Search results for: plant disease classification
7897 Performance Tracking of Thermal Plant Systems of Kuwait and Impact on the Environment
Authors: Abdullah Alharbi
Abstract:
Purpose: This research seeks to take a holistic strategic evaluation of the thermal power plants in Kuwait at both policy and technical level in order to allow a systematic retrofitting program. The new world order in energy generation and consumption demand that sources of energy can safeguard the use of natural resources and generate minimal impacts on the environment. For Kuwait, the energy used per capita is mainly associated with desalination plants. The overall impact of thermal power plant installations manifests indisposed of seawater and the health of marine life. Design/methodology/approach: The research adopts a case study based evaluation of performance data and documents of thermal plant installations in Kuwait. Findings: Research findings on the performance of existing thermal plants demand policy benchmarking with internationally acceptable standards in order to create clarity on decisions regarding demolition, retrofitting, or renewal. Research implications: This research has the potential to strategically inform and influence the piecemeal changes to power plants, including the replacement of power generation equipment, considering the varied technologies for thermal plants. Originality/value: This research provides evidence based data that can be useful for influencing operational efficiency after a holistic evaluation of existing capacity in comparison with future demands.Keywords: energy, Kuwait, performance, stainability, tracking, thermal plant
Procedia PDF Downloads 967896 Classification of Small Towns: Three Methodological Approaches and Their Results
Authors: Jerzy Banski
Abstract:
Small towns represent a key element of settlement structure and serve a number of important functions associated with the servicing of rural areas that surround them. It is in light of this that scientific studies have paid considerable attention to the functional structure of centers of this kind, as well as the relationships with both surrounding rural areas and other urban centers. But a preliminary to such research has typically involved attempts at classifying the urban centers themselves, with this also assisting with the planning and shaping of development policy on different spatial scales. The purpose of the work is to test out the methods underpinning three different classifications of small urban centers, as well as to offer a preliminary interpretation of the outcomes obtained. Research took in 722 settlement units in Poland, granted town rights and populated by fewer than 20,000 inhabitants. A morphologically-based classification making reference to the database of topographic objects as regards land cover within the administrative boundaries of towns and cities was carried out, and it proved possible to distinguish the categories of “housing-estate”, industrial and R&R towns, as well as towns characterized by dichotomy. Equally, a functional/morphological approach taken with the same database allowed for the identification – via an alternative method – of three main categories of small towns (i.e., the monofunctional, multifunctional or oligo functional), which could then be described in far greater detail. A third, multi-criterion classification made simultaneous reference to the conditioning of a structural, a location-related, and an administrative hierarchy-related nature, allowing for distinctions to be drawn between small towns in 9 different categories. The results obtained allow for multifaceted analysis and interpretation of the geographical differentiation characterizing the distribution of Poland’s urban centers across space in the country.Keywords: small towns, classification, local planning, Poland
Procedia PDF Downloads 857895 Accumulation of Heavy Metals in Safflower (Carthamus tinctorius L.)
Authors: Violina R. Angelova, Mariana N. Perifanova-Nemska, Galina P. Uzunova, Elitsa N. Kolentsova
Abstract:
Comparative research has been conducted to allow us to determine the accumulation of heavy metals (Pb, Zn and Cd) in the vegetative and reproductive organs of safflower, and to identify the possibility of its growth on soils contaminated by heavy metals and efficacy for phytoremediation. The experiment was performed on an agricultural field contaminated by the Non-Ferrous-Metal Works (MFMW) near Plovdiv, Bulgaria. The experimental plots were situated at different distances (0.1, 0.5, 2.0, and 15 km) from the source of pollution. The contents of heavy metals in plant materials (roots, stems, leaves, seeds) were determined. The quality of safflower oils (heavy metals and fatty acid composition) was also determined. The quantitative measurements were carried out with inductively-coupled plasma (ICP). Safflower is a plant that is tolerant to heavy metals and can be referred to the hyperaccumulators of lead and cadmium and the accumulators of zinc. The plant can be successfully used in the phytoremediation of heavy metal contaminated soils. The processing of safflower seeds into oil and the use of the obtained oil will greatly reduce the cost of phytoremediation.Keywords: heavy metals, accumulation, safflower, polluted soils, phytoremediation
Procedia PDF Downloads 2627894 Characterization and Monitoring of the Yarn Faults Using Diametric Fault System
Authors: S. M. Ishtiaque, V. K. Yadav, S. D. Joshi, J. K. Chatterjee
Abstract:
The DIAMETRIC FAULTS system has been developed that captures a bi-directional image of yarn continuously in sequentially manner and provides the detailed classification of faults. A novel mathematical framework developed on the acquired bi-directional images forms the basis of fault classification in four broad categories, namely, Thick1, Thick2, Thin and Normal Yarn. A discretised version of Radon transformation has been used to convert the bi-directional images into one-dimensional signals. Images were divided into training and test sample sets. Karhunen–Loève Transformation (KLT) basis is computed for the signals from the images in training set for each fault class taking top six highest energy eigen vectors. The fault class of the test image is identified by taking the Euclidean distance of its signal from its projection on the KLT basis for each sample realization and fault class in the training set. Euclidean distance applied using various techniques is used for classifying an unknown fault class. An accuracy of about 90% is achieved in detecting the correct fault class using the various techniques. The four broad fault classes were further sub classified in four sub groups based on the user set boundary limits for fault length and fault volume. The fault cross-sectional area and the fault length defines the total volume of fault. A distinct distribution of faults is found in terms of their volume and physical dimensions which can be used for monitoring the yarn faults. It has been shown from the configurational based characterization and classification that the spun yarn faults arising out of mass variation, exhibit distinct characteristics in terms of their contours, sizes and shapes apart from their frequency of occurrences.Keywords: Euclidean distance, fault classification, KLT, Radon Transform
Procedia PDF Downloads 2637893 The Magnitude and Associated Factors of Coagulation Abnormalities Among Liver Disease Patients at the University of Gondar Comprehensive Specialized Hospital Northwest, Ethiopia
Authors: Melkamu A., Woldu B., Sitotaw C., Seyoum M., Aynalem M.
Abstract:
Background: Liver disease is any condition that affects the liver cells and their function. It is directly linked to coagulation disorders since most coagulation factors are produced by the liver. Therefore, this study aimed to assess the magnitude and associated factors of coagulation abnormalities among liver disease patients. Methods: A cross-sectional study was conducted from August to October 2022 among 307 consecutively selected study participants at the University of Gondar Comprehensive Specialized Hospital. Sociodemographic and clinical data were collected using a structured questionnaire and data extraction sheet, respectively. About 2.7 mL of venous blood was collected and analyzed by the Genrui CA51 coagulation analyzer. Data was entered into Epi-data and exported to STATA version 14 software for analysis. The finding was described in terms of frequencies and proportions. Factors associated with coagulation abnormalities were analyzed by bivariable and multivariable logistic regression. Result: In this study, a total of 307 study participants were included. Of them, the magnitude of prolonged Prothrombin Time (PT) and Activated Partial Thromboplastin Time (APTT) were 68.08% and 63.51%, respectively. The presence of anemia (AOR = 2.97, 95% CI: 1.26, 7.03), a lack of a vegetable feeding habit (AOR = 2.98, 95% CI: 1.42, 6.24), no history of blood transfusion (AOR = 3.72, 95% CI: 1.78, 7.78), and lack of physical exercise (AOR = 3.23, 95% CI: 1.60, 6.52) were significantly associated with prolonged PT. While the presence of anaemia (AOR = 3.02; 95% CI: 1.34, 6.76), lack of vegetable feeding habit (AOR = 2.64; 95% CI: 1.34, 5.20), no history of blood transfusion (AOR = 2.28; 95% CI: 1.09, 4.79), and a lack of physical exercise (AOR = 2.35; 95% CI: 1.16, 4.78) were significantly associated with abnormal APTT. Conclusion: Patients with liver disease had substantial coagulation problems. Being anemic, having a transfusion history, lack of physical activity, and lack of vegetables showed significant association with coagulopathy. Therefore, early detection and management of coagulation abnormalities in liver disease patients are critical.Keywords: coagulation, liver disease, PT, Aptt
Procedia PDF Downloads 587892 Effect of Mistranslating tRNA Alanine on Polyglutamine Aggregation
Authors: Sunidhi Syal, Rasangi Tennakoon, Patrick O'Donoghue
Abstract:
Polyglutamine (polyQ) diseases are a group of diseases related to neurodegeneration caused by repeats of the amino acid glutamine (Q) in the DNA, which translates into an elongated polyQ tract in the protein. The pathological explanation is that the polyQ tract forms cytotoxic aggregates in the neurons, leading to their degeneration. There are no cures or preventative efforts established for these diseases as of today, although the symptoms of these diseases can be relieved. This study specifically focuses on Huntington's disease, which is a type of polyQ disease in which aggregation is caused by the extended cytosine, adenine, guanine (CUG) codon repeats in the huntingtin (HTT) gene, which encodes for the huntingtin protein. Using this principle, we attempted to create six models, which included mutating wildtype tRNA alanine variant tRNA-AGC-8-1 to have glutamine anticodons CUG and UUG so serine is incorporated at glutamine sites in poly Q tracts. In the process, we were successful in obtaining tAla-8-1 CUG mutant clones in the HTTexon1 plasmids with a polyQ tract of 23Q (non-pathogenic model) and 74Q (disease model). These plasmids were transfected into mouse neuroblastoma cells to characterize protein synthesis and aggregation in normal and mistranslating cells and to investigate the effects of glutamines replaced with alanines on the disease phenotype. Notably, we observed no noteworthy differences in mean fluorescence between the CUG mutants for 23Q or 74Q; however, the Triton X-100 assay revealed a significant reduction in insoluble 74Q aggregates. We were unable to create a tAla-8-1 UUG mutant clone, and determining the difference in the effects of the two glutamine anticodons may enrich our understanding of the disease phenotype. In conclusion, by generating structural disruption with the amino acid alanine, it may be possible to find ways to minimize the toxicity of Huntington's disease caused by these polyQ aggregates. Further research is needed to advance knowledge in this field by identifying the cellular and biochemical impact of specific tRNA variants found naturally in human genomes.Keywords: Huntington's disease, polyQ, tRNA, anticodon, clone, overlap PCR
Procedia PDF Downloads 397891 Time Series Regression with Meta-Clusters
Authors: Monika Chuchro
Abstract:
This paper presents a preliminary attempt to apply classification of time series using meta-clusters in order to improve the quality of regression models. In this case, clustering was performed as a method to obtain a subgroups of time series data with normal distribution from inflow into waste water treatment plant data which Composed of several groups differing by mean value. Two simple algorithms: K-mean and EM were chosen as a clustering method. The rand index was used to measure the similarity. After simple meta-clustering, regression model was performed for each subgroups. The final model was a sum of subgroups models. The quality of obtained model was compared with the regression model made using the same explanatory variables but with no clustering of data. Results were compared by determination coefficient (R2), measure of prediction accuracy mean absolute percentage error (MAPE) and comparison on linear chart. Preliminary results allows to foresee the potential of the presented technique.Keywords: clustering, data analysis, data mining, predictive models
Procedia PDF Downloads 4647890 Aberrant Consumer Behavior in Seller’s and Consumer’s Eyes: Newly Developed Classification
Authors: Amal Abdelhadi
Abstract:
Consumer misbehavior evaluation can be markedly different based on a number of variables and different from one environment to another. Using three aberrant consumer behavior (ACB) scenarios (shoplifting, stealing from hotel rooms and software piracy) this study aimed to explore Libyan seller and consumers of ACB. Materials were collected by using a multi-method approach was employed (qualitative and quantitative approaches) in two fieldwork phases. In the phase stage, a qualitative data were collected from 26 Libyan sellers’ by face-to-face interviews. In the second stage, a consumer survey was used to collect quantitative data from 679 Libyan consumers. This study found that the consumer’s and seller’s evaluation of ACB are not always consistent. Further, ACB evaluations differed based on the form of ACB. Furthermore, the study found that not all consumer behaviors that were considered as bad behavior in other countries have the same evaluation in Libya; for example, software piracy. Therefore this study suggested a newly developed classification of ACB based on marketers’ and consumers’ views. This classification provides 9 ACB types within two dimensions (marketers’ and consumers’ views) and three degrees of behavior evaluation (good, acceptable and misbehavior).Keywords: aberrant consumer behavior, Libya, multi-method approach, planned behavior theory
Procedia PDF Downloads 5727889 Preliminary Study on Using of Thermal Energy from Effluent Water for the SBR Process of RO
Authors: Gyeong-Sung Kim, In-soo Ahn, Yong Cho
Abstract:
SBR (Sequencing Batch Reactor) process is usually applied to membrane water treatment plants to treat its concentrated wastewater. The role of SBR process is to remove COD (Chemical Oxygen Demand) and NH3 from wastewater before discharging it outside of the water treatment plant using microorganism. Microorganism’s nitrification capability is influenced by water temperature because the nitrification rate of the concentrated wastewater becomes ‘zero’ as water temperature approach 0℃. Heating system is necessary to operate SBR in winter season even though the operating cost increase sharply. The operating cost of SBR at ‘D’ RO water treatment plant in Korea was 51.8 times higher in winter (October to March) compare to summer (April to September) season in 2014. Otherwise the effluent water temperature maintained around 8℃ constantly in winter. This study focuses on application heat pump system to recover the thermal energy from the effluent water of ‘D’ RO plant so that the operating cost will be reduced.Keywords: water treatment, water thermal energy, energy saving, RO, SBR
Procedia PDF Downloads 5147888 Recent Advances of Isolated Microspore Culture Response in Durum Wheat
Authors: Zelikha Labbani
Abstract:
Many biotechnology methods have been used in plant breeding programs. The in vitro isolated microspore culture is the one of these methods. For durum wheat, the use of this technology has been limited for a long time due to the low number of embryos produced and also most regeneration plants are albina. The objective of this paper is to show that using isolated microspores culture on durum wheat is possible due to the development of the new methods using the new pretreatment of the microspores before their isolation and cultivation.Keywords: isolated microspore culture, pretreatments, in vitro embryogenesis, plant breeding program
Procedia PDF Downloads 5307887 Study of Treatment Plant of The City Chlef Study of Environmental Impact
Authors: Houmame Benbouali, Aboubakr Gribi
Abstract:
The risks, in general, exist in any project, one can hardly carry out a project without taking risks. The hydraulic works are rather complex projects in their design, realization and exploitation and are often subjected at the multiple risks being able to influence with their good performance and can have a negative impact on their environment. The present study was carried out to quote the impacts caused by purification plant STEP Chlef on the environment, it aims has studied the environmental impacts during construction and when designing this STEP, it is divided into two parts: The first part results from a research task bibliographer which contain three chapters (- cleansing of water-worn- general information on water worn-proceed of purification of waste water). The second part is an experimental part which is divided into four chapters (detailed state initial description of the station of purification-evaluation of the impacts of the project analyzes measurements and recommendations).Keywords: treatment plant, waste water, waste water treatment, Chlef
Procedia PDF Downloads 3327886 Relationships of Functional Status and Subjective Health Status among Stable Chronic Obstructive Pulmonary Disease Patients Residing in the Community
Authors: Hee-Young Song
Abstract:
Background and objectives: In 2011, the Global Initiative for Chronic Obstructive Lung Disease (GOLD) recommendations proposed a multidimensional assessment of patients’ conditions that included both functional parameters and patient-reported outcomes, with the aim to provide a comprehensive assessment of the disease, thus meeting both the needs of the patient and the role of the physician. However, few studies have evaluated patient-reported outcomes as well as objective functional assessments among individuals with chronic obstructive pulmonary disease (COPD) in clinical practice in Korea. This study was undertaken to explore the relationship between functional status assessed by the 6-minute walking distance (MWD) test and subjective health status reported by stable patients with COPD residing in community. Methods: A cross-sectional descriptive study was conducted with 118 stable COPD patients aged 69.4 years old and selected by a convenient sampling from an outpatient department of pulmonology in a tertiaryhospitals. The 6-MWD test was conducted according to standardized instructions. Participants also completed a constructed questionnaire including general characteristics, smoking history, dyspnea by modified medical research council (mMRC) scale, and health status by COPD assessment test (CAT). Anthropometric measurements were performed for body mass index (BMI). Medical records were reviewed to obtain disease-related characteristics including duration of the disease and forced expiratory volume in 1 second (FEV1). Data were analyzed using PASW statistics 20.0. Results: Mean FEV1% of participants was 63.51% and mean 6-MWD and CAT scores were 297.54m and 17.7, respectively. The 6-MWD and CAT showed significant negative correlations (r= -.280, p=.002); FEV1 and CAT did as well correlations (r= -.347, p < .001). Conclusions: Findings suggest that the better functional status an individual with COPD has, the better subjective health status is, and provide the support for using patient-reported outcomes along with functional parameters to facilitate comprehensive assessment of COPD patients in real clinical practices.Keywords: chronic obstructive pulmonary disease, COPD assessment test, functional status, patient-reported outcomes
Procedia PDF Downloads 3657885 Plasma-Assisted Nitrogen Fixation for the Elevation of Seed Germination and Plant Growth
Authors: Pradeep Lamichhane
Abstract:
Plasma-assisted nitrogen fixation is a process by which atomic nitrogen generated by plasma is converted into ammonia (NH₃) or related nitrogenous compounds. Nitrogen fixation is essential to plant because fixed inorganic nitrogen compounds are required to them for the biosynthesis of all nitrogen-containing organic compounds, such as amino acids and proteins, nucleoside triphosphates and nucleic acid. Most of our atmosphere is composed of nitrogen; however, the plant cannot absorb it directly from the air ambient. As a portion of the nitrogen cycle, nitrogen fixation fundamental for agriculture and the manufacture of fertilizer. In this study, plasma-assisted nitrogen fixation was performed by exposing a non-thermal atmospheric pressure nitrogen plasma generated a sinusoidal power supply (with an applied voltage of 10 kV and frequency of 33 kHz) on a water surface. Besides this, UV excitation of water molecules at the water interface was also done in order to disassociate water. Hydrogen and hydroxyl radical obtained from this UV photolysis electrochemically combine with nitrogen atom obtained from plasma. As a result of this, nitrogen fixation on plasma-activated water (PAW) significantly enhanced. The amount of nitrogen-based products like NOₓ and ammonia (NH₃) synthesized by this combined process of UV and plasma are 1.4 and 2.8 times higher than those obtained by plasma alone. In every 48 hours, 20 ml of plasma-activated water (pH≈3.15) for 10 minutes with moderate concentrations of NOₓ, NH₃ and hydrogen peroxide (H₂O₂) was irrigated on each corn plant (Zea Mays). It was found that the PAW has shown a significant impact on seeds germination rate and improved seedling growth. The result obtained from this experiment suggested that crop yield could increase in a short duration. In the future, this experiment could open boundless opportunities in plasma agriculture to mobilize nitrogen because nitrite, nitrate, and ammonia are more suitable for plant uptake.Keywords: plasma-assisted nitrogen fixation, nitrogen plasma, UV excitation of water, ammonia synthesis
Procedia PDF Downloads 1367884 Unsupervised Learning of Spatiotemporally Coherent Metrics
Authors: Ross Goroshin, Joan Bruna, Jonathan Tompson, David Eigen, Yann LeCun
Abstract:
Current state-of-the-art classification and detection algorithms rely on supervised training. In this work we study unsupervised feature learning in the context of temporally coherent video data. We focus on feature learning from unlabeled video data, using the assumption that adjacent video frames contain semantically similar information. This assumption is exploited to train a convolutional pooling auto-encoder regularized by slowness and sparsity. We establish a connection between slow feature learning to metric learning and show that the trained encoder can be used to define a more temporally and semantically coherent metric.Keywords: machine learning, pattern clustering, pooling, classification
Procedia PDF Downloads 4547883 Phytochemical Investigation of Butanol Extract from Launeae Arborescens
Authors: Khaled Sekoum, Nasser Belboukhari, Abelkrim Cheriti
Abstract:
Launeae arborescens (L. arborescens) is a medicinal plant having capacities of important propagation. Following its biotope, associate to different species, it is frequently notably in the whole region of Algerian southwest of Wadi– Namous until the region of Karzaz. According to our ethnopharmacological survey, L. arborescens is used for treatment of the illnesses gastric. Following our phytochemical works achieved on the polyphenols of the methanolic extract of aerial part of L. arborescens, we are also interested to investigate the butanol fraction of the water/acetone extract and isolate of the new flavonoids from this plant.Keywords: Launeae arborescens, asteraceae, flavanone, isoflavanone, glycosid flavanone
Procedia PDF Downloads 4677882 A Simulation Model and Parametric Study of Triple-Effect Desalination Plant
Authors: Maha BenHamad, Ali Snoussi, Ammar Ben Brahim
Abstract:
A steady-state analysis of triple-effect thermal vapor compressor desalination unit was performed. A mathematical model based on mass, salinity and energy balances is developed. The purpose of this paper is to develop a connection between process simulator and process optimizer in order to study the influence of several operating variables on the performance and the produced water cost of the unit. A MATLAB program is used to solve the model equations, and Aspen HYSYS is used to model the plant. The model validity is examined against a commercial plant and showed a good agreement between industrial data and simulations results. Results show that the pressures of the last effect and the compressed vapor have an important influence on the produced cost, and the increase of the difference temperature in the condenser decreases the specific heat area about 22%.Keywords: steady-state, triple effect, thermal vapor compressor, Matlab, Aspen Hysys
Procedia PDF Downloads 1707881 Evaluation of Coagulation State in Patients with End Stage Renal Disease (ESRD) by Thromboelastogram (TEG)
Authors: Mohammad Javad Esmaeili
Abstract:
Background: Coagulopathy is one of the complications with end stage renal disease with high prevalence in the world. Thromboelastogram is adynamic test for evaluation of coagulopathy and we have compared our patient's coagulation profiles with the results of TEG. Material and methods: In this study 50 patients with ESRD who were on regular hemodialysis for at least 6 months was selected with simple sampling and their coagulation profile was done with blood sampling and also TEG was done for every patient. Data were analyzed with SPSS and P<0.05 consider significant. Results: Protein s, Protein c and Antithrombin III deficiency was detected in 32%, 16% and 20% of patients and activated protein c resistance was abnormal in 2% of patients. In TEG, R time in 49% and K in 22/5% of patients was lower than normal and a-angle in 26% and maximum amplitude in 36% of patients was upper than normal (Hypercoagulable state). PS with R and ATIII with K have correlation. Conclusion: R time and K in TEG can be a suitable screening test in patients with suspicious to PS and ATIII deficiency.Keywords: thromboelastography, chronic kidney disease, Coagulating disorder, hemodialysis
Procedia PDF Downloads 747880 Plant Microbiota of Coastal Halophyte Salicornia Ramossisima
Authors: Isabel N. Sierra-Garcia, Maria J. Ferreira, Sandro Figuereido, Newton Gomes, Helena Silva, Angela Cunha
Abstract:
Plant-associated microbial communities are considered crucial in the adaptation of halophytes to coastal environments. The plant microbiota can be horizontally acquired from the environment or vertically transmitted from generation to generation via seeds. Recruiting of the microbial communities by the plant is affected by geographical location, soil source, host genotype, and cultivation practice. There is limited knowledge reported on the microbial communities in halophytes the influence of biotic and abiotic factors. In this work, the microbiota associated with the halophyte Salicornia ramosissima was investigated to determine whether the structure of bacterial communities is influenced by host genotype or soil source. For this purpose, two contrasting sites where S. ramosissima is established in the estuarine system of the Ria de Aveiro were investigated. One site corresponds to a natural salt marsh where S. ramosissima plants are present (wild plants), and the other site is a former salt pan that nowadays are subjected to intensive crop production of S. ramosissima (crop plants). Bacterial communities from the rhizosphere, seeds and root endosphere of S. ramossisima from both sites were investigated by sequencing bacterial 16S rRNA gene using the Illumina MiSeq platform. The analysis of the sequences showed that the three plant-associated compartments, rhizosphere, root endosphere, and seed endosphere, harbor distinct microbiomes. However, bacterial richness and diversity were higher in seeds of wild plants, followed by rhizosphere in both sites, while seeds in the crop site had the lowest diversity. Beta diversity measures indicated that bacterial communities in root endosphere and seeds were more similar in both wild and crop plants in contrast to rhizospheres that differed by local, indicating that the recruitment of the similar bacterial communities by the plant genotype is active in regard to the site. Moreover, bacterial communities from the root endosphere and rhizosphere were phylogenetically more similar in both sites, but the phylogenetic composition of seeds in wild and crop sites was distinct. These results indicate that cultivation practices affect the seed microbiome. However, minimal vertical transmission of bacteria from seeds to adult plants is expected. Seeds from the crop site showed higher abundances of Kushneria and Zunongwangia genera. Bacterial members of the classes Alphaprotebacteria and Bacteroidia were the most ubiquitous across sites and compartments and might encompass members of the core microbiome. These findings indicate that bacterial communities associated with S. ramosissima are more influenced by host genotype rather than local abiotic factors or cultivation practices. This study provides a better understanding of the composition of the plant microbiota in S. ramosissima , which is essential to predict the interactions between plant and associated microbial communities and their effects on plant health. This knowledge is useful to the manipulations of these microbial communities to enhance the health and productivity of this commercially important plant.Keywords: halophytes, plant microbiome, Salicornia ramosissima, agriculture
Procedia PDF Downloads 1677879 Remote Sensing through Deep Neural Networks for Satellite Image Classification
Authors: Teja Sai Puligadda
Abstract:
Satellite images in detail can serve an important role in the geographic study. Quantitative and qualitative information provided by the satellite and remote sensing images minimizes the complexity of work and time. Data/images are captured at regular intervals by satellite remote sensing systems, and the amount of data collected is often enormous, and it expands rapidly as technology develops. Interpreting remote sensing images, geographic data mining, and researching distinct vegetation types such as agricultural and forests are all part of satellite image categorization. One of the biggest challenge data scientists faces while classifying satellite images is finding the best suitable classification algorithms based on the available that could able to classify images with utmost accuracy. In order to categorize satellite images, which is difficult due to the sheer volume of data, many academics are turning to deep learning machine algorithms. As, the CNN algorithm gives high accuracy in image recognition problems and automatically detects the important features without any human supervision and the ANN algorithm stores information on the entire network (Abhishek Gupta., 2020), these two deep learning algorithms have been used for satellite image classification. This project focuses on remote sensing through Deep Neural Networks i.e., ANN and CNN with Deep Sat (SAT-4) Airborne dataset for classifying images. Thus, in this project of classifying satellite images, the algorithms ANN and CNN are implemented, evaluated & compared and the performance is analyzed through evaluation metrics such as Accuracy and Loss. Additionally, the Neural Network algorithm which gives the lowest bias and lowest variance in solving multi-class satellite image classification is analyzed.Keywords: artificial neural network, convolutional neural network, remote sensing, accuracy, loss
Procedia PDF Downloads 1587878 An Automatic Generating Unified Modelling Language Use Case Diagram and Test Cases Based on Classification Tree Method
Authors: Wassana Naiyapo, Atichat Sangtong
Abstract:
The processes in software development by Object Oriented methodology have many stages those take time and high cost. The inconceivable error in system analysis process will affect to the design and the implementation process. The unexpected output causes the reason why we need to revise the previous process. The more rollback of each process takes more expense and delayed time. Therefore, the good test process from the early phase, the implemented software is efficient, reliable and also meet the user’s requirement. Unified Modelling Language (UML) is the tool which uses symbols to describe the work process in Object Oriented Analysis (OOA). This paper presents the approach for automatically generated UML use case diagram and test cases. UML use case diagram is generated from the event table and test cases are generated from use case specifications and Graphic User Interfaces (GUI). Test cases are derived from the Classification Tree Method (CTM) that classify data to a node present in the hierarchy structure. Moreover, this paper refers to the program that generates use case diagram and test cases. As the result, it can reduce work time and increase efficiency work.Keywords: classification tree method, test case, UML use case diagram, use case specification
Procedia PDF Downloads 1617877 Design of a Small Mobile PV Driven RO Water Desalination Plant to be Deployed at the North West Coast of Egypt
Authors: Hosam A. Shawky, Amr A. Abdel Fatah, Moustafa M. S. Abo ElFad, Abdel Hameed M. El-Aassar
Abstract:
Water desalination projects based on reverse osmosis technology are being introduced in Egypt to combat drinking water shortage in remote areas. Reverse osmosis (RO) desalination is a pressure driven process. This paper focuses on the design of an integrated brackish water and seawater RO desalination and solar Photovoltaic (PV) technology. A small Mobile PV driven RO desalination plant prototype without batteries is designed and tested. Solar-driven reverse osmosis desalination can potentially break the dependence of conventional desalination on fossil fuels, reduce operational costs, and improve environmental sustainability. Moreover, the innovative features incorporated in the newly designed PV-RO plant prototype are focusing on improving the cost effectiveness of producing drinkable water in remote areas. This is achieved by maximizing energy yield through an integrated automatic single axis PV tracking system with programmed tilting angle adjustment. An autonomous cleaning system for PV modules is adopted for maximizing energy generation efficiency. RO plant components are selected so as to produce 4-5 m3/day of potable water. A basic criterion in the design of this PV-RO prototype is to produce a minimum amount of fresh water by running the plant during peak sun hours. Mobility of the system will provide potable water to isolated villages and population as well as ability to provide good drinking water to different number of people from any source that is not drinkable.Keywords: design, reverse osmosis, photovoltaic, energy, desalination, Egypt
Procedia PDF Downloads 5707876 The Prognostic Values of Current Staging Schemes in Temporal Bone Carcinoma: A Real-World Evidence-Based Study
Authors: Minzi Mao, Jianjun Ren, Yu Zhao
Abstract:
Objectives: The absence of a uniform staging scheme for temporal bone carcinoma (TBC) seriously impedes the improvement of its management strategies. Therefore, this research was aimed to investigate the prognostic values of two currently applying staging schemes, namely, the modified Pittsburgh staging system (MPB) and Stell’s T classification (Stell-T) in patients with TBC. Methods: Areal-world single-institution retrospectivereview of patientsdiagnosed with TBC between2008 and 2019 was performed. Baseline characteristics were extracted, and patients were retrospectively staged by both the MPB and Stell-T classifications. Cox regression analyseswereconductedtocomparetheoverall survival (OS). Results: A total of 69 consecutive TBC patients were included in thisstudy. Univariate analysis showed that both Stell-T and T- classifications of the modified Pittsburgh staging system (MPB-T) were significant prognostic factors for all TBC patients as well as temporal bone squamous cell carcinoma (TBSCC, n=50) patients (P < 0.05). However, only Stell-T was confirmed to be an independent prognostic factor in TBSCC patients (P = 0.004). Conclusions: Tumor extensions, quantified by both Stell-T and MPB-T classifications, are significant prognostic factors for TBC patients, especially for TBSCC patients. However, only the Stell-T classification is an independent prognostic factor for TBSCC patients.Keywords: modified pittsburgh staging system, overall survival, prognostic factor, stell’s T- classification, temporal bone carcinoma
Procedia PDF Downloads 1277875 Neuroendocrine Tumors of the Oral Cavity: A Summarized Overview
Authors: Sona Babu Rathinam, Lavanya Dharmendran, Therraddi Mutthu
Abstract:
Objectives: The purpose of this paper is to provides an overview of the neuroendocrine tumors that arise in the oral cavity. Material and Methods: An overview of the relevant papers on neuroendocrine tumors of the oral cavity by various authors was studied and summarized. Results: On the basis of the relevant studies, this paper provides an overview of the classification and histological differentiation of the neuroendocrine tumors that arise in the oral cavity. Conclusions: The basis of classification of neuroendocrine tumors is largely determined by their histologic differentiation. Though they reveal biologic heterogeneity, there should be an awareness of the occurrence of such lesions in the oral cavity to enable them to be detected and treated early.Keywords: malignant peripheral nerve sheath tumor, olfactory neuroblastoma, paraganglioma, schwannoma
Procedia PDF Downloads 787874 Amplifying Sine Unit-Convolutional Neural Network: An Efficient Deep Architecture for Image Classification and Feature Visualizations
Authors: Jamshaid Ul Rahman, Faiza Makhdoom, Dianchen Lu
Abstract:
Activation functions play a decisive role in determining the capacity of Deep Neural Networks (DNNs) as they enable neural networks to capture inherent nonlinearities present in data fed to them. The prior research on activation functions primarily focused on the utility of monotonic or non-oscillatory functions, until Growing Cosine Unit (GCU) broke the taboo for a number of applications. In this paper, a Convolutional Neural Network (CNN) model named as ASU-CNN is proposed which utilizes recently designed activation function ASU across its layers. The effect of this non-monotonic and oscillatory function is inspected through feature map visualizations from different convolutional layers. The optimization of proposed network is offered by Adam with a fine-tuned adjustment of learning rate. The network achieved promising results on both training and testing data for the classification of CIFAR-10. The experimental results affirm the computational feasibility and efficacy of the proposed model for performing tasks related to the field of computer vision.Keywords: amplifying sine unit, activation function, convolutional neural networks, oscillatory activation, image classification, CIFAR-10
Procedia PDF Downloads 1087873 Empowering a New Frontier in Heart Disease Detection: Unleashing Quantum Machine Learning
Authors: Sadia Nasrin Tisha, Mushfika Sharmin Rahman, Javier Orduz
Abstract:
Machine learning is applied in a variety of fields throughout the world. The healthcare sector has benefited enormously from it. One of the most effective approaches for predicting human heart diseases is to use machine learning applications to classify data and predict the outcome as a classification. However, with the rapid advancement of quantum technology, quantum computing has emerged as a potential game-changer for many applications. Quantum algorithms have the potential to execute substantially faster than their classical equivalents, which can lead to significant improvements in computational performance and efficiency. In this study, we applied quantum machine learning concepts to predict coronary heart diseases from text data. We experimented thrice with three different features; and three feature sets. The data set consisted of 100 data points. We pursue to do a comparative analysis of the two approaches, highlighting the potential benefits of quantum machine learning for predicting heart diseases.Keywords: quantum machine learning, SVM, QSVM, matrix product state
Procedia PDF Downloads 927872 Classification of Coughing and Breathing Activities Using Wearable and a Light-Weight DL Model
Authors: Subham Ghosh, Arnab Nandi
Abstract:
Background: The proliferation of Wireless Body Area Networks (WBAN) and Internet of Things (IoT) applications demonstrates the potential for continuous monitoring of physical changes in the body. These technologies are vital for health monitoring tasks, such as identifying coughing and breathing activities, which are necessary for disease diagnosis and management. Monitoring activities such as coughing and deep breathing can provide valuable insights into a variety of medical issues. Wearable radio-based antenna sensors, which are lightweight and easy to incorporate into clothing or portable goods, provide continuous monitoring. This mobility gives it a substantial advantage over stationary environmental sensors like as cameras and radar, which are constrained to certain places. Furthermore, using compressive techniques provides benefits such as reduced data transmission speeds and memory needs. These wearable sensors offer more advanced and diverse health monitoring capabilities. Methodology: This study analyzes the feasibility of using a semi-flexible antenna operating at 2.4 GHz (ISM band) and positioned around the neck and near the mouth to identify three activities: coughing, deep breathing, and idleness. Vector network analyzer (VNA) is used to collect time-varying complex reflection coefficient data from perturbed antenna nearfield. The reflection coefficient (S11) conveys nuanced information caused by simultaneous variations in the nearfield radiation of three activities across time. The signatures are sparsely represented with gaussian windowed Gabor spectrograms. The Gabor spectrogram is used as a sparse representation approach, which reassigns the ridges of the spectrogram images to improve their resolution and focus on essential components. The antenna is biocompatible in terms of specific absorption rate (SAR). The sparsely represented Gabor spectrogram pictures are fed into a lightweight deep learning (DL) model for feature extraction and classification. Two antenna locations are investigated in order to determine the most effective localization for three different activities. Findings: Cross-validation techniques were used on data from both locations. Due to the complex form of the recorded S11, separate analyzes and assessments were performed on the magnitude, phase, and their combination. The combination of magnitude and phase fared better than the separate analyses. Various sliding window sizes, ranging from 1 to 5 seconds, were tested to find the best window for activity classification. It was discovered that a neck-mounted design was effective at detecting the three unique behaviors.Keywords: activity recognition, antenna, deep-learning, time-frequency
Procedia PDF Downloads 37871 Potential Application of Selected Halotolerant PSB Isolated from Rhizospheric Soil of Chenopodium quinoa in Plant Growth Promotion
Authors: Ismail Mahdi, Nidal Fahsi, Mohamed Hafidi, Abdelmounaim Allaoui, Latefa Biskri
Abstract:
To meet the worldwide demand for food, smart management of arable lands is needed. This could be achieved through sustainable approaches such as the use of plant growth-promoting microorganisms including bacteria. Phosphate (P) solubilization is one of the major mechanisms of plant growth promotion by associated bacteria. In the present study, we isolated and screened 14 strains from the rhizosphere of Chenopodium quinoa wild grown in the experimental farm of UM6P and assessed their plant growth promoting properties. Next, they were identified by using 16S rRNA and Cpn60 genes sequencing as Bacillus, Pseudomonas and Enterobacter. These strains showed dispersed capacities to solubilize P (up to 346 mg L−1) following five days of incubation in NBRIP broth. We also assessed their abilities for indole acetic acid (IAA) production (up to 795,3 µg ml−1) and in vitro salt tolerance. Three Bacillus strains QA1, QA2, and S8 tolerated high salt stress induced by NaCl with a maximum tolerable concentration of 8%. Three performant isolates, QA1, S6 and QF11, were further selected for seed germination assay because of their pronounced abilities in terms of P solubilization, IAA production and salt tolerance. The early plant growth potential of tested strains showed that inoculated quinoa seeds displayed greater germination rate and higher seedlings growth under bacterial treatments. The positive effect on seed germination traits strongly suggests that the tested strains are growth promoting, halotolerant and P solubilizing bacteria which could be exploited as biofertilizers.Keywords: phosphate solubilizing bacteria, IAA, Seed germination, salt tolerance, quinoa
Procedia PDF Downloads 1307870 Activity Data Analysis for Status Classification Using Fitness Trackers
Authors: Rock-Hyun Choi, Won-Seok Kang, Chang-Sik Son
Abstract:
Physical activity is important for healthy living. Recently wearable devices which motivate physical activity are quickly developing, and become cheaper and more comfortable. In particular, fitness trackers provide a variety of information and need to provide well-analyzed, and user-friendly results. In this study, frequency analysis was performed to classify various data sets of Fitbit into simple activity status. The data from Fitbit cloud server consists of 263 subjects who were healthy factory and office workers in Korea from March 7th to April 30th, 2016. In the results, we found assumptions of activity state classification seem to be sufficient and reasonable.Keywords: activity status, fitness tracker, heart rate, steps
Procedia PDF Downloads 3827869 Impact of Nano-Anatase TiO₂ on the Germination Indices and Seedling Growth of Some Plant Species
Authors: Rayhaneh Amooaghaie, Maryam Norouzi
Abstract:
In this study, the effects of nTiO₂ on seed germination and growth of six plant species (wheat, soybean, tomato, canola, cucumber, and lettuce) were evaluated in petri dish (direct exposure) and in soil in a greenhouse experiment (soil exposure). Data demonstrate that under both culture conditions, low or mild concentrations of nTiO₂ either stimulated or had no effect on seed germination, root growth and vegetative biomass while high concentrations had an inhibitory effect. However, results showed that the impacts of nTiO₂ on plant growth in soil were partially consistent with those observed in pure culture. Based on both experiment sets, among above six species, lettuce and canola were the most susceptible and the most tolerant species to nTiO₂ toxicity. However, results revealed the impacts of nTiO₂ on plant growth in soil were less than petri dish exposure probability due to dilution in soil and complexation/aggregation of nTiO₂ that would lead to lower exposure of plants. The high concentrations of nTiO₂ caused significant reductions in fresh and dry weight of aerial parts and root and chlorophyll and carotenoids contents of all species which also coincided with further accumulation of malondialdehyde (MDA). These findings suggest that decreasing growth might be the result of an nTiO₂-induced oxidative stress and disturbance of photosynthesis systems.Keywords: chlorophyll, lipid peroxidation, nano TiO₂, seed germination
Procedia PDF Downloads 1637868 Machine Learning for Disease Prediction Using Symptoms and X-Ray Images
Authors: Ravija Gunawardana, Banuka Athuraliya
Abstract:
Machine learning has emerged as a powerful tool for disease diagnosis and prediction. The use of machine learning algorithms has the potential to improve the accuracy of disease prediction, thereby enabling medical professionals to provide more effective and personalized treatments. This study focuses on developing a machine-learning model for disease prediction using symptoms and X-ray images. The importance of this study lies in its potential to assist medical professionals in accurately diagnosing diseases, thereby improving patient outcomes. Respiratory diseases are a significant cause of morbidity and mortality worldwide, and chest X-rays are commonly used in the diagnosis of these diseases. However, accurately interpreting X-ray images requires significant expertise and can be time-consuming, making it difficult to diagnose respiratory diseases in a timely manner. By incorporating machine learning algorithms, we can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The study utilized the Mask R-CNN algorithm, which is a state-of-the-art method for object detection and segmentation in images, to process chest X-ray images. The model was trained and tested on a large dataset of patient information, which included both symptom data and X-ray images. The performance of the model was evaluated using a range of metrics, including accuracy, precision, recall, and F1-score. The results showed that the model achieved an accuracy rate of over 90%, indicating that it was able to accurately detect and segment regions of interest in the X-ray images. In addition to X-ray images, the study also incorporated symptoms as input data for disease prediction. The study used three different classifiers, namely Random Forest, K-Nearest Neighbor and Support Vector Machine, to predict diseases based on symptoms. These classifiers were trained and tested using the same dataset of patient information as the X-ray model. The results showed promising accuracy rates for predicting diseases using symptoms, with the ensemble learning techniques significantly improving the accuracy of disease prediction. The study's findings indicate that the use of machine learning algorithms can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The model developed in this study has the potential to assist medical professionals in diagnosing respiratory diseases more accurately and efficiently. However, it is important to note that the accuracy of the model can be affected by several factors, including the quality of the X-ray images, the size of the dataset used for training, and the complexity of the disease being diagnosed. In conclusion, the study demonstrated the potential of machine learning algorithms for disease prediction using symptoms and X-ray images. The use of these algorithms can improve the accuracy of disease diagnosis, ultimately leading to better patient care. Further research is needed to validate the model's accuracy and effectiveness in a clinical setting and to expand its application to other diseases.Keywords: K-nearest neighbor, mask R-CNN, random forest, support vector machine
Procedia PDF Downloads 153