Search results for: random dimer model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18243

Search results for: random dimer model

17133 Significance of Personnel Recruitment in Implementation of Computer Aided Design Curriculum of Architecture Schools

Authors: Kelechi E. Ezeji

Abstract:

The inclusion of relevant content in curricula of architecture schools is vital for attainment of Computer Aided Design (CAD) proficiency by graduates. Implementing this content involves, among other variables, the presence of competent tutors. Consequently, this study sought to investigate the importance of personnel recruitment for inclusion of content vital to the implementation of CAD in the curriculum for architecture education. This was with a view to developing a framework for appropriate implementation of CAD curriculum. It was focused on departments of architecture in universities in south-east Nigeria which have been accredited by National Universities Commission. Survey research design was employed. Data were obtained from sources within the study area using questionnaires, personal interviews, physical observation/enumeration and examination of institutional documents. A multi-stage stratified random sampling method was adopted. The first stage of stratification involved random sampling by balloting of the departments. The second stage involved obtaining respondents’ population from the number of staff and students of sample population. Chi Square analysis tool for nominal variables and Pearson’s product moment correlation test for interval variables were used for data analysis. With ρ < 0.5, the study found significant correlation between the number of CAD literate academic staff and use of CAD in design studio/assignments; that increase in the overall number of teaching staff significantly affected total CAD credit units in the curriculum of the department. The implications of these findings were that for successful implementation leading to attainment of CAD proficiency to occur, CAD-literacy should be a factor in the recruitment of staff and a policy of in-house training should be pursued.

Keywords: computer-aided design, education, personnel recruitment, curriculum

Procedia PDF Downloads 208
17132 Optimization Model for Support Decision for Maximizing Production of Mixed Fruit Tree Farms

Authors: Andrés I. Ávila, Patricia Aros, César San Martín, Elizabeth Kehr, Yovana Leal

Abstract:

We consider a linear programming model to help farmers to decide if it is convinient to choose among three kinds of export fruits for their future investment. We consider area, investment, water, productivitiy minimal unit, and harvest restrictions and a monthly based model to compute the average income in five years. Also, conditions on the field as area, water availability and initia investment are required. Using the Chilean costs and dollar-peso exchange rate, we can simulate several scenarios to understand the possible risks associated to this market.

Keywords: mixed integer problem, fruit production, support decision model, fruit tree farms

Procedia PDF Downloads 455
17131 The Role of Demographics and Service Quality in the Adoption and Diffusion of E-Government Services: A Study in India

Authors: Sayantan Khanra, Rojers P. Joseph

Abstract:

Background and Significance: This study is aimed at analyzing the role of demographic and service quality variables in the adoption and diffusion of e-government services among the users in India. The study proposes to examine the users' perception about e-Government services and investigate the key variables that are most salient to the Indian populace. Description of the Basic Methodologies: The methodology to be adopted in this study is Hierarchical Regression Analysis, which will help in exploring the impact of the demographic variables and the quality dimensions on the willingness to use e-government services in two steps. First, the impact of demographic variables on the willingness to use e-government services is to be examined. In the second step, quality dimensions would be used as inputs to the model for explaining variance in excess of prior contribution by the demographic variables. Present Status: Our study is in the data collection stage in collaboration with a highly reliable, authentic and adequate source of user data. Assuming that the population of the study comprises all the Internet users in India, a massive sample size of more than 10,000 random respondents is being approached. Data is being collected using an online survey questionnaire. A pilot survey has already been carried out to refine the questionnaire with inputs from an expert in management information systems and a small group of users of e-government services in India. The first three questions in the survey pertain to the Internet usage pattern of a respondent and probe whether the person has used e-government services. If the respondent confirms that he/she has used e-government services, then an aggregate of 15 indicators are used to measure the quality dimensions under consideration and the willingness of the respondent to use e-government services, on a five-point Likert scale. If the respondent reports that he/she has not used e-government services, then a few optional questions are asked to understand the reason(s) behind the same. Last four questions in the survey are dedicated to collect data related to the demographic variables. An indication of the Major Findings: Based on the extensive literature review carried out to develop several propositions; a research model is prescribed to start with. A major outcome expected at the completion of the study is the development of a research model that would help to understand the relationship involving the demographic variables and service quality dimensions, and the willingness to adopt e-government services, particularly in an emerging economy like India. Concluding Statement: Governments of emerging economies and other relevant agencies can use the findings from the study in designing, updating, and promoting e-government services to enhance public participation, which in turn, would help to improve efficiency, convenience, engagement, and transparency in implementing these services.

Keywords: adoption and diffusion of e-government services, demographic variables, hierarchical regression analysis, service quality dimensions

Procedia PDF Downloads 267
17130 The Role of Organizational Trust in the Relationship Between Organizational Justice and Organizational Citizenship Behaviors: A Case Study of Sport Organizations of Tehran Municipality

Authors: Tayebeh Zargar

Abstract:

The aim of the present research is to study the role of organizational trust in the relationship between organizational justice and organizational citizenship behaviors in sport organizations of Tehran Municipality. The method of this study is correlation and it is based on structural equation modeling. Among all staffs of sport organizations of Tehran Municipality, 150 staff members were selected through random sampling. The data gathering instrument of the study incorporated the Moorman’s (1999) Organizational Justice Questionnaire (OJQ), Ruder’s (2003) Trust Organizational Questionnaire (TOQ), and the Organizational Citizenship Behavior Scale (DiPaola, Tarter, & Hoy, 2005). SEM was utilized to analyze the data. Regarding the relationships between the variables presented in the model, the following results were obtained: organizational justice has significant direct positive effect on organizational trust (β=0.82), and organizational trust itself has significant direct positive effect on citizenship behavior (β=0.65). According to the results, making efforts in order to encourage staff members to participate more in organizational decision-making will influence their condition. Furthermore, paying more attention to organizational justice may cause the staff members to accept the organizational structure and respect the rules, volunteer in supporting the organizational resources, and have active participation in managing organization roles.

Keywords: organizational trust, organizational justice, organizational citizenship behaviors, sport organizations

Procedia PDF Downloads 338
17129 A New Model for Production Forecasting in ERP

Authors: S. F. Wong, W. I. Ho, B. Lin, Q. Huang

Abstract:

ERP has been used in many enterprises for management, the accuracy of the production forecasting module is vital to the decision making of the enterprise, and the profit is affected directly. Therefore, enhancing the accuracy of the production forecasting module can also increase the efficiency and profitability. To deal with a lot of data, a suitable, reliable and accurate statistics model is necessary. LSSVM and Grey System are two main models to be studied in this paper, and a case study is used to demonstrate how the combination model is effective to the result of forecasting.

Keywords: ERP, grey system, LSSVM, production forecasting

Procedia PDF Downloads 460
17128 Constitutive Model for Analysis of Long-Term Municipal Solid Waste Landfill Settlement

Authors: Irena Basaric Ikodinovic, Dragoslav Rakic, Mirjana Vukicevic, Sanja Jockovic, Jovana Jankovic Pantic

Abstract:

Large long-term settlement occurs at the municipal solid waste landfills over an extended period of time which may lead to breakage of the geomembrane, damage of the cover systems, other protective systems or facilities constructed on top of a landfill. Also, municipal solid waste is an extremely heterogeneous material and its properties vary over location and time within a landfill. These material characteristics require the formulation of a new constitutive model to predict the long-term settlement of municipal solid waste. The paper presents a new constitutive model which is formulated to describe the mechanical behavior of municipal solid waste. Model is based on Modified Cam Clay model and the critical state soil mechanics framework incorporating time-dependent components: mechanical creep and biodegradation of municipal solid waste. The formulated constitutive model is optimized and defined with eight input parameters: five Modified Cam Clay parameters, one parameter for mechanical creep and two parameters for biodegradation of municipal solid waste. Thereafter, the constitutive model is implemented in the software suite for finite element analysis (ABAQUS) and numerical analysis of the experimental landfill settlement is performed. The proposed model predicts the total settlement which is in good agreement with field measured settlement at the experimental landfill.

Keywords: constitutive model, finite element analysis, municipal solid waste, settlement

Procedia PDF Downloads 229
17127 Functional Instruction Set Simulator of a Neural Network IP with Native Brain Float-16 Generator

Authors: Debajyoti Mukherjee, Arathy B. S., Arpita Sahu, Saranga P. Pogula

Abstract:

A functional model to mimic the functional correctness of a neural network compute accelerator IP is very crucial for design validation. Neural network workloads are based on a Brain Floating Point (BF-16) data type. The major challenge we were facing was the incompatibility of GCC compilers to the BF-16 datatype, which we addressed with a native BF-16 generator integrated into our functional model. Moreover, working with big GEMM (General Matrix Multiplication) or SpMM (Sparse Matrix Multiplication) Work Loads (Dense or Sparse) and debugging the failures related to data integrity is highly painstaking. In this paper, we are addressing the quality challenge of such a complex neural network accelerator design by proposing a functional model-based scoreboard or software model using SystemC. The proposed functional model executes the assembly code based on the ISA of the processor IP, decodes all instructions, and executes as expected to be done by the DUT. The said model would give a lot of visibility and debug capability in the DUT, bringing up micro-steps of execution.

Keywords: ISA, neural network, Brain Float-16, DUT

Procedia PDF Downloads 91
17126 Machine Learning Techniques for COVID-19 Detection: A Comparative Analysis

Authors: Abeer A. Aljohani

Abstract:

COVID-19 virus spread has been one of the extreme pandemics across the globe. It is also referred to as coronavirus, which is a contagious disease that continuously mutates into numerous variants. Currently, the B.1.1.529 variant labeled as omicron is detected in South Africa. The huge spread of COVID-19 disease has affected several lives and has surged exceptional pressure on the healthcare systems worldwide. Also, everyday life and the global economy have been at stake. This research aims to predict COVID-19 disease in its initial stage to reduce the death count. Machine learning (ML) is nowadays used in almost every area. Numerous COVID-19 cases have produced a huge burden on the hospitals as well as health workers. To reduce this burden, this paper predicts COVID-19 disease is based on the symptoms and medical history of the patient. This research presents a unique architecture for COVID-19 detection using ML techniques integrated with feature dimensionality reduction. This paper uses a standard UCI dataset for predicting COVID-19 disease. This dataset comprises symptoms of 5434 patients. This paper also compares several supervised ML techniques to the presented architecture. The architecture has also utilized 10-fold cross validation process for generalization and the principal component analysis (PCA) technique for feature reduction. Standard parameters are used to evaluate the proposed architecture including F1-Score, precision, accuracy, recall, receiver operating characteristic (ROC), and area under curve (AUC). The results depict that decision tree, random forest, and neural networks outperform all other state-of-the-art ML techniques. This achieved result can help effectively in identifying COVID-19 infection cases.

Keywords: supervised machine learning, COVID-19 prediction, healthcare analytics, random forest, neural network

Procedia PDF Downloads 92
17125 Stability Analysis of a Human-Mosquito Model of Malaria with Infective Immigrants

Authors: Nisha Budhwar, Sunita Daniel

Abstract:

In this paper, we analyse the stability of the SEIR model of malaria with infective immigrants which was recently formulated by the authors. The model consists of an SEIR model for the human population and SI Model for the mosquitoes. Susceptible humans become infected after they are bitten by infectious mosquitoes and move on to the Exposed, Infected and Recovered classes respectively. The susceptible mosquito becomes infected after biting an infected person and remains infected till death. We calculate the reproduction number R0 using the next generation method and then discuss about the stability of the equilibrium points. We use the Lyapunov function to show the global stability of the equilibrium points.

Keywords: equilibrium points, exposed, global stability, infective immigrants, Lyapunov function, recovered, reproduction number, susceptible

Procedia PDF Downloads 363
17124 Economic Analysis of Cassava Value Chain by Farmers in Ilesa West Local Government Area of Osun State

Authors: Maikasuwa Mohammed Abubakar, Okebiorun Ola, M. H. Sidi, Ala Ahmed Ladan, Ango Aabdullahi Kamba

Abstract:

The study examines the economic analysis of cassava value chain by farmers in Ilesa West Local Government Area of Osun State. Simple random sampling technique was used to collect data from 200 respondents from purposively selected wards in the L.G.A. The data collected were analyzed using budgetary analysis and value addition model. The result shows that an average total cost incurred by the input dealers was ₦9,062,127.74 while the average net profit realized was ₦1,038,102.40. Other actors such as producers, processors and marketers incurred an average total cost of ₦23,324.00, ₦130,177.00 and ₦523,755.00 per production season, respectively and the average net profit realized was ₦102,614.00 for cassava producers, ₦51,131.00 for cassava processors and ₦79,045.00 for cassava marketers during cassava production season. Further analysis shows the rate of investment for cassava input dealers was ₦0.1, for cassava producers was ₦4.4, for cassava processors were ₦0.40 and for cassava marketers was ₦0.20. This indicated that rate of return on cassava was higher in cassava production than in others corridors along the value chain of cassava. However, value added the cassava producers (₦102,536.16/season) was the highest when compared with value added by cassava processors (₦51,853.82/season) and cassava marketers (₦100,885.56/season).

Keywords: Cassava, value chain, Ilesa West, Nigeria

Procedia PDF Downloads 332
17123 Solution of Singularly Perturbed Differential Difference Equations Using Liouville Green Transformation

Authors: Y. N. Reddy

Abstract:

The class of differential-difference equations which have characteristics of both classes, i.e., delay/advance and singularly perturbed behaviour is known as singularly perturbed differential-difference equations. The expression ‘positive shift’ and ‘negative shift’ are also used for ‘advance’ and ‘delay’ respectively. In general, an ordinary differential equation in which the highest order derivative is multiplied by a small positive parameter and containing at least one delay/advance is known as singularly perturbed differential-difference equation. Singularly perturbed differential-difference equations arise in the modelling of various practical phenomena in bioscience, engineering, control theory, specifically in variational problems, in describing the human pupil-light reflex, in a variety of models for physiological processes or diseases and first exit time problems in the modelling of the determination of expected time for the generation of action potential in nerve cells by random synaptic inputs in dendrites. In this paper, we envisage the use of Liouville Green Transformation to find the solution of singularly perturbed differential difference equations. First, using Taylor series, the given singularly perturbed differential difference equation is approximated by an asymptotically equivalent singularly perturbation problem. Then the Liouville Green Transformation is applied to get the solution. Several model examples are solved, and the results are compared with other methods. It is observed that the present method gives better approximate solutions.

Keywords: difference equations, differential equations, singular perturbations, boundary layer

Procedia PDF Downloads 198
17122 A Machine Learning Model for Dynamic Prediction of Chronic Kidney Disease Risk Using Laboratory Data, Non-Laboratory Data, and Metabolic Indices

Authors: Amadou Wurry Jallow, Adama N. S. Bah, Karamo Bah, Shih-Ye Wang, Kuo-Chung Chu, Chien-Yeh Hsu

Abstract:

Chronic kidney disease (CKD) is a major public health challenge with high prevalence, rising incidence, and serious adverse consequences. Developing effective risk prediction models is a cost-effective approach to predicting and preventing complications of chronic kidney disease (CKD). This study aimed to develop an accurate machine learning model that can dynamically identify individuals at risk of CKD using various kinds of diagnostic data, with or without laboratory data, at different follow-up points. Creatinine is a key component used to predict CKD. These models will enable affordable and effective screening for CKD even with incomplete patient data, such as the absence of creatinine testing. This retrospective cohort study included data on 19,429 adults provided by a private research institute and screening laboratory in Taiwan, gathered between 2001 and 2015. Univariate Cox proportional hazard regression analyses were performed to determine the variables with high prognostic values for predicting CKD. We then identified interacting variables and grouped them according to diagnostic data categories. Our models used three types of data gathered at three points in time: non-laboratory, laboratory, and metabolic indices data. Next, we used subgroups of variables within each category to train two machine learning models (Random Forest and XGBoost). Our machine learning models can dynamically discriminate individuals at risk for developing CKD. All the models performed well using all three kinds of data, with or without laboratory data. Using only non-laboratory-based data (such as age, sex, body mass index (BMI), and waist circumference), both models predict chronic kidney disease as accurately as models using laboratory and metabolic indices data. Our machine learning models have demonstrated the use of different categories of diagnostic data for CKD prediction, with or without laboratory data. The machine learning models are simple to use and flexible because they work even with incomplete data and can be applied in any clinical setting, including settings where laboratory data is difficult to obtain.

Keywords: chronic kidney disease, glomerular filtration rate, creatinine, novel metabolic indices, machine learning, risk prediction

Procedia PDF Downloads 105
17121 Segregation Patterns of Trees and Grass Based on a Modified Age-Structured Continuous-Space Forest Model

Authors: Jian Yang, Atsushi Yagi

Abstract:

Tree-grass coexistence system is of great importance for forest ecology. Mathematical models are being proposed to study the dynamics of tree-grass coexistence and the stability of the systems. However, few of the models concentrates on spatial dynamics of the tree-grass coexistence. In this study, we modified an age-structured continuous-space population model for forests, obtaining an age-structured continuous-space population model for the tree-grass competition model. In the model, for thermal competitions, adult trees can out-compete grass, and grass can out-compete seedlings. We mathematically studied the model to make sure tree-grass coexistence solutions exist. Numerical experiments demonstrated that a fraction of area that trees or grass occupies can affect whether the coexistence is stable or not. We also tried regulating the mortality of adult trees with other parameters and the fraction of area trees and grass occupies were fixed; results show that the mortality of adult trees is also a factor affecting the stability of the tree-grass coexistence in this model.

Keywords: population-structured models, stabilities of ecosystems, thermal competitions, tree-grass coexistence systems

Procedia PDF Downloads 158
17120 Impact of COVID-19 Disease on Reproductive Health in Women

Authors: Mikailzade Parvin, Gurbanova Jamila, Alizade Samaya, Hasanova Afat

Abstract:

It is known that in March 2020, the World Health Organization (WHO) declared a global pandemic of the 2019 coronovirus disease COVID-19, caused by the severe acute respiratory syndrome coronovirus (SARS-CoV-2). In this period, ensuring the safety of pregnancy and childbirth has become one of the necessary issues. The measures taken in this direction naturally consisted of strengthening and improving preventive measures among pregnant women. It should be noted that the lethality of SARS-CoV-2 infection among women reached 25%. The relevance of studying the effect of COVID-19 on reproductive health in women is due to its wide spread worldwide, severe clinical course, and the occurrence of numerous complications or lethality. It is of urgent importance to study the impact of the mentioned coronavirus infection on the health of pregnant women and the serious complications caused by it.Taking these into account, 230 pregnant women infected with the COVID-19 virus infection were registered. The average age of the pregnant women included in the study was: 29.24±6.0. The diagnosis of corona virus infection was made on the basis of polymerase chain reaction (PCR), serological tests (IgG, IgM). In 57.4% of cases, bilateral pneumonia was recorded in pregnant women and confirmed on the basis of radiological (RH) examination. RH examination revealed pneumonia with infiltrate in the lungs. Among clinical symptoms in pregnant women infected with COVID-19 virus infection: in 86 (37.4%) cases, symptoms such as high fever (t-39.0oC), shortness of breath, fatigue, and hypoxia were noted in pregnant women. A decrease in SpO2 to a minimal level was recorded. Laboratory-instrumental examinations were carried out. The obtained results showed: the average limit of D-dimer was 0.8±0.5; prothrombin time 13.2±1.1 seconds; INR 0.98±0.08, prothrombin index 104.3±19.5%, EHS - 34.8±13.6 mm/s. It should be noted that respiratory distress syndrome (RDS), premature birth, malformed and extremely malformed newborns, asphyxia or hypoxia have been reported in infants born to pregnant women infected with the coronavirus disease.Thus, from the obtained indicators, it is known that pregnant women infected with the virus have a high risk of serious illness and death for both themselves and their babies. It has been proven that the majority of babies born to SARS-CoV-2 positive mothers have a negative impact on their health.

Keywords: Covid 19, reproductive health, preqnancy, premature birth

Procedia PDF Downloads 85
17119 Analysing the Moderating Effect of Customer Loyalty on Long Run Repurchase Intentions

Authors: John Akpesiri Olotewo

Abstract:

One of the controversies in existing marketing literatures is on how to retain existing and new customers to have repurchase intention in the long-run; however, empirical answer to this question is scanty in existing studies. Thus, this study investigates the moderating effect of consumer loyalty on long-run repurchase intentions in telecommunication industry using Lagos State environs. The study adopted field survey research design using questionnaire to elicit responses from 250 respondents who were selected using random and stratified random sampling techniques from the telecommunication industry in Lagos State, Nigeria. The internal consistency of the research instrument was verified using the Cronbach’s alpha, the result of 0.89 implies the acceptability of the internal consistency of the survey instrument. The test of the research hypotheses were analyzed using Pearson Product Method of Correlation (PPMC), simple regression analysis and inferential statistics with the aid of Statistical Package for Social Science version 20.0 (SPSS). The study confirmed that customer satisfaction has a significant relationship with customer loyalty in the telecommunication industry; also Service quality has a significant relationship with customer loyalty to a brand; loyalty programs have a significant relationship with customer loyalty to a network operator in Nigeria and Customer loyalty has a significant effect on the long run repurchase intentions of the customer. The study concluded that one of the determinants of long term profitability of a business entity is the long run repurchase intentions of its customers which hinges on the level of brand loyalty of the customer. Thus, it was recommended that service providers in Nigeria should improve on factors like customer satisfaction, service quality, and loyalty programs in order to increase the loyalty of their customer to their brands thereby increasing their repurchase intentions.

Keywords: customer loyalty, long run repurchase intentions, brands, service quality and customer satisfaction

Procedia PDF Downloads 232
17118 Customer Preference in the Textile Market: Fabric-Based Analysis

Authors: Francisca Margarita Ocran

Abstract:

Underwear, and more particularly bras and panties, are defined as intimate clothing. Strictly speaking, they enhance the place of women in the public or private satchel. Therefore, women's lingerie is a complex garment with a high involvement profile, motivating consumers to buy it not only by its functional utility but also by the multisensory experience it provides them. Customer behavior models are generally based on customer data mining, and each model is designed to answer questions at a specific time. Predicting the customer experience is uncertain and difficult. Thus, knowledge of consumers' tastes in lingerie deserves to be treated as an experiential product, where the dimensions of the experience motivating consumers to buy a lingerie product and to remain faithful to it must be analyzed in detail by the manufacturers and retailers to engage and retain consumers, which is why this research aims to identify the variables that push consumers to choose their lingerie product, based on an in-depth analysis of the types of fabrics used to make lingerie. The data used in this study comes from online purchases. Machine learning approach with the use of Python programming language and Pycaret gives us a precision of 86.34%, 85.98%, and 84.55% for the three algorithms to use concerning the preference of a buyer in front of a range of lingerie. Gradient Boosting, random forest, and K Neighbors were used in this study; they are very promising and rich in the classification of preference in the textile industry.

Keywords: consumer behavior, data mining, lingerie, machine learning, preference

Procedia PDF Downloads 88
17117 A Modified Periodic 2D Cellular Re-Entrant Honeycomb Model to Enhance the Auxetic Elastic Properties

Authors: Sohaib Z. Khan, Farrukh Mustahsan, Essam R. I. Mahmoud, S. H. Masood

Abstract:

Materials or structures that contract laterally on the application of a compressive load and vice versa are said to be Auxetic materials which exhibit Negative Poisson’s Ratio (NPR). Numerous auxetic structures are proposed in the literature. One of the most studied periodic auxetic structure is the re-entrant honeycomb model. In this paper, a modified re-entrant model is proposed to enhance the auxetic behavior. The paper aimed to investigate the elastic behaviour of the proposed model to improve Young’s modulus and NPR by evaluating the analytical model. Finite Element Analysis (FEA) is also conducted to support the analytical results. A significant increment in Young’s modulus and NPR can be achieved in one of the two orthogonal directions of the loading at the cost of compromising these values in other direction. The proposed modification resulted in lower relative densities when compared to the existing re-entrant honeycomb structure. A trade-off in the elastic properties in one direction at low relative density makes the proposed model suitable for uni-direction applications where higher stiffness and NPR is required, and strength to weight ratio is important.

Keywords: 2D model, auxetic materials, re-entrant honeycomb, negative Poisson's ratio

Procedia PDF Downloads 136
17116 Stability and Sensitivity Analysis of Cholera Model with Treatment Class

Authors: Yunusa Aliyu Hadejia

Abstract:

Cholera is a gastrointestinal disease caused by a bacterium called Vibrio Cholerae which spread as a result of eating food or drinking water contaminated with feaces from an infected person. In this work we proposed and analyzed the impact of isolating infected people and give them therapeutic treatment, the specific objectives of the research was to formulate a mathematical model of cholera transmission incorporating treatment class, to make analysis on stability of equilibrium points of the model, positivity and boundedness was shown to ensure that the model has a biological meaning, the basic reproduction number was derived by next generation matrix approach. The result of stability analysis show that the Disease free equilibrium was both locally and globally asymptotically stable when R_0< 1 while endemic equilibrium has locally asymptotically stable when R_0> 1. Sensitivity analysis was perform to determine the contribution of each parameter to the basic reproduction number. Numerical simulation was carried out to show the impact of the model parameters using MAT Lab Software.

Keywords: mathematical model, treatment, stability, sensitivity

Procedia PDF Downloads 98
17115 Comparing Deep Architectures for Selecting Optimal Machine Translation

Authors: Despoina Mouratidis, Katia Lida Kermanidis

Abstract:

Machine translation (MT) is a very important task in Natural Language Processing (NLP). MT evaluation is crucial in MT development, as it constitutes the means to assess the success of an MT system, and also helps improve its performance. Several methods have been proposed for the evaluation of (MT) systems. Some of the most popular ones in automatic MT evaluation are score-based, such as the BLEU score, and others are based on lexical similarity or syntactic similarity between the MT outputs and the reference involving higher-level information like part of speech tagging (POS). This paper presents a language-independent machine learning framework for classifying pairwise translations. This framework uses vector representations of two machine-produced translations, one from a statistical machine translation model (SMT) and one from a neural machine translation model (NMT). The vector representations consist of automatically extracted word embeddings and string-like language-independent features. These vector representations used as an input to a multi-layer neural network (NN) that models the similarity between each MT output and the reference, as well as between the two MT outputs. To evaluate the proposed approach, a professional translation and a "ground-truth" annotation are used. The parallel corpora used are English-Greek (EN-GR) and English-Italian (EN-IT), in the educational domain and of informal genres (video lecture subtitles, course forum text, etc.) that are difficult to be reliably translated. They have tested three basic deep learning (DL) architectures to this schema: (i) fully-connected dense, (ii) Convolutional Neural Network (CNN), and (iii) Long Short-Term Memory (LSTM). Experiments show that all tested architectures achieved better results when compared against those of some of the well-known basic approaches, such as Random Forest (RF) and Support Vector Machine (SVM). Better accuracy results are obtained when LSTM layers are used in our schema. In terms of a balance between the results, better accuracy results are obtained when dense layers are used. The reason for this is that the model correctly classifies more sentences of the minority class (SMT). For a more integrated analysis of the accuracy results, a qualitative linguistic analysis is carried out. In this context, problems have been identified about some figures of speech, as the metaphors, or about certain linguistic phenomena, such as per etymology: paronyms. It is quite interesting to find out why all the classifiers led to worse accuracy results in Italian as compared to Greek, taking into account that the linguistic features employed are language independent.

Keywords: machine learning, machine translation evaluation, neural network architecture, pairwise classification

Procedia PDF Downloads 130
17114 Transformational Leadership Style of Principal and Conflict Management in Public Secondary Schools in North Central Nigeria

Authors: Odeh Regina Comfort, Angelina Okewu Ogwuche

Abstract:

The study investigated transformational leadership style of principal and conflict management in secondary schools in North Central Nigeria. A descriptive survey design was adopted. The population of the study comprised 34,473 teachers in 1949 public secondary schools in the study area. Proportionate stratified random sampling and simple random sampling techniques were used to select 39 public secondary schools and 689 respondents, respectively, for the study. The researcher utilized a self-structured questionnaire titled 'Influence of Transformational Leadership Style Questionnaire (ITLSQ)'. Face and content validity were ensured. The reliability index of 0.86 was obtained through Cronbach alpha statistics. The instrument was a modified Likert rating scale of Very High Extent (4), High Extent (3), Low Extent (2) and Very Low Extent (1). Mean, and standard deviation were used to answer 2 research questions, while chi-square goodness of fit was used to test the 2 hypotheses at 0.05 level of significance. The results among others indicate: that intellectual stimulation and individualized components of transformational leadership style of principal in public secondary schools in the study area have significant influence on conflict management in secondary schools. Based on the results, it was recommended that principals of secondary schools should be encouraged to practice the intellectual stimulation component of transformational leadership style that would help to consider teachers' levels of knowledge to decide what suits them to reach high levels of attainment thereby minimizing conflict in school settings; also transformational leadership should be taught to all people at all levels of secondary school especially that which pertains to individualized consideration to have a positive impact on the overall performance of teachers and this would help to minimize conflict in schools.

Keywords: conflict management, individualized consideration, intellectual stimulation, transformational leadership style

Procedia PDF Downloads 131
17113 A Time since of Injection Model for Hepatitis C Amongst People Who Inject Drugs

Authors: Nader Al-Rashidi, David Greenhalgh

Abstract:

Mathematical modelling techniques are now being used by health organizations worldwide to help understand the likely impact that intervention strategies treatment options and combinations of these have on the prevalence and incidence of hepatitis C virus (HCV) in the people who inject drugs (PWID) population. In this poster, we develop a deterministic, compartmental mathematical model to approximate the spread of the HCV in a PWID population that has been divided into two groups by time since onset of injection. The model assumes that after injection needles adopt the most infectious state of their previous state or that of the PWID who last injected with them. Using analytical techniques, we find that the model behaviour is determined by the basic reproductive number R₀, where R₀ = 1 is a critical threshold separating two different outcomes. The disease-free equilibrium is globally stable if R₀ ≤ 1 and unstable if R₀ > 1. Additionally, we make some simulations where have confirmed that the model tends to this endemic equilibrium value with realistic parameter values giving an HCV prevalence.

Keywords: hepatitis C, people who inject drugs, HCV, PWID

Procedia PDF Downloads 143
17112 Port Governance in Santos, Brazil: A Qualitative Approach

Authors: Guilherme B. B. Vieira, Rafael M. da Silva, Eliana T. P. Senna, Luiz A. S. Senna, Francisco J. Kliemann Neto

Abstract:

Given the importance of ports as links in the global supply chains and because they are key elements to induce competitiveness in their hinterlands, the number of studies devoted to port governance, management and operations has increased in the last decades. Some of these studies address the port governance model as an element to improve coordination among the actors of the port logistics chain and to generate a better port performance. In this context, the present study analyzes the governance of Port of Santos through individual interviews with port managers, based on a conceptual model that considers the key dimensions associated with port governance. The results reinforce the usefulness of the applied model and highlight some existing improvement opportunities in the port studied.

Keywords: port governance, model, Port of Santos, managers’ perception

Procedia PDF Downloads 531
17111 Structural Behavior of Composite Hollow RC Column under Combined Loads

Authors: Abdul Qader Melhm, Hussein Elrafidi

Abstract:

This paper is dealing with studying the structural behavior of a steel-composite hollow reinforced concrete (RC) column model under combined eccentric loading. The composite model consists of an inner steel tube surrounded via a concrete core with longitudinal and circular transverse reinforcement. The radius of gyration according to American and Euro specifications be calculated, in order to calculate the thinnest ratio for this type of composite column model, in addition to the flexural rigidity. Formulas for interaction diagram is given for this type of model, which is a general loading conditions in which an element is exposed to an axial load with bending at the same time. The structural capacity of this model, elastic, plastic loads and strains will be computed and compared with experimental results. The total eccentric axial load of the column model is calculated based on the effective length KL available from several relationships provided in the paper. Furthermore, the inner tube experiences buckling failure after reaching its maximum strength will be investigated.

Keywords: column, composite, eccentric, inner tube, interaction, reinforcement

Procedia PDF Downloads 191
17110 On Unification of the Electromagnetic, Strong and Weak Interactions

Authors: Hassan Youssef Mohamed

Abstract:

In this paper, we show new wave equations, and by using the equations, we concluded that the strong force and the weak force are not fundamental, but they are quantum effects for electromagnetism. This result is different from the current scientific understanding about strong and weak interactions at all. So, we introduce three evidences for our theory. First, we prove the asymptotic freedom phenomenon in the strong force by using our model. Second, we derive the nuclear shell model as an approximation of our model. Third, we prove that the leptons do not participate in the strong interactions, and we prove the short ranges of weak and strong interactions. So, our model is consistent with the current understanding of physics. Finally, we introduce the electron-positron model as the basic ingredients for protons, neutrons, and all matters, so we can study all particles interactions and nuclear interaction as many-body problems of electrons and positrons. Also, we prove the violation of parity conservation in weak interaction as evidence of our theory in the weak interaction. Also, we calculate the average of the binding energy per nucleon.

Keywords: new wave equations, the strong force, the grand unification theory, hydrogen atom, weak force, the nuclear shell model, the asymptotic freedom, electron-positron model, the violation of parity conservation, the binding energy

Procedia PDF Downloads 183
17109 Modified Plastic-Damage Model for FRP-Confined Repaired Concrete Columns

Authors: I. A Tijani, Y. F Wu, C.W. Lim

Abstract:

Concrete Damaged Plasticity Model (CDPM) is capable of modeling the stress-strain behavior of confined concrete. Nevertheless, the accuracy of the model largely depends on its parameters. To date, most research works mainly focus on the identification and modification of the parameters for fiber reinforced polymer (FRP) confined concrete prior to damage. And, it has been established that the FRP-strengthened concrete behaves differently to FRP-repaired concrete. This paper presents a modified plastic damage model within the context of the CDPM in ABAQUS for modelling of a uniformly FRP-confined repaired concrete under monotonic loading. The proposed model includes infliction damage, elastic stiffness, yield criterion and strain hardening rule. The distinct feature of damaged concrete is elastic stiffness reduction; this is included in the model. Meanwhile, the test results were obtained from a physical testing of repaired concrete. The dilation model is expressed as a function of the lateral stiffness of the FRP-jacket. The finite element predictions are shown to be in close agreement with the obtained test results of the repaired concrete. It was observed from the study that with necessary modifications, finite element method is capable of modeling FRP-repaired concrete structures.

Keywords: Concrete, FRP, Damage, Repairing, Plasticity, and Finite element method

Procedia PDF Downloads 134
17108 Pure and Mixed Nash Equilibria Domain of a Discrete Game Model with Dichotomous Strategy Space

Authors: A. S. Mousa, F. Shoman

Abstract:

We present a discrete game theoretical model with homogeneous individuals who make simultaneous decisions. In this model the strategy space of all individuals is a discrete and dichotomous set which consists of two strategies. We fully characterize the coherent, split and mixed strategies that form Nash equilibria and we determine the corresponding Nash domains for all individuals. We find all strategic thresholds in which individuals can change their mind if small perturbations in the parameters of the model occurs.

Keywords: coherent strategy, split strategy, pure strategy, mixed strategy, Nash equilibrium, game theory

Procedia PDF Downloads 146
17107 Studying Projection Distance and Flow Properties by Shape Variations of Foam Monitor

Authors: Hyun-Kyu Cho, Jun-Su Kim, Choon-Geun Huh, Geon Lee Young-Chul Park

Abstract:

In this study, the relationship between flow properties and fluid projection distance look into connection for shape variations of foam monitor. A numerical analysis technique for fluid analysis of a foam monitor was developed for the prediction. Shape of foam monitor the flow path of fluid flow according to the shape, The fluid losses were calculated from flow analysis result.. The modified model used the length increase model of the flow path, and straight line of the model. Inlet pressure was 7 [bar] and external was atmosphere codition. am. The results showed that the length increase model of the flow path and straight line of the model was improved in the nozzle projection distance.

Keywords: injection performance, finite element method, foam monitor, Projection distance

Procedia PDF Downloads 344
17106 Development of an in vitro Fermentation Chicken Ileum Microbiota Model

Authors: Bello Gonzalez, Setten Van M., Brouwer M.

Abstract:

The chicken small intestine represents a dynamic and complex organ in which the enzymatic digestion and absorption of nutrients take place. The development of an in vitro fermentation chicken small intestinal model could be used as an alternative to explore the interaction between the microbiota and nutrient metabolism and to enhance the efficacy of targeting interventions to improve animal health. In the present study we have developed an in vitro fermentation chicken ileum microbiota model for unrevealing the complex interaction of ileum microbial community under physiological conditions. A two-vessel continuous fermentation process simulating in real-time the physiological conditions of the ileum content (pH, temperature, microaerophilic/anoxic conditions, and peristaltic movements) has been standardized as a proof of concept. As inoculum, we use a pool of ileum microbial community obtained from chicken broilers at the age of day 14. The development and validation of the model provide insight into the initial characterization of the ileum microbial community and its dynamics over time-related to nutrient assimilation and fermentation. Samples can be collected at different time points and can be used to determine the microbial compositional structure, dynamics, and diversity over time. The results of studies using this in vitro model will serve as the foundation for the development of a whole small intestine in vitro fermentation chicken gastrointestinal model to complement our already established in vitro fermentation chicken caeca model. The insight gained from this model could provide us with some information about the nutritional strategies to restore and maintain chicken gut homeostasis. Moreover, the in vitro fermentation model will also allow us to study relationships between gut microbiota composition and its dynamics over time associated with nutrients, antimicrobial compounds, and disease modelling.

Keywords: broilers, in vitro model, ileum microbiota, fermentation

Procedia PDF Downloads 56
17105 Extending Image Captioning to Video Captioning Using Encoder-Decoder

Authors: Sikiru Ademola Adewale, Joe Thomas, Bolanle Hafiz Matti, Tosin Ige

Abstract:

This project demonstrates the implementation and use of an encoder-decoder model to perform a many-to-many mapping of video data to text captions. The many-to-many mapping occurs via an input temporal sequence of video frames to an output sequence of words to form a caption sentence. Data preprocessing, model construction, and model training are discussed. Caption correctness is evaluated using 2-gram BLEU scores across the different splits of the dataset. Specific examples of output captions were shown to demonstrate model generality over the video temporal dimension. Predicted captions were shown to generalize over video action, even in instances where the video scene changed dramatically. Model architecture changes are discussed to improve sentence grammar and correctness.

Keywords: decoder, encoder, many-to-many mapping, video captioning, 2-gram BLEU

Procedia PDF Downloads 106
17104 Computing Transition Intensity Using Time-Homogeneous Markov Jump Process: Case of South African HIV/AIDS Disposition

Authors: A. Bayaga

Abstract:

This research provides a technical account of estimating Transition Probability using Time-homogeneous Markov Jump Process applying by South African HIV/AIDS data from the Statistics South Africa. It employs Maximum Likelihood Estimator (MLE) model to explore the possible influence of Transition Probability of mortality cases in which case the data was based on actual Statistics South Africa. This was conducted via an integrated demographic and epidemiological model of South African HIV/AIDS epidemic. The model was fitted to age-specific HIV prevalence data and recorded death data using MLE model. Though the previous model results suggest HIV in South Africa has declined and AIDS mortality rates have declined since 2002 – 2013, in contrast, our results differ evidently with the generally accepted HIV models (Spectrum/EPP and ASSA2008) in South Africa. However, there is the need for supplementary research to be conducted to enhance the demographic parameters in the model and as well apply it to each of the nine (9) provinces of South Africa.

Keywords: AIDS mortality rates, epidemiological model, time-homogeneous markov jump process, transition probability, statistics South Africa

Procedia PDF Downloads 495