulate the optical properties of melanin content in human tissue. Increasing the concentration of soy sauce in the milk correlated to an increase in melanin content of an individual. Two methods were employed to measure the light transmitted through the sample. The first was direct measurement of the transmitted intensity using a conventional lux meter. The second method involved correctly calibrating an ordinary digital camera and using image analysis software to calculate the transmitted intensity through the phantom. The results from these methods were then graphically compared to the theoretical relationship between the intensity of transmitted light and the concentration of absorbers in the sample. Conclusions were then drawn about the effectiveness and efficiency of these low cost methods.Keywords: tissue phantoms, scattering coefficient, albedo, low-cost method
Procedia PDF Downloads 27111854 Simultaneous Measurement of Pressure and Temperature Profile of Lubricating Oil-Film along Orthogonally Displaced Non-Circular Journal Bearing: An Experimental Study
Authors: Amit Singla, Amit Chauhan
Abstract:
The non-circular journal bearings provide better thermal stability and lesser oil-film temperature rise as compared to circular journal bearings. Experimentation on simultaneous measurement of pressure and temperature of lubricated oil-film along the profile of the bearing will help the designer to design journal bearings. In this paper, pressure and temperature of oil-film along orthogonally displaced non-circular journal bearing have been measured on a designed journal bearing test rig. The orthogonal non-circular journal bearing has been fabricated by displacing two circular halves away from the centers in the orthogonal direction. The data acquisition for oil film pressure and temperature has been carried out at journal speed=3000 rpm and by increasing the static radial load from 500 N to 2000 N in steps of 500 N using three different grades of oil (ISOVG 32, 68, and 150) named as oil-1, oil-2, and oil-3 respectively. The results show that the oil-film pressure and temperature increases with increase in radial load and change of lubricating oil towards increasing viscosity. Further, two lobes in the pressure and temperature profiles have been obtained which accounts for better thermal stability as it reduces cavitation zone inside the bearing.Keywords: cavitation, non-circular journal bearing, orthogonally displaced, thermal stability
Procedia PDF Downloads 35211853 Measurement of Susceptibility Users Using Email Phishing Attack
Authors: Cindy Sahera, Sarwono Sutikno
Abstract:
Rapid technological developments also have negative impacts, namely the increasing criminal cases based on technology or cybercrime. One technique that can be used to conduct cybercrime attacks are phishing email. The issue is whether the user is aware that email can be misused by others so that it can harm the user's own? This research was conducted to measure the susceptibility of selected targets against email abuse. The objectives of this research are measurement of targets’ susceptibility and find vulnerability in email recipient. There are three steps being taken in this research, (1) the information gathering phase, (2) the design phase, and (3) the execution phase. The first step includes the collection of the information necessary to carry out an attack on a target. The next step is to make the design of an attack against a target. The last step is to send phishing emails to the target. The levels of susceptibility are three: level 1, level 2 and level 3. Level 1 indicates a low level of targets’ susceptibility, level 2 indicates the intermediate level of targets’ susceptibility, and level 3 indicates a high level of targets’ susceptibility. The results showed that users who are on level 1 and level 2 more that level 3, which means the user is not too careless. However, it does not mean the user to be safe. There are still vulnerabilities that may occur, such as automatic location detection when opening emails and automatic downloaded malware as user clicks a link in the email.Keywords: cybercrime, email phishing, susceptibility, vulnerability
Procedia PDF Downloads 28911852 A Study of Evolutional Control Systems
Authors: Ti-Jun Xiao, Zhe Xu
Abstract:
Controllability is one of the fundamental issues in control systems. In this paper, we study the controllability of second order evolutional control systems in Hilbert spaces with memory and boundary controls, which model dynamic behaviors of some viscoelastic materials. Transferring the control problem into a moment problem and showing the Riesz property of a family of functions related to Cauchy problems for some integrodifferential equations, we obtain a general boundary controllability theorem for these second order evolutional control systems. This controllability theorem is applicable to various concrete 1D viscoelastic systems and recovers some previous related results. It is worth noting that Riesz sequences can be used for numerical computations of the control functions and the identification of new Riesz sequence is of independent interest for the basis-function theory. Moreover, using the Riesz sequences, we obtain the existence and uniqueness of (weak) solutions to these second order evolutional control systems in Hilbert spaces. Finally, we derive the exact boundary controllability of a viscoelastic beam equation, as an application of our abstract theorem.Keywords: evolutional control system, controllability, boundary control, existence and uniqueness
Procedia PDF Downloads 22211851 Flammability and Smoke Toxicity of Rainscreen Façades
Authors: Gabrielle Peck, Ryan Hayes
Abstract:
Four façade systems were tested using a reduced height BS 8414-2 (5 m) test rig. An L-shaped masonry test wall was clad with three types of insulation and an aluminum composite panel with a non-combustible filling (meeting Euroclass A2). A large (3 MW) wooden crib was ignited in a recess at the base of the L, and the fire was allowed to burn for 30 minutes. Air velocity measurements and gas samples were taken from the main ventilation duct and also a small additional ventilation duct, like those in an apartment bathroom or kitchen. This provided a direct route of travel for smoke from the building façade to a theoretical room using a similar design to many high-rise buildings where the vent is connected to (approximately) 30 m³ rooms. The times to incapacitation and lethality of the effluent were calculated for both the main exhaust vent and for a vent connected to a theoretical 30 m³ room. The rainscreen façade systems tested were the common combinations seen in many tower blocks across the UK. Three tests using ACM A2 with Stonewool, Phenolic foam, and Polyisocyanurate (PIR) foam. A fourth test was conducted with PIR and ACM-PE (polyethylene core). Measurements in the main exhaust duct were representative of the effluent from the burning wood crib. FEDs showed incapacitation could occur up to 30 times quicker with combustible insulation than non-combustible insulation, with lethal gas concentrations accumulating up to 2.7 times faster than other combinations. The PE-cored ACM/PIR combination produced a ferocious fire, resulting in the termination of the test after 13.5 minutes for safety reasons. Occupants of the theoretical room in the PIR/ACM A2 test reached a FED of 1 after 22 minutes; for PF/ACM A2, this took 25 minutes, and for stone wool, a lethal dose measurement of 0.6 was reached at the end of the 30-minute test. In conclusion, when measuring smoke toxicity in the exhaust duct, there is little difference between smoke toxicity measurements between façade systems. Toxicity measured in the main exhaust is largely a result of the wood crib used to ignite the façade system. The addition of a vent allowed smoke toxicity to be quantified in the cavity of the façade, providing a realistic way of measuring the toxicity of smoke that could enter an apartment from a façade fire.Keywords: smoke toxicity, large-scale testing, BS8414, FED
Procedia PDF Downloads 6011850 Research on the Impact on Building Temperature and Ventilation by Outdoor Shading Devices in Hot-Humid Area: Through Measurement and Simulation on an Office Building in Guangzhou
Authors: Hankun Lin, Yiqiang Xiao, Qiaosheng Zhan
Abstract:
Shading devices (SDs) are widely used in buildings in the hot-humid climate areas for reducing cooling energy consumption for interior temperature, as the result of reducing the solar radiation directly. Contrasting the surface temperature of materials of SDs to the glass on the building façade could give more analysis for the shading effect. On the other side, SDs are much more used as the independence system on building façade in hot-humid area. This typical construction could have some impacts on building ventilation as well. This paper discusses the outdoor SDs’ effects on the building thermal environment and ventilation, through a set of measurements on a 2-floors office building in Guangzhou, China, which install a dynamic aluminum SD-system around the façade on 2nd-floor. The measurements recorded the in/outdoor temperature, relative humidity, velocity, and the surface temperature of the aluminum panel and the glaze. After that, a CFD simulation was conducted for deeper discussion of ventilation. In conclusion, this paper reveals the temperature differences on the different material of the façade, and finds that the velocity of indoor environment could be reduced by the outdoor SDs.Keywords: outdoor shading devices, hot-humid area, temperature, ventilation, measurement, CFD
Procedia PDF Downloads 44811849 Evaluation of Suitable Housing System for Adoption in Addis Ababa
Authors: Yidnekachew Daget, Hong Zhang
Abstract:
The decision-making process in order to select the suitable housing system for application in housing construction has been a challenge for many developing countries. This study evaluates the decision process to identify the suitable housing systems for adoption in Addis Ababa. Ten industrialized housing systems were considered as alternatives for comparison. These systems have been used in a housing development in different parts of the world. A relevant literature review and contextual analysis were conducted. An analytical hierarchy process and an Expert Choice Comparion platform were employed as a research technique and tool to evaluate the professionals’ level of preferences with regard to the housing systems. The findings revealed the priority rank and characteristics of the suitable housing systems to be adapted for application in housing development. The decision criteria and the analytical process used in this study can help the decision-makers and the housing developers in developing countries make effective evaluations and decisions.Keywords: analytical hierarchy process, decision-making, expert choice comparion, industrialized housing systems
Procedia PDF Downloads 26411848 Automatic Speech Recognition Systems Performance Evaluation Using Word Error Rate Method
Authors: João Rato, Nuno Costa
Abstract:
The human verbal communication is a two-way process which requires a mutual understanding that will result in some considerations. This kind of communication, also called dialogue, besides the supposed human agents it can also be performed between human agents and machines. The interaction between Men and Machines, by means of a natural language, has an important role concerning the improvement of the communication between each other. Aiming at knowing the performance of some speech recognition systems, this document shows the results of the accomplished tests according to the Word Error Rate evaluation method. Besides that, it is also given a set of information linked to the systems of Man-Machine communication. After this work has been made, conclusions were drawn regarding the Speech Recognition Systems, among which it can be mentioned their poor performance concerning the voice interpretation in noisy environments.Keywords: automatic speech recognition, man-machine conversation, speech recognition, spoken dialogue systems, word error rate
Procedia PDF Downloads 32211847 Reliability of an Application for the System for Observing Play and Recreation in Communities in the Recreovia of Bucaramanga, Colombia
Authors: Erika Tatiana Paredes Prada, Diana Marina Camargo Lemos
Abstract:
Introduction: Recreovía as a public health strategy contributes to encourage the practice and adherence to physical activity (PA) recommendations, by temporarily closing the roads to motorized vehicles. The determination of the PA requires the evaluation of the reliability of the measurement instruments, in order to sustain the continuity and relevance of Recreovía as a community intervention. Objective: Establish the inter-rater reliability of the App for the System for Observing Play and Recreation in Communities (iSOPARC®) in the Recreovía of Bucaramanga, Colombia. Methods: Five trained observers at two observation points on the 2.3 km of the Recreovía (14th Street and 32nd Street) used the App (iSOPARC®), between 08:00 a.m. and 12:00 m. in periods of 20 minutes during a regular Sunday. Reliability analysis was performed using the Intraclass Correlation Coefficient (ICC 2.1). Results: A total of 2682 users were observed (43.6 % women) in 7 observations. ICC showed a range between 0.96 and 0.99 for the PA level and ICC between 0.95 and 0.99 for age group for the two observation points. Conclusion: The reliability found for the iSOPARC® guarantees the consecutive measurement of the PA level at the Recreovía, which will allow measuring it is effectiveness in the medium and long term, as a community intervention strategy.Keywords: environment, observation, physical activity, recreation, reliability
Procedia PDF Downloads 32811846 Development and Validation of a Carbon Dioxide TDLAS Sensor for Studies on Fermented Dairy Products
Authors: Lorenzo Cocola, Massimo Fedel, Dragiša Savić, Bojana Danilović, Luca Poletto
Abstract:
An instrument for the detection and evaluation of gaseous carbon dioxide in the headspace of closed containers has been developed in the context of Packsensor Italian-Serbian joint project. The device is based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) with a Wavelength Modulation Spectroscopy (WMS) technique in order to accomplish a non-invasive measurement inside closed containers of fermented dairy products (yogurts and fermented cheese in cups and bottles). The purpose of this instrument is the continuous monitoring of carbon dioxide concentration during incubation and storage of products over a time span of the whole shelf life of the product, in the presence of different microorganisms. The instrument’s optical front end has been designed to be integrated in a thermally stabilized incubator. An embedded computer provides processing of spectral artifacts and storage of an arbitrary set of calibration data allowing a properly calibrated measurement on many samples (cups and bottles) of different shapes and sizes commonly found in the retail distribution. A calibration protocol has been developed in order to be able to calibrate the instrument on the field also on containers which are notoriously difficult to seal properly. This calibration protocol is described and evaluated against reference measurements obtained through an industry standard (sampling) carbon dioxide metering technique. Some sets of validation test measurements on different containers are reported. Two test recordings of carbon dioxide concentration evolution are shown as an example of instrument operation. The first demonstrates the ability to monitor a rapid yeast growth in a contaminated sample through the increase of headspace carbon dioxide. Another experiment shows the dissolution transient with a non-saturated liquid medium in presence of a carbon dioxide rich headspace atmosphere.Keywords: TDLAS, carbon dioxide, cups, headspace, measurement
Procedia PDF Downloads 32411845 Intelligent Technology for Real-Time Monitor and Data Analysis of the Aquaculture Toxic Water Concentration
Authors: Chin-Yuan Hsieh, Wei-Chun Lu, Yu-Hong Zeng
Abstract:
The situation of a group of fish die is frequently found due to the fish disease caused by the deterioration of aquaculture water quality. The toxic ammonia is produced by animals as a byproduct of protein. The system is designed by the smart sensor technology and developed by the mathematical model to monitor the water parameters 24 hours a day and predict the relationship among twelve water quality parameters for monitoring the water quality in aquaculture. All data measured are stored in cloud server. In productive ponds, the daytime pH may be high enough to be lethal to the fish. The sudden change of the aquaculture conditions often results in the increase of PH value of water, lack of oxygen dissolving content, water quality deterioration and yield reduction. From the real measurement, the system can send the message to user’s smartphone successfully on the bad conditions of water quality. From the data comparisons between measurement and model simulation in fish aquaculture site, the difference of parameters is less than 2% and the correlation coefficient is at least 98.34%. The solubility rate of oxygen decreases exponentially with the elevation of water temperature. The correlation coefficient is 98.98%.Keywords: aquaculture, sensor, ammonia, dissolved oxygen
Procedia PDF Downloads 28311844 Design of Advanced Materials for Alternative Cooling Devices
Authors: Emilia Olivos, R. Arroyave, A. Vargas-Calderon, J. E. Dominguez-Herrera
Abstract:
More efficient cooling systems are needed to reduce building energy consumption and environmental impact. At present researchers focus mainly on environmentally-friendly magnetic materials and the potential application in cooling devices. The magnetic materials presented in this project belong to a group known as Heusler alloys. These compounds are characterized by a strong coupling between their structure and magnetic properties. Usually, a change in one of them can alter the other, which implies changes in other electronic or structural properties, such as, shape magnetic memory response or the magnetocaloric effect. Those properties and its dependence with external fields make these materials interesting, both from a fundamental point of view, as well as on their different possible applications. In this work, first principles and Monte Carlo simulations have been used to calculate exchange couplings and magnetic properties as a function of an applied magnetic field on Heusler alloys. As a result, we found a large dependence of the magnetic susceptibility, entropy and heat capacity, indicating that the magnetic field can be used in experiments to trigger particular magnetic properties in materials, which are necessary to develop solid-state refrigeration devices.Keywords: ferromagnetic materials, magnetocaloric effect, materials design, solid state refrigeration
Procedia PDF Downloads 21511843 Infrastructure Development – Stages in Development
Authors: Seppo Sirkemaa
Abstract:
Information systems infrastructure is the basis of business systems and processes in the company. It should be a reliable platform for business processes and activities but also have the flexibility to change business needs. The development of an infrastructure that is robust, reliable, and flexible is a challenge. Understanding technological capabilities and business needs is a key element in the development of successful information systems infrastructure.Keywords: development, information technology, networks, technology
Procedia PDF Downloads 11811842 Machine Learning Approach for Automating Electronic Component Error Classification and Detection
Authors: Monica Racha, Siva Chandrasekaran, Alex Stojcevski
Abstract:
The engineering programs focus on promoting students' personal and professional development by ensuring that students acquire technical and professional competencies during four-year studies. The traditional engineering laboratory provides an opportunity for students to "practice by doing," and laboratory facilities aid them in obtaining insight and understanding of their discipline. Due to rapid technological advancements and the current COVID-19 outbreak, the traditional labs were transforming into virtual learning environments. Aim: To better understand the limitations of the physical laboratory, this research study aims to use a Machine Learning (ML) algorithm that interfaces with the Augmented Reality HoloLens and predicts the image behavior to classify and detect the electronic components. The automated electronic components error classification and detection automatically detect and classify the position of all components on a breadboard by using the ML algorithm. This research will assist first-year undergraduate engineering students in conducting laboratory practices without any supervision. With the help of HoloLens, and ML algorithm, students will reduce component placement error on a breadboard and increase the efficiency of simple laboratory practices virtually. Method: The images of breadboards, resistors, capacitors, transistors, and other electrical components will be collected using HoloLens 2 and stored in a database. The collected image dataset will then be used for training a machine learning model. The raw images will be cleaned, processed, and labeled to facilitate further analysis of components error classification and detection. For instance, when students conduct laboratory experiments, the HoloLens captures images of students placing different components on a breadboard. The images are forwarded to the server for detection in the background. A hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm will be used to train the dataset for object recognition and classification. The convolution layer extracts image features, which are then classified using Support Vector Machine (SVM). By adequately labeling the training data and classifying, the model will predict, categorize, and assess students in placing components correctly. As a result, the data acquired through HoloLens includes images of students assembling electronic components. It constantly checks to see if students appropriately position components in the breadboard and connect the components to function. When students misplace any components, the HoloLens predicts the error before the user places the components in the incorrect proportion and fosters students to correct their mistakes. This hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm automating electronic component error classification and detection approach eliminates component connection problems and minimizes the risk of component damage. Conclusion: These augmented reality smart glasses powered by machine learning provide a wide range of benefits to supervisors, professionals, and students. It helps customize the learning experience, which is particularly beneficial in large classes with limited time. It determines the accuracy with which machine learning algorithms can forecast whether students are making the correct decisions and completing their laboratory tasks.Keywords: augmented reality, machine learning, object recognition, virtual laboratories
Procedia PDF Downloads 13411841 A Low-Cost of Foot Plantar Shoes for Gait Analysis
Authors: Zulkifli Ahmad, Mohd Razlan Azizan, Nasrul Hadi Johari
Abstract:
This paper presents a study on development and conducting of a wearable sensor system for gait analysis measurement. For validation, the method of plantar surface measurement by force plate was prepared. In general gait analysis, force plate generally represents a studies about barefoot in whole steps and do not allow analysis of repeating movement step in normal walking and running. The measurements that were usually perform do not represent the whole daily plantar pressures in the shoe insole and only obtain the ground reaction force. The force plate measurement is usually limited a few step and it is done indoor and obtaining coupling information from both feet during walking is not easily obtained. Nowadays, in order to measure pressure for a large number of steps and obtain pressure in each insole part, it could be done by placing sensors within an insole. With this method, it will provide a method for determine the plantar pressures while standing, walking or running of a shoe wearing subject. Inserting pressure sensors in the insole will provide specific information and therefore the point of the sensor placement will result in obtaining the critical part under the insole. In the wearable shoe sensor project, the device consists left and right shoe insole with ten FSR. Arduino Mega was used as a micro-controller that read the analog input from FSR. The analog inputs were transmitted via bluetooth data transmission that gains the force data in real time on smartphone. Blueterm software which is an android application was used as an interface to read the FSR reading on the shoe wearing subject. The subject consist of two healthy men with different age and weight doing test while standing, walking (1.5 m/s), jogging (5 m/s) and running (9 m/s) on treadmill. The data obtain will be saved on the android device and for making an analysis and comparison graph.Keywords: gait analysis, plantar pressure, force plate, earable sensor
Procedia PDF Downloads 45311840 An Examination of the Factors Affecting the Adoption of Cloud Enterprise Resource Planning Systems in Egyptian Companies
Authors: Mayar A. Omar, Ismail Gomaa, Heba Badawy, Hosam Moubarak
Abstract:
Enterprise resource planning (ERP) is an integrated system that helps companies in managing their resources. There are two types of ERP systems, traditional ERP systems and cloud ERP systems. Cloud ERP systems were introduced after the development of cloud computing technology. This research aims to identify the factors that affect the adoption of cloud ERP in Egyptian companies. Moreover, the aim of our study is to provide guidance to Egyptian companies in the cloud ERP adoption decision and to participate in increasing the number of cloud ERP studies that are conducted in the Middle East and in developing countries. There are many factors influencing the adoption of cloud ERP in Egyptian organizations, which are discussed and explained in the research. Those factors are examined by combining the diffusion of innovation theory (DOI) and technology-organization-environment framework (TOE). Data were collected through a survey that was developed using constructs from the existing studies of cloud computing and cloud ERP technologies and was then modified to fit our research. The analysis of the data was based on structural equation modeling (SEM) using Smart PLS software that was used for the empirical analysis of the research model.Keywords: cloud computing, cloud ERP systems, DOI, Egypt, SEM, TOE
Procedia PDF Downloads 13711839 Basic Study of Mammographic Image Magnification System with Eye-Detector and Simple EEG Scanner
Authors: Aika Umemuro, Mitsuru Sato, Mizuki Narita, Saya Hori, Saya Sakurai, Tomomi Nakayama, Ayano Nakazawa, Toshihiro Ogura
Abstract:
Mammography requires the detection of very small calcifications, and physicians search for microcalcifications by magnifying the images as they read them. The mouse is necessary to zoom in on the images, but this can be tiring and distracting when many images are read in a single day. Therefore, an image magnification system combining an eye-detector and a simple electroencephalograph (EEG) scanner was devised, and its operability was evaluated. Two experiments were conducted in this study: the measurement of eye-detection error using an eye-detector and the measurement of the time required for image magnification using a simple EEG scanner. Eye-detector validation showed that the mean distance of eye-detection error ranged from 0.64 cm to 2.17 cm, with an overall mean of 1.24 ± 0.81 cm for the observers. The results showed that the eye detection error was small enough for the magnified area of the mammographic image. The average time required for point magnification in the verification of the simple EEG scanner ranged from 5.85 to 16.73 seconds, and individual differences were observed. The reason for this may be that the size of the simple EEG scanner used was not adjustable, so it did not fit well for some subjects. The use of a simple EEG scanner with size adjustment would solve this problem. Therefore, the image magnification system using the eye-detector and the simple EEG scanner is useful.Keywords: EEG scanner, eye-detector, mammography, observers
Procedia PDF Downloads 21511838 Development of Electroencephalograph Collection System in Language-Learning Self-Study System That Can Detect Learning State of the Learner
Authors: Katsuyuki Umezawa, Makoto Nakazawa, Manabu Kobayashi, Yutaka Ishii, Michiko Nakano, Shigeichi Hirasawa
Abstract:
This research aims to develop a self-study system equipped with an artificial teacher who gives advice to students by detecting the learners and to evaluate language learning in a unified framework. 'Detecting the learners' means that the system understands the learners' learning conditions, such as each learner’s degree of understanding, the difference in each learner’s thinking process, the degree of concentration or boredom in learning, and problem solving for each learner, which can be interpreted from learning behavior. In this paper, we propose a system to efficiently collect brain waves from learners by focusing on only the brain waves among the biological information for 'detecting the learners'. The conventional Electroencephalograph (EEG) measurement method during learning using a simple EEG has the following disadvantages. (1) The start and end of EEG measurement must be done manually by the experiment participant or staff. (2) Even when the EEG signal is weak, it may not be noticed, and the data may not be obtained. (3) Since the acquired EEG data is stored in each PC, there is a possibility that the time of data acquisition will be different in each PC. This time, we developed a system to collect brain wave data on the server side. This system overcame the above disadvantages.Keywords: artificial teacher, e-learning, self-study system, simple EEG
Procedia PDF Downloads 14511837 Generation of Automated Alarms for Plantwide Process Monitoring
Authors: Hyun-Woo Cho
Abstract:
Earlier detection of incipient abnormal operations in terms of plant-wide process management is quite necessary in order to improve product quality and process safety. And generating warning signals or alarms for operating personnel plays an important role in process automation and intelligent plant health monitoring. Various methodologies have been developed and utilized in this area such as expert systems, mathematical model-based approaches, multivariate statistical approaches, and so on. This work presents a nonlinear empirical monitoring methodology based on the real-time analysis of massive process data. Unfortunately, the big data includes measurement noises and unwanted variations unrelated to true process behavior. Thus the elimination of such unnecessary patterns of the data is executed in data processing step to enhance detection speed and accuracy. The performance of the methodology was demonstrated using simulated process data. The case study showed that the detection speed and performance was improved significantly irrespective of the size and the location of abnormal events.Keywords: detection, monitoring, process data, noise
Procedia PDF Downloads 25211836 Scheduling Tasks in Embedded Systems Based on NoC Architecture
Authors: D. Dorota
Abstract:
This paper presents a method to generate and schedule task in the architecture of embedded systems based on the simulated annealing. This method takes into account the attribute of divisibility of tasks. A proposal represents the process in the form of trees. Despite the fact that the architecture of Network-on-Chip (NoC) is an interesting alternative to a bus architecture based on multi-processors systems, it requires a lot of work that ensures the optimization of communication. This paper proposes an effective approach to generate dedicated NoC topology solving communication problems. Network NoC is generated taking into account the energy consumption and resource issues. Ultimately generated is minimal, dedicated NoC topology. The proposed solution is assumed to be a simple router design and the minimum number of lines.Keywords: Network-on-Chip, NoC-based embedded systems, scheduling task in embedded systems, simulated annealing
Procedia PDF Downloads 37711835 Integrating Microcontroller-Based Projects in a Human-Computer Interaction Course
Authors: Miguel Angel Garcia-Ruiz, Pedro Cesar Santana-Mancilla, Laura Sanely Gaytan-Lugo
Abstract:
This paper describes the design and application of a short in-class project conducted in Algoma University’s Human-Computer Interaction (HCI) course taught at the Bachelor of Computer Science. The project was based on the Maker Movement (people using and reusing electronic components and everyday materials to tinker with technology and make interactive applications), where students applied low-cost and easy-to-use electronic components, the Arduino Uno microcontroller board, software tools, and everyday objects. Students collaborated in small teams by completing hands-on activities with them, making an interactive walking cane for blind people. At the end of the course, students filled out a Technology Acceptance Model version 2 (TAM2) questionnaire where they evaluated microcontroller boards’ applications in HCI classes. We also asked them about applying the Maker Movement in HCI classes. Results showed overall students’ positive opinions and response about using microcontroller boards in HCI classes. We strongly suggest that every HCI course should include practical activities related to tinkering with technology such as applying microcontroller boards, where students actively and constructively participate in teams for achieving learning objectives.Keywords: maker movement, microcontrollers, learning, projects, course, technology acceptance
Procedia PDF Downloads 17311834 Optimal Sensing Technique for Estimating Stress Distribution of 2-D Steel Frame Structure Using Genetic Algorithm
Authors: Jun Su Park, Byung Kwan Oh, Jin Woo Hwang, Yousok Kim, Hyo Seon Park
Abstract:
For the structural safety, the maximum stress calculated from the stress distribution of a structure is widely used. The stress distribution can be estimated by deformed shape of the structure obtained from measurement. Although the estimation of stress is strongly affected by the location and number of sensing points, most studies have conducted the stress estimation without reasonable basis on sensing plan such as the location and number of sensors. In this paper, an optimal sensing technique for estimating the stress distribution is proposed. This technique proposes the optimal location and number of sensing points for a 2-D frame structure while minimizing the error of stress distribution between analytical model and estimation by cubic smoothing splines using genetic algorithm. To verify the proposed method, the optimal sensor measurement technique is applied to simulation tests on 2-D steel frame structure. The simulation tests are performed under various loading scenarios. Through those tests, the optimal sensing plan for the structure is suggested and verified.Keywords: genetic algorithm, optimal sensing, optimizing sensor placements, steel frame structure
Procedia PDF Downloads 53111833 Pavement Management for a Metropolitan Area: A Case Study of Montreal
Authors: Luis Amador Jimenez, Md. Shohel Amin
Abstract:
Pavement performance models are based on projections of observed traffic loads, which makes uncertain to study funding strategies in the long run if history does not repeat. Neural networks can be used to estimate deterioration rates but the learning rate and momentum have not been properly investigated, in addition, economic evolvement could change traffic flows. This study addresses both issues through a case study for roads of Montreal that simulates traffic for a period of 50 years and deals with the measurement error of the pavement deterioration model. Travel demand models are applied to simulate annual average daily traffic (AADT) every 5 years. Accumulated equivalent single axle loads (ESALs) are calculated from the predicted AADT and locally observed truck distributions combined with truck factors. A back propagation Neural Network (BPN) method with a Generalized Delta Rule (GDR) learning algorithm is applied to estimate pavement deterioration models capable of overcoming measurement errors. Linear programming of lifecycle optimization is applied to identify M&R strategies that ensure good pavement condition while minimizing the budget. It was found that CAD 150 million is the minimum annual budget to good condition for arterial and local roads in Montreal. Montreal drivers prefer the use of public transportation for work and education purposes. Vehicle traffic is expected to double within 50 years, ESALS are expected to double the number of ESALs every 15 years. Roads in the island of Montreal need to undergo a stabilization period for about 25 years, a steady state seems to be reached after.Keywords: pavement management system, traffic simulation, backpropagation neural network, performance modeling, measurement errors, linear programming, lifecycle optimization
Procedia PDF Downloads 46011832 A Multigrid Approach for Three-Dimensional Inverse Heat Conduction Problems
Authors: Jianhua Zhou, Yuwen Zhang
Abstract:
A two-step multigrid approach is proposed to solve the inverse heat conduction problem in a 3-D object under laser irradiation. In the first step, the location of the laser center is estimated using a coarse and uniform grid system. In the second step, the front-surface temperature is recovered in good accuracy using a multiple grid system in which fine mesh is used at laser spot center to capture the drastic temperature rise in this region but coarse mesh is employed in the peripheral region to reduce the total number of sensors required. The effectiveness of the two-step approach and the multiple grid system are demonstrated by the illustrative inverse solutions. If the measurement data for the temperature and heat flux on the back surface do not contain random error, the proposed multigrid approach can yield more accurate inverse solutions. When the back-surface measurement data contain random noise, accurate inverse solutions cannot be obtained if both temperature and heat flux are measured on the back surface.Keywords: conduction, inverse problems, conjugated gradient method, laser
Procedia PDF Downloads 36911831 Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization
Authors: Tomoaki Hashimoto
Abstract:
Recently, feedback control systems using random dither quantizers have been proposed for linear discrete-time systems. However, the constraints imposed on state and control variables have not yet been taken into account for the design of feedback control systems with random dither quantization. Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial and terminal time. An important advantage of model predictive control is its ability to handle constraints imposed on state and control variables. Based on the model predictive control approach, the objective of this paper is to present a control method that satisfies probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization. In other words, this paper provides a method for solving the optimal control problems subject to probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization.Keywords: optimal control, stochastic systems, random dither, quantization
Procedia PDF Downloads 44511830 Microwave Dielectric Constant Measurements of Titanium Dioxide Using Five Mixture Equations
Authors: Jyh Sheen, Yong-Lin Wang
Abstract:
This research dedicates to find a different measurement procedure of microwave dielectric properties of ceramic materials with high dielectric constants. For the composite of ceramic dispersed in the polymer matrix, the dielectric constants of the composites with different concentrations can be obtained by various mixture equations. The other development of mixture rule is to calculate the permittivity of ceramic from measurements on composite. To do this, the analysis method and theoretical accuracy on six basic mixture laws derived from three basic particle shapes of ceramic fillers have been reported for dielectric constants of ceramic less than 40 at microwave frequency. Similar researches have been done for other well-known mixture rules. They have shown that both the physical curve matching with experimental results and low potential theory error are important to promote the calculation accuracy. Recently, a modified of mixture equation for high dielectric constant ceramics at microwave frequency has also been presented for strontium titanate (SrTiO3) which was selected from five more well known mixing rules and has shown a good accuracy for high dielectric constant measurements. However, it is still not clear the accuracy of this modified equation for other high dielectric constant materials. Therefore, the five more well known mixing rules are selected again to understand their application to other high dielectric constant ceramics. The other high dielectric constant ceramic, TiO2 with dielectric constant 100, was then chosen for this research. Their theoretical error equations are derived. In addition to the theoretical research, experimental measurements are always required. Titanium dioxide is an interesting ceramic for microwave applications. In this research, its powder is adopted as the filler material and polyethylene powder is like the matrix material. The dielectric constants of those ceramic-polyethylene composites with various compositions were measured at 10 GHz. The theoretical curves of the five published mixture equations are shown together with the measured results to understand the curve matching condition of each rule. Finally, based on the experimental observation and theoretical analysis, one of the five rules was selected and modified to a new powder mixture equation. This modified rule has show very good curve matching with the measurement data and low theoretical error. We can then calculate the dielectric constant of pure filler medium (titanium dioxide) by those mixing equations from the measured dielectric constants of composites. The accuracy on the estimating dielectric constant of pure ceramic by various mixture rules will be compared. This modified mixture rule has also shown good measurement accuracy on the dielectric constant of titanium dioxide ceramic. This study can be applied to the microwave dielectric properties measurements of other high dielectric constant ceramic materials in the future.Keywords: microwave measurement, dielectric constant, mixture rules, composites
Procedia PDF Downloads 36711829 Self-Efficacy Perceptions and the Attitudes of Prospective Teachers towards Assessment and Evaluation
Authors: Münevver Başman, Ezel Tavşancıl
Abstract:
Making the right decisions about students depends on teachers’ use of the assessment and evaluation techniques effectively. In order to do that, teachers should have positive attitudes and adequate self-efficacy perception towards assessment and evaluation. The purpose of this study is to investigate relationship between self-efficacy perception and the attitudes of prospective teachers towards assessment and evaluation and what kind of differences these issues have in terms of a variety of demographic variables. The study group consisted of 277 prospective teachers who have been studying in different departments of Marmara University, Faculty of Education. In this study, ‘Personal Information Form’, ‘A Perceptual Scale for Measurement and Evaluation of Prospective Teachers Self-Efficacy in Education’ and ‘Attitudes toward Educational Measurement Inventory’ are applied. As a result, positive correlation was found between self-efficacy perceptions and the attitudes of prospective teachers towards assessment and evaluation. Considering different departments, there is a significant difference between the mean score of attitudes of prospective teachers and between the mean score of self-efficacy perceptions of them. However, considering variables of attending statistics class and the class types at the graduated high school, there is no significant difference between the mean score of attitudes of prospective teachers and between the mean score of self-efficacy perceptions of them.Keywords: attitude, perception, prospective teacher, self-efficacy
Procedia PDF Downloads 30611828 An Exploratory Study of Reliability of Ranking vs. Rating in Peer Assessment
Authors: Yang Song, Yifan Guo, Edward F. Gehringer
Abstract:
Fifty years of research has found great potential for peer assessment as a pedagogical approach. With peer assessment, not only do students receive more copious assessments; they also learn to become assessors. In recent decades, more educational peer assessments have been facilitated by online systems. Those online systems are designed differently to suit different class settings and student groups, but they basically fall into two categories: rating-based and ranking-based. The rating-based systems ask assessors to rate the artifacts one by one following some review rubrics. The ranking-based systems allow assessors to review a set of artifacts and give a rank for each of them. Though there are different systems and a large number of users of each category, there is no comprehensive comparison on which design leads to higher reliability. In this paper, we designed algorithms to evaluate assessors' reliabilities based on their rating/ranking against the global ranks of the artifacts they have reviewed. These algorithms are suitable for data from both rating-based and ranking-based peer assessment systems. The experiments were done based on more than 15,000 peer assessments from multiple peer assessment systems. We found that the assessors in ranking-based peer assessments are at least 10% more reliable than the assessors in rating-based peer assessments. Further analysis also demonstrated that the assessors in ranking-based assessments tend to assess the more differentiable artifacts correctly, but there is no such pattern for rating-based assessors.Keywords: peer assessment, peer rating, peer ranking, reliability
Procedia PDF Downloads 43911827 Agroforestry Systems and Practices and Its Adoption in Kilombero Cluster of Sagcot, Tanzania
Authors: Lazaro E. Nnko, Japhet J. Kashaigili, Gerald C. Monela, Pantaleo K. T. Munishi
Abstract:
Agroforestry systems and practices are perceived to improve livelihood and sustainable management of natural resources. However, their adoption in various regions differs with the biophysical conditions and societal characteristics. This study was conducted in Kilombero District to investigate the factors influencing the adoption of different agroforestry systems and practices in agro-ecosystems and farming systems. A household survey, key informant interviews, and focus group discussion was used for data collection in three villages. Descriptive statistics and multinomial logistic regression in SPSS were applied for analysis. Results show that Igima and Ngajengwa villages had home garden practices dominated, as revealed by 63.3% and 66.7%, respectively, while Mbingu village had mixed intercropping practice with 56.67%. Agrosilvopasture systems were dominant in Igima and Ngajengwa villages with 56.7% and 66.7%, respectively, while in Mbingu village, the dominant system was agrosilviculture with 66.7%. The results from multinomial logistic regression show that different explanatory variable was statistical significance as predictors of the adoption of agroforestry systems and practices. Residence type and sex were the most dominant factor influencing the adoption of agroforestry systems. Duration of stay in the village, availability of extension education, residence, and sex were the dominant factor influencing the adoption of agroforestry practices. The most important and statistically significant factors among these were residence type and sex. The study concludes that agroforestry will be more successful if the local priorities, which include social-economic need characteristics of the society, will be considered in designing systems and practices. The socio-economic need of the community should be addressed in the process of expanding the adoption of agroforestry systems and practices.Keywords: agroforestry adoption, agroforestry systems, agroforestry practices, agroforestry, Kilombero
Procedia PDF Downloads 118