Search results for: adipose tissue-derived stem cell injections
3196 A Comparison of Direct Water Injection with Membrane Humidifier for Proton Exchange Membrane Fuel Cells Humification
Authors: Flavien Marteau, Pedro Affonso Nóbrega, Pascal Biwole, Nicolas Autrusson, Iona De Bievre, Christian Beauger
Abstract:
Effective water management is essential for the optimal performance of fuel cells. For this reason, many vehicle systems use a membrane humidifier, a passive device that humidifies the air before the cathode inlet. Although they offer good performance, humidifiers are voluminous, costly, and fragile, hence the desire to find an alternative. Direct water injection could be an option, although this method lacks maturity. It consists of injecting liquid water as a spray in the dry heated air coming out from the compressor. This work focuses on the evaluation of direct water injection and its performance compared to the membrane humidifier selected as a reference. Two architectures were experimentally tested to humidify an industrial 2 kW short stack made up of 20 cells of 150 cm² each. For the reference architecture, the inlet air is humidified with a commercial membrane humidifier. For the direct water injection architecture, a pneumatic nozzle was selected to generate a fine spray in the air flow with a Sauter mean diameter of about 20 μm. Initial performance was compared over the entire range of current based on polarisation curves. Then, the influence of various parameters impacting water management was studied, such as the temperature, the gas stoichiometry, and the water injection flow rate. The experimental results obtained confirm the possibility of humidifying the fuel cell using direct water injection. This study, however shows the limits of this humidification method, the mean cell voltage being significantly lower in some operating conditions with direct water injection than with the membrane humidifier. The voltage drop reaches 30 mV per cell (4 %) at 1 A/cm² (1,8 bara, 80 °C) and increases in more demanding humidification conditions. It is noteworthy that the heat of compression available is not enough to evaporate all the injected liquid water in the case of DWI, resulting in a mix of liquid and vapour water entering the fuel cell, whereas only vapour is present with the humidifier. Variation of the injection flow rate shows that part of the injected water is useless for humidification and seems to cross channels without reaching the membrane. The stack was successfully humidified thanks to direct water injection. Nevertheless, our work shows that its implementation requires substantial adaptations and may reduce the fuel cell stack performance when compared to conventional membrane humidifiers, but opportunities for optimisation have been identified.Keywords: cathode humidification, direct water injection, membrane humidifier, proton exchange membrane fuel cell
Procedia PDF Downloads 433195 The Free Vibration Analysis of Honeycomb Sandwich Beam using 3D and Continuum Model
Authors: Gürkan Şakar, Fevzi Çakmak Bolat
Abstract:
In this study free vibration analysis of aluminum honeycomb sandwich structures were carried out experimentally and numerically. The natural frequencies and mode shapes of sandwich structures fabricated with different configurations for clamped-free boundary condition were determined. The effects of lower and upper face sheet thickness, the core material thickness, cell diameter, cell angle and foil thickness on the vibration characteristics were examined. The numerical studies were performed with ANSYS package. While the sandwich structures were modeled in ANSYS the continuum model was used. Later, the numerical results were compared with the experimental findings.Keywords: sandwich structure, free vibration, numeric analysis, 3D model, continuum model
Procedia PDF Downloads 4173194 Increased Cytolytic Activity of Effector T-Cells against Cholangiocarcinoma Cells by Self-Differentiated Dendritic Cells with Down-Regulation of Interleukin-10 and Transforming Growth Factor-β Receptors
Authors: Chutamas Thepmalee, Aussara Panya, Mutita Junking, Jatuporn Sujjitjoon, Nunghathai Sawasdee, Pa-Thai Yenchitsomanus
Abstract:
Cholangiocarcinoma (CCA) is an aggressive malignancy of bile duct epithelial cells in which the standard treatments, including surgery, radiotherapy, chemotherapy, and targeted therapy are partially effective. Many solid tumors including CCA escape host immune responses by creating tumor microenvironment and generating immunosuppressive cytokines such as interleukin-10 (IL-10) and transforming growth factor-β (TGF-β). These cytokines can inhibit dendritic cell (DC) differentiation and function, leading to decreased activation and response of effector CD4+ and CD8+ T cells for cancer cell elimination. To overcome the effects of these immunosuppressive cytokines and to increase ability of DC to activate effector CD4+ and CD8+ T cells, we generated self-differentiated DCs (SD-DCs) with down-regulation of IL-10 and TGF-β receptors for activation of effector CD4+ and CD8+ T cells. Human peripheral blood monocytes were initially transduced with lentiviral particles containing the genes encoding GM-CSF and IL-4 and then secondly transduced with lentiviral particles containing short-hairpin RNAs (shRNAs) to knock-down mRNAs of IL-10 and TGF-β receptors. The generated SD-DCs showed up-regulation of MHC class II (HLA-DR) and co-stimulatory molecules (CD40 and CD86), comparable to those of DCs generated by convention method. Suppression of IL-10 and TGF-β receptors on SD-DCs by specific shRNAs significantly increased levels of IFN-γ and also increased cytolytic activity of DC-activated effector T cells against CCA cell lines (KKU-213 and KKU-100), but it had little effect to immortalized cholangiocytes (MMNK-1). Thus, SD-DCs with down-regulation of IL-10 and TGF-β receptors increased activation of effector T cells, which is a recommended method to improve DC function for the preparation of DC-activated effector T cells for adoptive T-cell therapy.Keywords: cholangiocarcinoma, IL-10 receptor, self-differentiated dendritic cells, TGF-β receptor
Procedia PDF Downloads 1413193 Quantifying the Impacts of Elevated CO2 and N Fertilization on Wood Density in Loblolly Pine
Authors: Y. Cochet, A. Achim, Tom Flatman, J-C. Domec, J. Ogée, L. Wingate, Ram Oren
Abstract:
It is accepted that atmospheric CO2 concentration will increase in the future. For the past 30 years, researchers have used FACE (Free-Air Carbon Dioxide Enrichment) facilities to study the development of terrestrial ecosystems under elevated CO2 (eCO2). Forest responses to eCO2 are likely to impact timber industries with potential feedbacks towards the atmosphere. The main objectives of this study were to examine whether eCO2 alone or in combination with N-fertilization alter wood properties and to identify changes in wood anatomy related to water transport. Wood disks were sampled at breast height from mature loblolly pine trees (Pinus taeda L.) harvested at the Duke FACE site (NC, USA). By measuring ring width and intra-ring changes in density (X-ray densitometry) and tracheid size (lumen and cell wall thickness) from pith to bark, the following hypotheses were tested: 1) eCO2 and N-fertilization interact positively to increase significantly above-ground primary productivity; 2) eCO2 and N-fertilization lead to a decrease in density; 3) eCO2 and N-fertilization increase lumen diameter and decrease cell wall thickness, thus affecting water transport capacity. Our results revealed a boost in earlywood tracheid production induced by eCO2 lasting a few years. The following decrease seemed to be buffered by N-fertilization. X-ray profiles did not show a marked decrease in wood density under eCO2 or N-fertilization, although there were changes in cell anatomical properties such as a reduction in cell-wall thickness and an increase in lumen diameter. If such effects of eCO2 are confirmed, forest management strategies for example N-fertilization should be redesigned.Keywords: wood density, Duke FACE (free-air carbon dioxide enrichment), N fertilization, tree ring
Procedia PDF Downloads 3353192 A Low Cost Education Proposal Using Strain Gauges and Arduino to Develop a Balance
Authors: Thais Cavalheri Santos, Pedro Jose Gabriel Ferreira, Alexandre Daliberto Frugoli, Lucio Leonardo, Pedro Americo Frugoli
Abstract:
This paper presents a low cost education proposal to be used in engineering courses. The engineering education in universities of a developing country that is in need of an increasing number of engineers carried out with quality and affordably, pose a difficult problem to solve. In Brazil, the political and economic scenario requires academic managers able to reduce costs without compromising the quality of education. Within this context, the elaboration of a physics principles teaching method with the construction of an electronic balance is proposed. First, a method to develop and construct a load cell through which the students can understand the physical principle of strain gauges and bridge circuit will be proposed. The load cell structure was made with aluminum 6351T6, in dimensions of 80 mm x 13 mm x 13 mm and for its instrumentation, a complete Wheatstone Bridge was assembled with strain gauges of 350 ohms. Additionally, the process involves the use of a software tool to document the prototypes (design circuits), the conditioning of the signal, a microcontroller, C language programming as well as the development of the prototype. The project also intends to use an open-source I/O board (Arduino Microcontroller). To design the circuit, the Fritizing software will be used and, to program the controller, an open-source software named IDE®. A load cell was chosen because strain gauges have accuracy and their use has several applications in the industry. A prototype was developed for this study, and it confirmed the affordability of this educational idea. Furthermore, the goal of this proposal is to motivate the students to understand the several possible applications in high technology of the use of load cells and microcontroller.Keywords: Arduino, load cell, low-cost education, strain gauge
Procedia PDF Downloads 3033191 The Admitting Hemogram as a Predictor for Severity and in-Hospital Mortality in Acute Pancreatitis
Authors: Florge Francis A. Sy
Abstract:
Acute pancreatitis (AP) is an inflammatory condition of the pancreas with local and systemic complications. Severe acute pancreatitis (SAP) has a higher mortality rate. Laboratory parameters like the neutrophil-to-lymphocyte ratio (NLR), red cell distribution width (RDW), and mean platelet volume (MPV) have been associated with SAP but with conflicting results. This study aims to determine the predictive value of these parameters on the severity and in-hospital mortality of AP. This retrospective, cross-sectional study was done in a private hospital in Cebu City, Philippines. One-hundred five patients were classified according to severity based on the modified Marshall scoring. The admitting hemogram, including the NLR, RDW, and MPV, was obtained from the complete blood count (CBC). Cut-off values for severity and in-hospital mortality were derived from the ROC. Association between NLR, RDW, and MPV with SAP and mortality were determined with a p-value of < 0.05 considered significant. The mean age for AP was 47.6 years, with 50.5% being male. Most had an unknown cause (49.5%), followed by a biliary cause (37.1%). Of the 105 patients, 23 patients had SAP, and 4 died. Older age, longer in-hospital duration, congestive heart failure, elevated creatinine, urea nitrogen, and white blood cell count were seen in SAP. The NLR was associated with in-hospital mortality using a cut-off of > 10.6 (OR 1.133, 95% CI, p-value 0.003) with 100% sensitivity, 70.3% specificity, 11.76% PPV and 100% NPV (AUC 0.855). The NLR was not associated with SAP. The RDW and MPV were not associated with SAP and mortality. The admitting NLR is, therefore, an easily accessible parameter that can predict in-hospital mortality in acute pancreatitis. Although the present study did not show an association of NLR with SAP nor RDW and MPV with both SAP and mortality, further studies are suggested to establish their clinical value.Keywords: acute pancreatitis, mean platelet volume, neutrophil-lymphocyte ratio, red cell distribution width
Procedia PDF Downloads 1233190 Basal Cell Carcinoma: Epidemiological Analysis of a 5-Year Period in a Brazilian City with a High Level of Solar Radiation
Authors: Maria E. V. Amarante, Carolina L. Cerdeira, Julia V. Cortes, Fiorita G. L. Mundim
Abstract:
Basal cell carcinoma (BCC) is the most prevalent type of skin cancer in humans. It arises from the basal cells of the epidermis and cutaneous appendages. The role of sunlight exposure as a risk factor for BCC is very well defined due to its power to influence genetic mutations, in addition to having a suppressor effect on the skin immune system. Despite showing low metastasis and mortality rates, the tumor is locally infiltrative, aggressive, and destructive. Considering the high prevalence rate of this carcinoma and the importance of early detection, a retrospective study was carried out in order to correlate the clinical data available on BBC, characterize it epidemiologically, and thus enable effective prevention measures for the population. Data on the period from January 2015 to December 2019 were collected from the medical records of patients registered at one pathology service located in the southeast region of Brazil, known as SVO, which delivers skin biopsy results. The study was aimed at correlating the variables, sex, age, and subtypes found. Data analysis was performed using the chi-square test at a nominal significance level of 5% in order to verify the independence between the variables of interest. Fisher's exact test was applied in cases where the absolute frequency in the cells of the contingency table was less than or equal to five. The statistical analysis was performed using the R® software. Ninety-three basal cell carcinoma were analyzed, and its frequency in the 31-to 45-year-old age group was 5.8 times higher in men than in women, whereas, from 46 to 59 years, the frequency was found 2.4 times higher in women than in men. Between the ages of 46 to 59 years, it should be noted that the sclerodermiform subtype appears more than the solid one, with a difference of 7.26 percentage points. Reversely, the solid form appears more frequently in individuals aged 60 years or more, with a difference of 8.57 percentage points. Among women, the frequency of the solid subtype was 9.93 percentage points higher than the sclerodermiform frequency. In males, the same percentage difference is observed, but sclerodermiform is the most prevalent subtype. It is concluded in this study that, in general, there is a predominance of basal cell carcinoma in females and in individuals aged 60 years and over, which demonstrates the tendency of this tumor. However, when rarely found in younger individuals, the male gender prevailed. The most prevalent subtype was the solid one. It is worth mentioning that the sclerodermiform subtype, which is more aggressive, was seen more frequently in males and in the 46-to 59-year-old range.Keywords: basal cell carcinoma, epidemiology, sclerodermiform basal cell carcinoma, skin cancer, solar radiation, solid basal cell carcinoma
Procedia PDF Downloads 1393189 A Study of a Diachronic Relationship between Two Weak Inflection Classes in Norwegian, with Emphasis on Unexpected Productivity
Authors: Emilija Tribocka
Abstract:
This contribution presents parts of an ongoing study of a diachronic relationship between two weak verb classes in Norwegian, the a-class (cf. the paradigm of ‘throw’: kasta – kastar – kasta – kasta) and the e-class (cf. the paradigm of ‘buy’: kjøpa – kjøper – kjøpte – kjøpt). The study investigates inflection class shifts between the two classes with Old Norse, the ancestor of Modern Norwegian, as a starting point. Examination of inflection in 38 verbs in four chosen dialect areas (106 places of attestations) demonstrates that the shifts from the a-class to the e-class are widespread to varying degrees in three out of four investigated areas and are more common than the shifts in the opposite direction. The diachronic productivity of the e-class is unexpected for several reasons. There is general agreement that type frequency is an important factor influencing productivity. The a-class (53% of all weak verbs) was more type frequent in Old Norse than the e-class (42% of all weak verbs). Thus, given the type frequency, the expansion of the e-class is unexpected. Furthermore, in the ‘core’ areas of expanded e-class inflection, the shifts disregard phonological principles creating forms with uncomfortable consonant clusters, e.g., fiskte instead of fiska, the preterit of fiska ‘fish’. Later on, these forms may be contracted, i.e., fiskte > fiste. In this contribution, two factors influencing the shifts are presented: phonological form and token frequency. Verbs with the stem ending in a consonant cluster, particularly when the cluster ends in -t, hardly ever shift to the e-class. As a matter of fact, verbs with this structure belonging to the e-class in Old Norse shift to the a-class in Modern Norwegian, e.g., ON e-class verb skipta ‘change’ shifts to the a-class. This shift occurs as a result of the lack of morpho-phonological transparency between the stem and the preterit suffix of the e-class, -te. As there is a phonological fusion between the stem ending in -t and the suffix beginning in -t, the transparent a-class inflection is chosen. Token frequency plays an important role in the shifts, too, in some dialects. In one of the investigated areas, the most token frequent verbs of the ON e-class remain in the e-class (e.g., høyra ‘hear’, leva ‘live’, kjøpa ‘buy’), while less frequent verbs may shift to the a-class. Furthermore, the results indicate that the shift from the a-class to the e-class occurs in some of the most token frequent verbs of the ON a-class in this area, e.g., lika ‘like’, lova ‘promise’, svara ‘answer’. The latter is unexpected as frequent items tend to remain stable. This study presents a case of unexpected productivity, demonstrating that minor patterns can grow and outdo major patterns. Thus, type frequency is not the only factor that determines productivity. The study addresses the role of phonological form and token frequency in the spread of inflection patterns.Keywords: inflection class, productivity, token frequency, phonological form
Procedia PDF Downloads 623188 The Protective Effect of Grape Seed Oil with Use of Ciprofloxacin Induced Germ Cell Toxicity in Male Albino Mice
Authors: Galawezh Obaid Othman
Abstract:
The present investigation was undertaken to evaluate the germ cell toxicity induced by ciprofloxacin antibiotic and the Protective effect of grape seed oil, Ciproflaxin uses include treatment of genitor-urinary and some reproductive tract bacterial infections. One of the most attractive approaches to disease prevention involves the use of natural antioxidants to protect tissue against toxic injury, the possible protective effect of grape seed oil, against ciprofloxacin induced reproductive toxicity on mouse .the animals were randomly divided into four groups consisting of five mice. Group (1) was orally given distilled water (solvent of the used drugs) and kept as a control. Group (2) was administered 6ml/kg. b.w of grape seed oil orally 15 days .Group (3) was administered 206mg/kg. b.w of ciprofloxacin orally for 15 days.. Last group was treated orally with Grape seed oil (6mg/kg b.w. /day) prior to an orally administered ciprofloxacin (CPX) at a dose of 206 mg⁄kg. b.w. by three hours for fifteen days. Ciproflaxin have ability to induce various types of sperm abnormalities such as (Sperm without head, sperm without tail, defective head spearm,swollen head sperm ), The results explored that Grape seed oil possesses statistically significant (p<0.05) protective potential against Ciproflaxin by decreasing sperm abnormalities frequency in mouse.Keywords: antimutagen, ciprofloxacin, grape seed oil, germ cell
Procedia PDF Downloads 4403187 YPFS Attenuating TH2 Cell-Mediated Allergic Inflammation by Regulating the TSLP Pathway
Authors: Xi Yu, Lili Gu, Huizhu Wang, Xiao Wei, Dandan Sheng, Xiaoyan Jiang, Min Hong
Abstract:
Introduction: Hypersensitivity disease is difficult to cure completely because of its recurrence, yupingfengsan (YPFS) is used to treat the diseases with the advantage of reducing the recurrence,but the precise mechanism is not clear. Previous studies of our laboratory have shown that the extract of YPFS can inhibit Th2-type allergic contact dermatitis(ACD) induced by FITC.Besides, thymic stromal lymphopoietin(TSLP) have been proved to be a master switch for allergic inflammation. Based on these studies, we want to establish a mouse model of TSLP production based on Th2 cell-mediated allergic inflammation to explore the regulating mechanisms of YPFS on TSLP in Th2 cell-mediated allergic inflammation. Methods: Th2-type ACD mouse model: The mice were topically sensitized on the abdomens (induction phase) and elicited on its ears skin 6 day later (excitation phase) with FITC solution, and the ear swelling was measured to evaluate the allergic inflammation;A mouse model of TSLP production based on Th2 cell-mediated allergic inflammation (TSLP production model): the skin of the ear was sensitized on two consecutive days with FITC solution causing the production of TSLP;Mice were treated with YPFS extract,ELISA、Real-time PCR and Western-blotting were using to examine the mRNA and protein levels of TSLP\TSLPR and TLRs ect. Results: YPFS extract can attenuates Th2-type allergic inflammatory in mice;in TSLP production model, YPFS can inhibit the expression of TSLP、 TSLPR、TLRs and MyD88, So we deduce the possible mechanisms of YPFS to play a role of intervention is through TLRs- MyD88 dependent and independent pathway to reduce TSLP production.Keywords: YPFS, TSLP, TLRs, Th2-type allergic contact dermatitis
Procedia PDF Downloads 4223186 Developing Customizable Scaffolds With Antimicrobial Properties for Vascular Tissue Regeneration Using Low Temperature Plasma
Authors: Komal Vig, Syamala Soumyakrishnan, Yadav Baral
Abstract:
Bypass surgery, using the autologous vein has been one of the most effective treatments for cardiovascular diseases (CVD). More recently tissue engineering including engineered vascular grafts to synthesize blood vessels is gaining usage. Dacron and ePTFE has been employed for vascular grafts, however, these does not work well for small diameter grafts (<6 mm) due to intimal hyperplasia and thrombosis. In the present study PTFE was treated with LTP to improve the endothelialization of intimal surface of graft. Scaffolds were also modified with polyvinylpyrrolidone coated silver nanoparticles (Ag-PVP) and the antimicrobial peptides, p753 and p359. Human umbilical vein endothelial cells (HUVEC) were plated on the developed scaffolds and cell proliferation was determined by the MTT assay. Cells attachment on scaffolds was visualized by microscopy. mRNA expressions levels of different cell markers were investigated using quantitative real-time PCR (qPCR). X ray photoelectron spectroscopic confirmed the introduction of oxygenated functionalities from LTP air plasma. Microscopic and MTT assays indicated increase in cell viability in LTP treated scaffolds. Gene expression studies shows enhanced expression of cell adhesion marker Integrin- α 5 gene after LTP treatment. The KB test displayed a zone of inhibition for Ag-PVP, p753 and p359 of 19mm, 14mm, and 12mm respectively. To determine toxicity of antimicrobial agents to cells, MTT Assay was performed using HEK293 cells. MTT Assay exhibited that Ag-PVP and the peptides were non-toxic to cells at 100μg/mL and 50μg/mL, respectively. Live/dead analysis and plate count of treated bacteria exhibited bacterial inhibition on develop scaffold compared to non-treated scaffold. SEM was performed to analyze the structural changes of bacteria after treatment with antimicrobial agents. Gene expression studies were conducted on RNA from bacteria treated with Ag-PVP and peptides using qRT-PCR. Based on our initial results, more scaffolds alternatives will be developed and investigated for cell growth and vascularization studies.Keywords: low temperature plasma, vascular graft, HUVEC cells, antimicrobial
Procedia PDF Downloads 2433185 Antiproliferative and Apoptotic Effects of an Enantiomerically Pure β-Dipeptide Derivative through PI3K/Akt-Dependent and -Independent Pathways in Human Hormone-Refractory Prostate Cancer Cells
Authors: Mei-Ling Chan, Jin-Ming Wu, Konstantin V. Kudryavtsev, Jih-Hwa Guh
Abstract:
Prostate cancer is one of the most common malignant disease in men. KUD983 is an enantiomerically pure β-dipeptide derivative, which may have anti-cancer effects. In the present study, KUD983 exhibits powerful activity against hormone-refractory prostate cancer (HRPC) PC-3 and DU145 cells. The IC50 values of KUD983 in PC-3 and DU145 cells are 0.56±0.07M and 0.50±0.04 M respectively. KUD983 induced G1 arrest of the cell cycle and subsequent apoptosis associated with the down-regulation of several related proteins including cyclin D1, cyclin E and Cdk4, and the de-phosphorylation of RB. The protein expressions of nuclear and total c-Myc protein, which was able to regulate the expression of both cyclin D1 and cyclin E, were significantly suppressed by KUD983. Phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) is an important signaling pathway that influences the energy metabolism, cell cycle, proliferation, survival and apoptosis of cells, and is associated with numerous other signaling pathways. The Western Blot data revealed that KUD983 inhibited PI3K/Akt and mTOR/p70S6K/4E-BP1 pathways. The transient transfection of constitutively active myristylated Akt (myr-Akt) cDNA significantly reversed KUD983-induced caspase activation but did not abolish the suppression of mTOR/p70S6K/4E-BP1 signaling cascade indicating the presence of both Akt-dependent and -independent pathways. Moreover, KUD983-induced effect was collaborated with the down-regulation of anti-apoptotic Bcl-2 members (e.g., Bcl-2, and Mcl-1) and IAP family members (e.g., survivin). Furthermore, KUD983 induced autophagic cell death using confocal microscopic examination, investigating the level of conversion of LC3-I to LC3-II and flow cytometric detection of AVO-positive cells. Taken together, the data suggest that KUD983 is an anticancer β-dipeptide against HRPCs through the inhibition of cell proliferation and induction of apoptotic and autophagic cell death. The suppression of signaling pathways mediated by c-Myc, PI3K/Akt and mTOR/p70S6K/4E-BP1 and the collaboration with down-regulation of Mcl-1 and survivin may indicate the mechanism of KUD983 against HRPC.Keywords: β-dipeptide, hormone-refractory prostate cancer, mTOR, PI3K/Akt
Procedia PDF Downloads 2823184 Effect of Botanical and Synthetic Insecticide on Different Insect Pests and Yield of Pea (Pisum sativum)
Authors: Muhammad Saeed, Nazeer Ahmed, Mukhtar Alam, Fazli Subhan, Muhammad Adnan, Fazli Wahid, Hidayat Ullah, Rafiullah
Abstract:
The present experiment evaluated different synthetic insecticides against Jassid (Amrasca devastations) on pea crop at Agriculture Research Institute Tarnab, Peshawar Khyber Pakhtunkhwa. The field was prepared to cultivate okra crop in Randomized Complete Block (RCB) Design having six treatments with four replications. Plant to plant and row to row distance was kept at 15 cm and 30 cm, respectively. Pre and post spray data were recorded randomly from the top, middle and bottom leaves of five selected plants. Five synthetic insecticides, namely Confidor (Proponil), a neonicotinoid insecticide, Chlorpyrifos (chlorinated organophosphate (OP) insecticide), Lazer (dinitroaniline) (Pendimethaline), Imidacloprid (neonicotinoids insecticide) and Thiodan (Endosulfan, organochlorine insecticide), were used against infestation of aphids, pea pod borer, stem fly, leaf minor and pea weevil. Each synthetic insecticide showed significantly more effectiveness than control (untreated plots) but was non-significant among each other. The lowest population density was recorded in the plot treated with synthetic insecticide i.e. Confidor (0.6175 liter.ha-1) (4.24 aphids plant⁻¹) which is followed by Imidacloprid (0.6175 liter.ha⁻¹) (4.64 pea pod borer plant⁻¹), Thiodan (1.729 liter.ha⁻¹) (4.78 leaf minor plant⁻¹), Lazer (2.47 liter.ha-1) (4.91 pea weevil plant⁻¹), Chlorpyrifos (1.86 liter.ha⁻¹) (5.11 stem fly plant⁻¹), respectively while the highest population was recorded from the control plot. It is concluded from the data that the residual effect decreases with time after the application of spray, which may be less dangerous to the environment and human beings and can effectively manage this dread.Keywords: okra crop, jassids, Confidor, imidacloprid, chlorpyrifos, laser, Thiodan
Procedia PDF Downloads 833183 Modeling and Optimization of a Microfluidic Electrochemical Cell for the Electro-Reduction of CO₂ to CH₃OH
Authors: Barzin Rajabloo, Martin Desilets
Abstract:
First, an electrochemical model for the reduction of CO₂ into CH₃OH is developed in which mass and charge transfer, reactions at the surface of the electrodes and fluid flow of the electrolyte are considered. This mathematical model is developed in COMSOL Multiphysics® where both secondary and tertiary current distribution interfaces are coupled to consider concentrations and potentials inside different parts of the cell. Constant reaction rates are assumed as the fitted parameters to minimize the error between experimental data and modeling results. The model is validated through a comparison with experimental data in terms of faradaic efficiency for production of CH₃OH, the current density in different applied cathode potentials as well as current density in different electrolyte flow rates. The comparison between model outputs and experimental measurements shows a good agreement. The model indicates the higher hydrogen evolution in comparison with CH₃OH production as well as mass transfer limitation caused by CO₂ concentration, which are consistent with findings in the literature. After validating the model, in the second part of the study, some design parameters of the cell, such as cathode geometry and catholyte/anolyte channel widths, are modified to reach better performance and higher faradaic efficiency of methanol production.Keywords: carbon dioxide, electrochemical reduction, methanol, modeling
Procedia PDF Downloads 1093182 Cooperative AF Scheme for Multi Source and Terminal in Edge of Cell Coverage
Authors: Myoung-Jin Kim, Chang-Bin Ha, Yeong-Seop Ahn, Hyoung-Kyu Song
Abstract:
This paper proposes a cooperative communication scheme for improve wireless communication performance. When the receiver is located in the edge of coverage, the signal from the transmitter is distorted for various reasons such as inter-cell interference (ICI), power reduction, incorrect channel estimation. In order to improve communication performance, the proposed scheme adds the relay. By the relay, the receiver has diversity gain. In this paper, two base stations, one relay and one destination are considered. The two base stations transmit same time to relay and destination. The relay forwarding to destination and the destination detects signals.Keywords: cooperative communication, diversity gain, OFDM, MMSE
Procedia PDF Downloads 3893181 Effect of Environmental Conditions on E. Coli o157:h7 Atcc 43888 and L. Monocytogenes Atcc 7644 Cell Surface Hydrophobicity, Motility and Cell Attachment on Food-Contact Surfaces
Authors: Stanley Dula, Oluwatosini A. Ijabadeniyi
Abstract:
Biofilm formation is a major source of materials and foodstuffs contamination, contributing to occurrence of pathogenic and spoilage microbes in food processing resulting in food spoilage, transmission of diseases and significant food hygiene and safety issues. This study elucidates biofilm formation of E. coli O157:H7 and L. monocytogenes ATCC 7644 grown under food related environmental stress conditions of varying pH (5.0;7.0; and 8.5) and temperature (15, 25 and 37 ℃). Both strains showed confluent biofilm formation at 25 ℃ and 37 ℃, at pH 8.5 after 5 days. E. coli showed curli fimbriae production at various temperatures, while L. monocytogenes did not show pronounced expression. Swarm, swimming and twitching plate assays were used to determine strain motilities. Characterization of cell hydrophobicity was done using the microbial adhesion to hydrocarbons (MATH) assay using n-hexadecane. Both strains showed hydrophilic characteristics as they fell within a < 20 % interval. FT-IR revealed COOH at 1622 cm-1, and a strong absorption band at 3650 cm-1 – 3200 cm-1 indicating the presence of both -OH and -NH groups. Both strains were hydrophilic and could form biofilm at different combinations of temperature and pH. EPS produced in both species proved to be an acidic hetero-polysaccharide.Keywords: biofilm, pathogens, hydrophobicity, motility
Procedia PDF Downloads 2373180 Cellular Mechanisms Involved in the Radiosensitization of Breast- and Lung Cancer Cells by Agents Targeting Microtubule Dynamics
Authors: Elsie M. Nolte, Annie M. Joubert, Roy Lakier, Maryke Etsebeth, Jolene M. Helena, Marcel Verwey, Laurence Lafanechere, Anne E. Theron
Abstract:
Treatment regimens for breast- and lung cancers may include both radiation- and chemotherapy. Ideally, a pharmaceutical agent which selectively sensitizes cancer cells to gamma (γ)-radiation would allow administration of lower doses of each modality, yielding synergistic anti-cancer benefits and lower metastasis occurrence, in addition to decreasing the side-effect profiles. A range of 2-methoxyestradiol (2-ME) analogues, namely 2-ethyl-3-O-sulphamoyl-estra-1,3,5 (10) 15-tetraene-3-ol-17one (ESE-15-one), 2-ethyl-3-O-sulphamoyl-estra-1,3,5(10),15-tetraen-17-ol (ESE-15-ol) and 2-ethyl-3-O-sulphamoyl-estra-1,3,5(10)16-tetraene (ESE-16) were in silico-designed by our laboratory, with the aim of improving the parent compound’s bioavailability in vivo. The main effect of these compounds is the disruption of microtubule dynamics with a resultant mitotic accumulation and induction of programmed cell death in various cancer cell lines. This in vitro study aimed to determine the cellular responses involved in the radiation sensitization effects of these analogues at low doses in breast- and lung cancer cell lines. The oestrogen receptor positive MCF-7-, oestrogen receptor negative MDA-MB-231- and triple negative BT-20 breast cancer cell lines as well as the A549 lung cancer cell line were used. The minimal compound- and radiation doses able to induce apoptosis were determined using annexin-V and cell cycle progression markers. These doses (cell line dependent) were used to pre-sensitize the cancer cells 24 hours prior to 6 gray (Gy) radiation. Experiments were conducted on samples exposed to the individual- as well as the combination treatment conditions in order to determine whether the combination treatment yielded an additive cell death response. Morphological studies included light-, fluorescence- and transmission electron microscopy. Apoptosis induction was determined by flow cytometry employing annexin V, cell cycle analysis, B-cell lymphoma 2 (Bcl-2) signalling, as well as reactive oxygen species (ROS) production. Clonogenic studies were performed by allowing colony formation for 10 days post radiation. Deoxyribonucleic acid (DNA) damage was quantified via γ-H2AX foci and micronuclei quantification. Amplification of the p53 signalling pathway was determined by western blot. Results indicated that exposing breast- and lung cancer cells to nanomolar concentrations of these analogues 24 hours prior to γ-radiation induced more cell death than the compound- and radiation treatments alone. Hypercondensed chromatin, decreased cell density, a damaged cytoskeleton and an increase in apoptotic body formation were observed in cells exposed to the combination treatment condition. An increased number of cells present in the sub-G1 phase as well as increased annexin-V staining, elevation of ROS formation and decreased Bcl-2 signalling confirmed the additive effect of the combination treatment. In addition, colony formation decreased significantly. p53 signalling pathways were significantly amplified in cells exposed to the analogues 24 hours prior to radiation, as was the amount of DNA damage. In conclusion, our results indicated that pre-treatment of breast- and lung cancer cells with low doses of 2-ME analogues sensitized breast- and lung cancer cells to γ-radiation and induced apoptosis more so than the individual treatments alone. Future studies will focus on the effect of the combination treatment on non-malignant cellular counterparts.Keywords: cancer, microtubule dynamics, radiation therapy, radiosensitization
Procedia PDF Downloads 2073179 Anti-TNF: Possibilities of Rising Anti-Phosphorylcholine Antibodies
Authors: Md. Mizanur Rahman, Anquan Liu, Anna Frostegård, Johan Frostegård
Abstract:
The role of the human immune system is essential in cardiovascular diseases and atherosclerosis. Activated cells in atherosclerosis produce abundant amounts of cytokines, but the exact mechanisms involved in the effects of these inflammatory cytokines are not clear in atherosclerosis. In a large clinical cohort, we have previously determined that antibodies against phosphorylcholine (anti-PC) are negatively and independently associated with both development of atherosclerosis and also a low risk of cardiovascular disease. Further, we reported that rheumatoid arthritis patients who were non-responders to TNF-inhibitors, where those with low anti-PC levels. Upon anti-TNF treatment, anti-PC levels increased. We, therefore, hypothesised that proinflammatory cytokines such as TNF could play a role in anti-PC regulation. Peripheral blood mononuclear cells (PBMC) were cultured with or without TNF and anti-TNF. The cell supernatants were collected after six days for ELISA measurements. In separate experiments, cells were cultured for 24 hours in both polystyrene plates and ELISPOT plates under a similar condition for ELISA and ELISPOT assays respectively. Total RNA was extracted after 6 hours of cell culture to perform RT-qPCR. Cell viability was confirmed by trypan blue staining and MTT assays. ELISA measurements detected less than 40% of anti-PC in TNF-treated cells, in comparison to control cells, whereas anti-PC production was recovered by anti-TNF treatment. ELISPOT assays showed that TNF suppresses anti-PC production by inhibiting anti-PC producing B-cells. In addition, RT-qPCR and ELISA showed that TNF also has effects also on B-cell activation as BAFF expression was inhibited by TNF treatment. Atherosclerosis is a major cause of cardiovascular diseases, but anti-PC is a protection marker for atherosclerosis development. Our findings show that TNF is a negative regulator of anti-PC production. Immune modulation and rising of anti-PC could be of major significance for the patients.Keywords: anti-PC, Anti-TNF, atherosclerosis, cardiovascular diseases, phosphorylecholine
Procedia PDF Downloads 2433178 Evaluating Therapeutic Efficacy of Intravesical Xenogeneic Urothelial Cell Treatment Alone and in Combination with Chemotherapy or Immune Checkpoint Inhibitors in a Mouse Non-Muscle-Invasive Bladder Cancer Model
Authors: Chih-Rong Shyr, Chi-Ping Huang
Abstract:
Intravesical BCG is the gold-standard therapy for high risk non-muscle invasive bladder cancer (NMIBC) after TURBT, but if not responsive to BCG, these BCG unresponsive patients face cystectomy that causes morbidity and comes with a morality risk. To provide the bladder sparing options for patients with BCG-unresponsive NMIBC, several new treatments have been developed to salvage the bladders and prevent progression to muscle invasive or metastatic, but however, most approved or developed treatments still fail in a significant proportion of patients without long term success. Thus more treatment options and the combination of different therapeutic modalities are urgently needed to change the outcomes. Xenogeneic rejection has been proposed to a mechanism of action to induce anti-tumor immunity for the treatment of cancers due to the similarities between rejection mechanism to xenoantigens (proteins, glycans and lipids) and anti-tumor immunities to tumor specific antigens (neoantigens, tumor associated carbohydrates and lipids). Xenogeneic urothelial cells (XUC) of porcine origin have been shown to induce anti-tumor immune responses to inhibit bladder tumor progression in mouse bladder cancer models. To further demonstrate the efficacy of the distinct intravesical XUC treatment in NMIBC, and the combined effects with chemotherapy and immune checkpoint inhibitors (ICIs) as a alternate therapeutic option, this study investigated the therapeutic effects and mechanisms of intravesical XUC immunotherapy in an orthotopic mouse immune competent model of NMIBC, generated from a mouse bladder cancer cell line. We found that the tumor progression was inhibited by intravescial XUC treatment and there was a synergy between intravesical XUC with intravesical chemotherapeutic agent, gemcitabine or systemic ICI, anti-PD1 antibody treatment. The cancer cell proliferation was decreased but the cell death was increased by the intravecisal XUC treatment. Most importantly, the mechanisms of action of intravesical XUC immunotherapy were found to be linked to enhanced infiltration of CD4+ and CD8+ T-cell as well as NK cells, but decreased presence of myeloid immunosuppressive cells in XUC treated tumors. The increased stimulation of immune cells of XUC treated mice to xenogeneic urothelial cells and mouse bladder cancer cells in immune cell proliferation and cytokine secretion were observed both as a monotherapy and in combination with intravesical gemcitabine or systemic anti PD-L1 treatment. In sum, we identified the effects of intravesical XUC treatment in monotherapy and combined therapy on tumor progression and its cellular and molecular events related to immune activation to understand the anti-tumoral mechanisms behind intravesical XUC immunotherapy for NMIBC. These results contribute to the understanding of the mechanisms behind successful xenogeneic cell immunotherapy against NMIBC and characterize a novel therapeutic approach with a new xenogeneic cell modality for BCG-unresponsive NMIBC.Keywords: xenoantigen, neoantigen, rejection, immunity
Procedia PDF Downloads 73177 An Epidemiological Study on Cutaneous Melanoma, Basocellular and Epidermoid Carcinomas Diagnosed in a Sunny City in Southeast Brazil in a Five-Year Period
Authors: Carolina L. Cerdeira, Julia V. F. Cortes, Maria E. V. Amarante, Gersika B. Santos
Abstract:
Skin cancer is the most common cancer in several parts of the world; in a tropical country like Brazil, the situation isn’t different. The Brazilian population is exposed to high levels of solar radiation, increasing the risk of developing cutaneous carcinoma. Aimed at encouraging prevention measures and the early diagnosis of these tumors, a study was carried out that analyzed data on cutaneous melanomas, basal cell, and epidermoid carcinomas, using as primary data source the medical records of 161 patients registered in one pathology service, which performs skin biopsies in a city of Minas Gerais, Brazil. All patients diagnosed with skin cancer at this service from January 2015 to December 2019 were included. The incidence of skin carcinoma cases was correlated with the identification of histological type, sex, age group, and topographic location. Correlation between variables was verified by Fisher's exact test at a nominal significance level of 5%, with statistical analysis performed by R® software. A significant association was observed between age group and type of cancer (p=0.0085); age group and sex (0.0298); and type of cancer and body region affected (p < 0.01). Those 161 cases analyzed comprised 93 basal cell carcinomas, 66 epidermoid carcinomas, and only two cutaneous melanomas. In the group aged 19 to 30 years, the epidermoid form was most prevalent; from 31 to 45 and from 46 to 59 years, the basal cell prevailed; in 60-year-olds or over, both types had higher frequencies. Associating age group and sex, in groups aged 18 to 30 and 46 to 59 years, women were most affected. In the 31-to 45-year-old group, men predominated. There was a gender balance in the age group 60-year-olds or over. As for topography, there was a high prevalence in the head and neck, followed by upper limbs. Relating histological type and topography, there was a prevalence of basal cell and epidermoid carcinomas in the head and neck. In the chest, the basal cell form was most prevalent; in upper limbs, the epidermoid form prevailed. Cutaneous melanoma affected only the chest and upper limbs. About 82% of patients 60-year-olds or over had head and neck cancer; from 46 to 59 and 60-year-olds or over, the head and neck region and upper limbs were predominantly affected; the distribution was balanced in the 31-to 45-year-old group. In conclusion, basal cell carcinoma was predominant, whereas cutaneous melanoma was the rarest among the types analyzed. Patients 60-year-olds or over were most affected, showing gender balance. In young adults, there was a prevalence of the epidermoid form; in middle-aged patients, basal cell carcinoma was predominant; in the elderly, both forms presented with higher frequencies. There was a higher incidence of head and neck cancers, followed by malignancies affecting the upper limbs. The epidermoid type manifested significantly in the upper limbs. Body regions such as the thorax and lower limbs were less affected, which is justified by the lower exposure of these areas to incident solar radiation.Keywords: basal cell carcinoma, cutaneous melanoma, skin cancer, squamous cell carcinoma, topographic location
Procedia PDF Downloads 1293176 Effect of Current Density, Temperature and Pressure on Proton Exchange Membrane Electrolyser Stack
Authors: Na Li, Samuel Simon Araya, Søren Knudsen Kær
Abstract:
This study investigates the effects of operating parameters of different current density, temperature and pressure on the performance of a proton exchange membrane (PEM) water electrolysis stack. A 7-cell PEM water electrolysis stack was assembled and tested under different operation modules. The voltage change and polarization curves under different test conditions, namely current density, temperature and pressure, were recorded. Results show that higher temperature has positive effect on overall stack performance, where temperature of 80 ℃ improved the cell performance greatly. However, the cathode pressure and current density has little effect on stack performance.Keywords: PEM electrolysis stack, current density, temperature, pressure
Procedia PDF Downloads 2013175 Phosphorus Recovery Optimization in Microbial Fuel Cell
Authors: Abdullah Almatouq
Abstract:
Understanding the impact of key operational variables on concurrent energy generation and phosphorus recovery in microbial fuel cell is required to improve the process and reduce the operational cost. In this study, full factorial design (FFD) and central composite designs (CCD) were employed to identify the effect of influent COD concentration and cathode aeration flow rate on energy generation and phosphorus (P) recovery and to optimise MFC power density and P recovery. Results showed that influent chemical oxygen demand (COD) concentration and cathode aeration flow rate had a significant effect on power density, coulombic efficiency, phosphorus precipitation efficiency and phosphorus precipitation rate at the cathode. P precipitation was negatively affected by the generated current during the batch duration. The generated energy was reduced due to struvite being precipitated on the cathode surface, which might obstruct the mass transfer of ions and oxygen. Response surface mathematical model was used to predict the optimum operating conditions that resulted in a maximum power density and phosphorus precipitation efficiency of 184 mW/m² and 84%, and this corresponds to COD= 1700 mg/L and aeration flow rate=210 mL/min. The findings highlight the importance of the operational conditions of energy generation and phosphorus recovery.Keywords: energy, microbial fuel cell, phosphorus, struvite
Procedia PDF Downloads 1573174 Rationalizing the Utilization of Interactive Engagement Strategies in Teaching Specialized Science Courses of STEM and GA Strands in the Academic Track of Philippine Senior High School Curriculum
Authors: Raul G. Angeles
Abstract:
The Philippine government instituted major reforms in its educational system. The Department of Education pushes the K to 12 program that makes kindergarten mandatory and adds two years of senior high school to the country's basic education. In essence, the students’ stay in basic education particularly those who are supposedly going to college is extended. The majority of the students expressed that they will be taking the Academic Track of the Senior High School curriculum specifically the Science, Technology, Engineering and Mathematics (STEM) and General Academic (GA) strands. Almost certainly, instruction should match the students' styles and thus through this descriptive study a city survey was conducted to explore the teaching strategies preferences of junior high school students and teachers who will be promoted to senior high school during the Academic Year 2016-2017. This study was conducted in selected public and private secondary schools in Metro Manila. Questionnaires were distributed to students and teachers; and series of follow-up interviews were also carried out to generate additional information. Preferences of students are centered on employing innovations such as technology, cooperative and problem-based learning. While the students will still be covered by basic education their interests in science are sparking to a point where the usual teaching styles may no longer work to them and for that cause, altering the teaching methods is recommended to create a teacher-student style matching. Other effective strategies must likewise be implemented.Keywords: curriculum development, effective teaching strategies, problem-based learning, senior high school, science education, technology
Procedia PDF Downloads 2593173 A Case of Mantle Cell Lymphoma Presenting With GI Symptoms and Noted to Have Extranodal Involvement of the Stomach and Colon on Presentation
Authors: Saba Amreen Syeda, Summaiah Asim, Syeda, Hafsa, Essam Quraishi
Abstract:
Mantle Cell Lymphoma (MCL) is a relatively uncommon type of lymphoma that comprises approximately 7 percent of non hodgkin's lymphomas (NHL), Classic MCL presents mostly in lymph nodes and occasionally in extranodal sites. About 26 % of MCL is present primarily in the Gastrointestinal tract. While both the upper GI tract and the lower GI tract could be involved, it is rare to present with concurrent upper and lower GI involvement with MCL. We present the case of a 51-year-old Asian Indian male that presented to our clinic with complaints of chronic diarrhea for the last one year, progressively worsening over the past three months. The Patient also reported black stool as well as bright red blood per rectum. Patient reported severe fatigue on minimal exertion. On a physical exam, the patient was noted to have matted lymphadenopathy in the neck. Patient was noted to be anemic with a hemoglobin to be 8 g/dl. Esophagogastroduodenoscopy and colonoscopy was performed. EGD showed a large 4 cm ulcer in the gastric antrum with thick heaped up edges. There was bleeding on contact. Colonoscopy showed a large 35 mm multilobulated polyp in the ascending colon, which was biopsied. The patient was also noted to have nodular proctitis in the mid rectum. This was localized and extended to about 5 cm. This area was biopsied as well. Biopsies from the stomach, colon, as well as the rectum, returned with findings of mantle cell lymphoma on pathology. Lymphoid cells in the biopsy were stained strongly positive for CD 20, cyclin D1, and CD 5. There was the absence of stain for CD 3 and CD 10. The IHC stain for CD 23 was negative. Biopsies from neck LAD were obtained and were also positive for MCL. The patient was referred to oncology for staging and treatment.Keywords: mantle cell lymphoma, GI bleed, diarrhea, gastric ulcer, colon polyp
Procedia PDF Downloads 1573172 Simulation of Carbon Nanotubes/GaAs Hybrid PV Using AMPS-1D
Authors: Nima E. Gorji
Abstract:
The performance and characteristics of a hybrid heterojunction single-walled carbon nanotube and GaAs solar cell is modelled and numerically simulated using AMPS-1D device simulation tool. The device physics and performance parameters with different junction parameters are analysed. The results suggest that the open-circuit voltage changes very slightly by changing the work function, acceptor and donor density while the other electrical parameters reach to an optimum value. Increasing the concentration of a discrete defect density in the absorber layer decreases the electrical parameters. The current-voltage characteristics, quantum efficiency, band gap and thickness variation of the photovoltaic response will be quantitatively considered.Keywords: carbon nanotube, GaAs, hybrid solar cell, AMPS-1D modelling
Procedia PDF Downloads 3303171 Medium Design and Optimization for High Β-Galactosidase Producing Microbial Strains from Dairy Waste through Fermentation
Authors: Ashish Shukla, K. P. Mishra, Pushplata Tripathi
Abstract:
This paper investigates the production and optimization of β-galactosidase enzyme using synthetic medium by isolated wild strains (S1, S2) mutated strains (M1, M2) through SSF and SmF. Among the different cell disintegration methods used, the highest specific activity was obtained when the cells were permeabilized using isoamyl alcohol. Wet lab experiments were performed to investigate the effects of carbon and nitrogen substrates present in Vogel’s medium on β-galactosidase enzyme activity using S1, S2, and M1, M2 strains through SSF. SmF experiments were performed for effects of carbon and nitrogen sources in YLK2Mg medium on β-galactosidase enzyme activity using S1, S2 and M1, M2 strains. Effect of pH on β-galactosidase enzyme production was also done using S1, S2, and M1, M2 strains. Results were found to be very appreciable in all the cases.Keywords: β-galactosidase, cell disintegration, permeabilized, SSF, SmF
Procedia PDF Downloads 2723170 Determining Cellular Biomarkers Sensitive to Low Damaging Exposure
Authors: Svetlana Guryeva, Inna Kornienko, Elena Petersen
Abstract:
At present, translational medicine is a rapidly developing branch of biomedicine. The main idea of translational medicine is a practical application of fundamental research. One of the possible applications for translational medicine is researching therapies that improve human age-related organism condition. To fill the gap between experiments and clinical practice, it is necessary to create the standardized system for the investigation of different effects on cellular aging models. In this study, primary human fibroblasts derived from patients of different ages were used as a cellular aging model. The senescence-associated β-galactosidase activity, lipofuscin, γ-H2AX, the reactive oxygen species level, and cell death markers (annexin V/propidium iodide) were used as biomarkers of the cell functional state. The effects of damaging exposures (oxidative stress and heat shock), potential positive factors (metformin and acetaminophen), and their combinations were investigated using the described biomarkers. Oxidative stress and heat shock caused the increase in the levels of all biomarkers, and only the cells from young patients partly coped with stress 3 days after the exposures. Metformin improved the state of pretreatment cells from young and old patients. The acetaminophen did not show significant changes in the biomarker levels compare to the action of metformin. This study proved the opportunity to develop a standardized screening system based on biomarkers of the cell functional state to identify potential positive or negative effects of some physical and chemical exposures. Moreover, such a system can be useful for the aims of regenerative medicine to determine the effect of cell pretreatment before transplantation.Keywords: biomarkers, primary fibroblasts, regenerative medicine, senescence, test system, translational medicine
Procedia PDF Downloads 4033169 Operation System for Aluminium-Air Cell: A Strategy to Harvest the Energy from Secondary Aluminium
Authors: Binbin Chen, Dennis Y. C. Leung
Abstract:
Aluminium (Al) -air cell holds a high volumetric capacity density of 8.05 Ah cm-3, benefit from the trivalence of Al ions. Additional benefits of Al-air cell are low price and environmental friendliness. Furthermore, the Al energy conversion process is characterized of 100% recyclability in theory. Along with a large base of raw material reserve, Al attracts considerable attentions as a promising material to be integrated within the global energy system. However, despite the early successful applications in military services, several problems exist that prevent the Al-air cells from widely civilian use. The most serious issue is the parasitic corrosion of Al when contacts with electrolyte. To overcome this problem, super-pure Al alloyed with various traces of metal elements are used to increase the corrosion resistance. Nevertheless, high-purity Al alloys are costly and require high energy consumption during production process. An alternative approach is to add inexpensive inhibitors directly into the electrolyte. However, such additives would increase the internal ohmic resistance and hamper the cell performance. So far these methods have not provided satisfactory solutions for the problem within Al-air cells. For the operation of alkaline Al-air cell, there are still other minor problems. One of them is the formation of aluminium hydroxide in the electrolyte. This process decreases ionic conductivity of electrolyte. Another one is the carbonation process within the gas diffusion layer of cathode, blocking the porosity of gas diffusion. Both these would hinder the performance of cells. The present work optimizes the above problems by building an Al-air cell operation system, consisting of four components. A top electrolyte tank containing fresh electrolyte is located at a high level, so that it can drive the electrolyte flow by gravity force. A mechanical rechargeable Al-air cell is fabricated with low-cost materials including low grade Al, carbon paper, and PMMA plates. An electrolyte waste tank with elaborate channel is designed to separate the hydrogen generated from the corrosion, which would be collected by gas collection device. In the first section of the research work, we investigated the performance of the mechanical rechargeable Al-air cell with a constant flow rate of electrolyte, to ensure the repeatability experiments. Then the whole system was assembled together and the feasibility of operating was demonstrated. During experiment, pure hydrogen is collected by collection device, which holds potential for various applications. By collecting this by-product, high utilization efficiency of aluminum is achieved. Considering both electricity and hydrogen generated, an overall utilization efficiency of around 90 % or even higher under different working voltages are achieved. Fluidic electrolyte could remove aluminum hydroxide precipitate and solve the electrolyte deterioration problem. This operation system provides a low-cost strategy for harvesting energy from the abundant secondary Al. The system could also be applied into other metal-air cells and is suitable for emergency power supply, power plant and other applications. The low cost feature implies great potential for commercialization. Further optimization, such as scaling up and optimization of fabrication, will help to refine the technology into practical market offerings.Keywords: aluminium-air cell, high efficiency, hydrogen, mechanical recharge
Procedia PDF Downloads 2833168 Hot Carrier Photocurrent as a Candidate for an Intrinsic Loss in a Single Junction Solar Cell
Authors: Jonas Gradauskas, Oleksandr Masalskyi, Ihor Zharchenko
Abstract:
The advancement in improving the efficiency of conventional solar cells toward the Shockley-Queisser limit seems to be slowing down or reaching a point of saturation. The challenges hindering the reduction of this efficiency gap can be categorized into extrinsic and intrinsic losses, with the former being theoretically avoidable. Among the five intrinsic losses, two — the below-Eg loss (resulting from non-absorption of photons with energy below the semiconductor bandgap) and thermalization loss —contribute to approximately 55% of the overall lost fraction of solar radiation at energy bandgap values corresponding to silicon and gallium arsenide. Efforts to minimize the disparity between theoretically predicted and experimentally achieved efficiencies in solar cells necessitate the integration of innovative physical concepts. Hot carriers (HC) present a contemporary approach to addressing this challenge. The significance of hot carriers in photovoltaics is not fully understood. Although their excessive energy is thought to indirectly impact a cell's performance through thermalization loss — where the excess energy heats the lattice, leading to efficiency loss — evidence suggests the presence of hot carriers in solar cells. Despite their exceptionally brief lifespan, tangible benefits arise from their existence. The study highlights direct experimental evidence of hot carrier effect induced by both below- and above-bandgap radiation in a singlejunction solar cell. Photocurrent flowing across silicon and GaAs p-n junctions is analyzed. The photoresponse consists, on the whole, of three components caused by electron-hole pair generation, hot carriers, and lattice heating. The last two components counteract the conventional electron-hole generation-caused current required for successful solar cell operation. Also, a model of the temperature coefficient of the voltage change of the current–voltage characteristic is used to obtain the hot carrier temperature. The distribution of cold and hot carriers is analyzed with regard to the potential barrier height of the p-n junction. These discoveries contribute to a better understanding of hot carrier phenomena in photovoltaic devices and are likely to prompt a reevaluation of intrinsic losses in solar cells.Keywords: solar cell, hot carriers, intrinsic losses, efficiency, photocurrent
Procedia PDF Downloads 653167 Flow Field Optimization for Proton Exchange Membrane Fuel Cells
Authors: Xiao-Dong Wang, Wei-Mon Yan
Abstract:
The flow field design in the bipolar plates affects the performance of the proton exchange membrane (PEM) fuel cell. This work adopted a combined optimization procedure, including a simplified conjugate-gradient method and a completely three-dimensional, two-phase, non-isothermal fuel cell model, to look for optimal flow field design for a single serpentine fuel cell of size 9×9 mm with five channels. For the direct solution, the two-fluid method was adopted to incorporate the heat effects using energy equations for entire cells. The model assumes that the system is steady; the inlet reactants are ideal gases; the flow is laminar; and the porous layers such as the diffusion layer, catalyst layer and PEM are isotropic. The model includes continuity, momentum and species equations for gaseous species, liquid water transport equations in the channels, gas diffusion layers, and catalyst layers, water transport equation in the membrane, electron and proton transport equations. The Bulter-Volumer equation was used to describe electrochemical reactions in the catalyst layers. The cell output power density Pcell is maximized subjected to an optimal set of channel heights, H1-H5, and channel widths, W2-W5. The basic case with all channel heights and widths set at 1 mm yields a Pcell=7260 Wm-2. The optimal design displays a tapered characteristic for channels 1, 3 and 4, and a diverging characteristic in height for channels 2 and 5, producing a Pcell=8894 Wm-2, about 22.5% increment. The reduced channel heights of channels 2-4 significantly increase the sub-rib convection and widths for effectively removing liquid water and oxygen transport in gas diffusion layer. The final diverging channel minimizes the leakage of fuel to outlet via sub-rib convection from channel 4 to channel 5. Near-optimal design without huge loss in cell performance but is easily manufactured is tested. The use of a straight, final channel of 0.1 mm height has led to 7.37% power loss, while the design with all channel widths to be 1 mm with optimal channel heights obtained above yields only 1.68% loss of current density. The presence of a final, diverging channel has greater impact on cell performance than the fine adjustment of channel width at the simulation conditions set herein studied.Keywords: optimization, flow field design, simplified conjugate-gradient method, serpentine flow field, sub-rib convection
Procedia PDF Downloads 296