Search results for: logistic regression analysis
28167 Exploring Factors Affecting Electricity Production in Malaysia
Authors: Endang Jati Mat Sahid, Hussain Ali Bekhet
Abstract:
Ability to supply reliable and secure electricity has been one of the crucial components of economic development for any country. Forecasting of electricity production is therefore very important for accurate investment planning of generation power plants. In this study, we aim to examine and analyze the factors that affect electricity generation. Multiple regression models were used to find the relationship between various variables and electricity production. The models will simultaneously determine the effects of the variables on electricity generation. Many variables influencing electricity generation, i.e. natural gas (NG), coal (CO), fuel oil (FO), renewable energy (RE), gross domestic product (GDP) and fuel prices (FP), were examined for Malaysia. The results demonstrate that NG, CO, and FO were the main factors influencing electricity generation growth. This study then identified a number of policy implications resulting from the empirical results.Keywords: energy policy, energy security, electricity production, Malaysia, the regression model
Procedia PDF Downloads 16428166 Internal Mercury Exposure Levels Correlated to DNA Methylation of Imprinting Gene H19 in Human Sperm of Reproductive-Aged Man
Authors: Zhaoxu Lu, Yufeng Ma, Linying Gao, Li Wang, Mei Qiang
Abstract:
Mercury (Hg) is a well-recognized environmental pollutant known by its toxicity of development and neurotoxicity, which may result in adverse health outcomes. However, the mechanisms underlying the teratogenic effects of Hg are not well understood. Imprinting genes are emerging regulators for fetal development subject to environmental pollutants impacts. In this study, we examined the association between paternal preconception Hg exposures and the alteration of DNA methylation of imprinting genes in human sperm DNA. A total of 618 men aged from 22 to 59 was recruited from the Reproductive Medicine Clinic of Maternal and Child Care Service Center and the Urologic Surgery Clinic of Shanxi Academy of Medical Sciences during April 2015 and March 2016. Demographic information was collected using questionnaires. Urinary Hg concentrations were measured using a fully-automatic double-channel hydride generation atomic fluorescence spectrometer. And methylation status in the DMRs of imprinting genes H19, Meg3 and Peg3 of sperm DNA were examined by bisulfite pyrosequencing in 243 participants. Spearman’s rank and multivariate regression analysis were used for correlation analysis between sperm DNA methylation status of imprinting genes and urinary Hg levels. The median concentration of Hg for participants overall was 9.09μg/l (IQR: 5.54 - 12.52μg/l; range = 0 - 71.35μg/l); no significant difference was found in median concentrations of Hg among various demographic groups (p > 0.05). The proportion of samples that a beyond intoxication criterion (10μg/l) for urinary Hg was 42.6%. Spearman’s rank correlation analysis indicates a negative correlation between urinary Hg concentrations and average DNA methylation levels in the DMRs of imprinted genes H19 (rs=﹣0.330, p = 0.000). However, there was no such a correlation found in genes of Peg3 and Meg3. Further, we analyzed of correlation between methylation level at each CpG site of H19 and Hg level, the results showed that three out of 7 CpG sites on H19 DMR, namely CpG2 (rs =﹣0.138, p = 0.031), CpG4 (rs =﹣0.369, p = 0.000) and CpG6 (rs=﹣0.228, p = 0.000), demonstrated a significant negative correlation between methylation levels and the levels of urinary Hg. After adjusting age, smoking, drinking, intake of aquatic products and education by multivariate regression analysis, the results have shown a similar correlation. In summary, mercury nonoccupational environmental exposure in reproductive-aged men associated with altered DNA methylation outcomes at DMR of imprinting gene H19 in sperm, implicating the susceptibility of the developing sperm for environmental insults.Keywords: epigenetics, genomic imprinting gene, DNA methylation, mercury, transgenerational effects, sperm
Procedia PDF Downloads 26128165 Comparison of Developed Statokinesigram and Marker Data Signals by Model Approach
Authors: Boris Barbolyas, Kristina Buckova, Tomas Volensky, Cyril Belavy, Ladislav Dedik
Abstract:
Background: Based on statokinezigram, the human balance control is often studied. Approach to human postural reaction analysis is based on a combination of stabilometry output signal with retroreflective marker data signal processing, analysis, and understanding, in this study. The study shows another original application of Method of Developed Statokinesigram Trajectory (MDST), too. Methods: In this study, the participants maintained quiet bipedal standing for 10 s on stabilometry platform. Consequently, bilateral vibration stimuli to Achilles tendons in 20 s interval was applied. Vibration stimuli caused that human postural system took the new pseudo-steady state. Vibration frequencies were 20, 60 and 80 Hz. Participant's body segments - head, shoulders, hips, knees, ankles and little fingers were marked by 12 retroreflective markers. Markers positions were scanned by six cameras system BTS SMART DX. Registration of their postural reaction lasted 60 s. Sampling frequency was 100 Hz. For measured data processing were used Method of Developed Statokinesigram Trajectory. Regression analysis of developed statokinesigram trajectory (DST) data and retroreflective marker developed trajectory (DMT) data were used to find out which marker trajectories most correlate with stabilometry platform output signals. Scaling coefficients (λ) between DST and DMT by linear regression analysis were evaluated, too. Results: Scaling coefficients for marker trajectories were identified for all body segments. Head markers trajectories reached maximal value and ankle markers trajectories had a minimal value of scaling coefficient. Hips, knees and ankles markers were approximately symmetrical in the meaning of scaling coefficient. Notable differences of scaling coefficient were detected in head and shoulders markers trajectories which were not symmetrical. The model of postural system behavior was identified by MDST. Conclusion: Value of scaling factor identifies which body segment is predisposed to postural instability. Hypothetically, if statokinesigram represents overall human postural system response to vibration stimuli, then markers data represented particular postural responses. It can be assumed that cumulative sum of particular marker postural responses is equal to statokinesigram.Keywords: center of pressure (CoP), method of developed statokinesigram trajectory (MDST), model of postural system behavior, retroreflective marker data
Procedia PDF Downloads 35028164 Awareness and Willingness of Signing 'Consent Form in Palliative Care' in Elderly Patients with End Stage Renal Disease
Authors: Hsueh Ping Peng
Abstract:
End-stage renal disease most commonly occurs in the elderly population. Elderly people are approaching the end of their lives, and when facing major life-threatening situations, apart from aggressive medical treatment, they can also choose treatment methods such as hospice care to improve their quality of life. The purpose of this study was to investigate factors associated with the awareness and willingness to sign hospice and palliative care consent forms in elderly with end-stage renal disease. This study used both quantitative, cross-sectional study designs. In the quantitative section, 110 elderly patients (aged 65 or above) with end-stage renal disease receiving conventional hemodialysis were recruited as study participants from a medical center in Taipei City. Data were collected using structured questionnaires. Study tools included basic demographic data, questionnaires on the awareness and perception of hospice and palliative care, etc. After collecting the data, data analysis was conducted using SPSS 20.0 statistical software, including descriptive statistics, chi-square test, logistic regression, and other inferential statistics. The results showed that the average age of participants was 71.6 years old, more males than females, average years of dialysis was 6.1 years and most subjects rated their self-perceived health status as fair. Results of the study are summarized as follows: Elderly people with end-stage renal disease did not have sufficient knowledge and awareness about hospice and palliative care. Influencing factors included level of education, marital status, years of dialysis and age, etc. Demographic factors influencing the signing of consent forms included gender, marital status, and age, which all showed significant impacts. Factors taken into consideration when signing consent forms included awareness of hospice care, understanding the relevant definitions of hospice care, and understanding that consent may be modified or cancelled at any time; it was predicted that people who knew more about ways to receive hospice care or more related definitions were more willing to sign the consent forms. In the qualitative study section, 10 participants who signed the consent form, five male, and 5 female, between the ages of 65-90, have completed the semi-structured interviews. Analysis of the interviews revealed six themes: (1) passing away peacefully, (2) autonomy on arrangements of life and death, (3) unwillingness to increase family and social burden, (4) friends and relatives’ experience influencing the decision to give consent, (5) sharing information to facilitate the giving of consent, (6) facing each day with ease, to reflect the experience and factors of consideration for elderly with end-stage renal disease when signing consent forms. The results of this study provides the awareness, thoughts and feelings of elderly with end-stage renal disease on signing consent forms, and serve as a future reference for the dialysis unit to enhance the promotion of hospice and palliative care and related caregiving measures, thereby improving the quality of life and care for elderly people with end-stage renal disease.Keywords: end-stage renal disease, hemodialysis, hospice and palliative care, awareness, willingness
Procedia PDF Downloads 16828163 Comparative Study between Herzberg’s and Maslow’s Theories in Maritime Transport Education
Authors: Nermin Mahmoud Gohar, Aisha Tarek Noour
Abstract:
Learner satisfaction has been a vital field of interest in the literature. Accordingly, the paper will explore the reasons behind individual differences in motivation and satisfaction. This study examines the effect of both; Herzberg’s and Maslow’s theories on learners satisfaction. A self-administered questionnaire was used to collect data from learners who were geographically widely spread around the College of Maritime Transport and Technology (CMTT) at the Arab Academy for Science, Technology and Maritime Transport (AAST&MT) in Egypt. One hundred and fifty undergraduates responded to a questionnaire survey. Respondents were drawn from two branches in Alexandria and Port Said. The data analysis used was SPSS 22 and AMOS 18. Factor analysis technique was used to find out the dimensions under study verified by Herzberg’s and Maslow’s theories. In addition, regression analysis and structural equation modeling were applied to find the effect of the above-mentioned theories on maritime transport learners’ satisfaction. Concerning the limitation of this study, it used the available number of learners in the CMTT due to the relatively low population in this field.Keywords: motivation, satisfaction, needs, education, Herzberg’s and Maslow’s theories
Procedia PDF Downloads 43628162 Assessment of Forest Resource Exploitation in the Rural Communities of District Jhelum
Authors: Rubab Zafar Kahlon, Ibtisam Butt
Abstract:
Forest resources are deteriorating and experiencing decline around the globe due to unsustainable use and over exploitation. The present study was an attempt to determine the relationship between human activities, forest resource utilization, extraction methods and practices of forest resource exploitation in the district Jhelum of Pakistan. For this purpose, primary sources of data were used which were collected from 8 villages through structured questionnaire and tabulated in Microsoft Excel 365 and SPSS 22 was used for multiple linear regression analysis. The results revealed that farming, wood cutting, animal husbandry and agro-forestry were the major occupations in the study area. Most commonly used resources included timber 26%, fuelwood 25% and fodder 19%. Methods used for resource extraction included gathering 49%, plucking 34% trapping 11% and cutting 6%. Population growth, increased demand of fuelwood and land conversion were the main reasons behind forest degradation. Results for multiple linear regression revealed that Forest based activities, sources of energy production, methods used for wood harvesting and resource extraction and use of fuelwood for energy production contributed significantly towards extensive forest resource exploitation with p value <0.5 within the study area. The study suggests that effective measures should be taken by forest department to control the unsustainable use of forest resources by stringent management interventions and awareness campaigns in Jhelum district.Keywords: forest resource, biodiversity, expliotation, human activities
Procedia PDF Downloads 9228161 The Importance of Self-Efficacy and Collective Competence Beliefs in Managerial Competence of Sports Managers'
Authors: Şenol Yanar, Sinan Çeli̇kbi̇lek, Mehmet Bayansalduz, Yusuf Can
Abstract:
Managerial competence defines as the skills that managers in managerial positions have in relation to managerial responsibilities and managerial duties. Today's organizations, which are in a competitive environment, have the desire to work with effective managers in order to be more advantageous position than the other organizations they are competing with. In today's organizations, self-efficacy and collective competence belief that determine managerial competencies of managers to assume managerial responsibility are of special importance. In this framework, the aim of this study is to examine the effects of sports managers' perceptions of self-efficacy and collective competence in managerial competence perceptions. In the study, it has also been analyzed if there is a significant difference between self-efficacy, collective competence and managerial competence levels of sports managers in terms of their gender, age, duty status, year of service and level of education. 248 sports managers, who work at the department of sports service’s central and field organization at least as a chief in the manager position, have been chosen with random sampling method and they have voluntarily participated in the study. In the study, the self-efficacy scale which was developed by Schwarzer, R. & Jerusalem, M. (1995), collective competence scale developed by Goddard, Hoy and Woolfolk-Hoy (2000) and managerial competence scale developed by Cetinkaya (2009) have been used as a data collection tool. The questionnaire form used as a data collection tool in the study includes a personal information form consisting of 5 questions; questioning gender, age, duty status, years of service and level of education. In the study, Pearson Correlation Analysis has been used for defining the correlation among self-efficacy, collective competence belief, and managerial competence levels in sports managers and regression analysis have been used to define the affect of self-efficacy and collective competence belief on the perception of managerial competence. T-test for binary grouping and ANOVA analysis have been used for more than binary groups in order to determine if there is any significant difference in the level of self-efficacy, collective and managerial competence in terms of the participants’ duty status, year of service and level of education. According to the research results, it has been found that there is a positive correlation between sports managers' self-efficacy, collective competence beliefs, and managerial competence levels. According to the results of the regression analysis, it is understood that the managers’ perception of self-efficacy and collective competence belief significantly defines the perception of managerial competence. Also, the results show that there is no significant difference in self-efficacy, collective competence, and level of managerial competence of sports managers in terms of duty status, year of service and level of education.Keywords: sports manager, self-efficacy, collective competence, managerial competence
Procedia PDF Downloads 23428160 Understanding the Linkages of Human Development and Fertility Change in Districts of Uttar Pradesh
Authors: Mamta Rajbhar, Sanjay K. Mohanty
Abstract:
India's progress in achieving replacement level of fertility is largely contingent on fertility reduction in the state of Uttar Pradesh as it accounts 17% of India's population with a low level of development. Though the TFR in the state has declined from 5.1 in 1991 to 3.4 by 2011, it conceals large differences in fertility level across districts. Using data from multiple sources this paper tests the hypothesis that the improvement in human development significantly reduces the fertility levels in districts of Uttar Pradesh. The unit of analyses is district, and fertility estimates are derived using the reverse survival method(RSM) while human development indices(HDI) are are estimated using uniform methodology adopted by UNDP for three period. The correlation and linear regression models are used to examine the relationship of fertility change and human development indices across districts. Result show the large variation and significant change in fertility level among the districts of Uttar Pradesh. During 1991-2011, eight districts had experienced a decline of TFR by 10-20%, 30 districts by 20-30% and 32 districts had experienced decline of more than 30%. On human development aspect, 17 districts recorded increase of more than 0.170 in HDI, 18 districts in the range of 0.150-0.170, 29 districts between 0.125-0.150 and six districts in the range of 0.1-0.125 during 1991-2011. Study shows significant negative relationship between HDI and TFR. HDI alone explains 70% variation in TFR. Also, the regression coefficient of TFR and HDI has become stronger over time; from -0.524 in 1991, -0.7477 by 2001 and -0.7181 by 2010. The regression analyses indicate that 0.1 point increase in HDI value will lead to 0.78 point decline in TFR. The HDI alone explains 70% variation in TFR. Improving the HDI will certainly reduce the fertility level in the districts.Keywords: Fertility, HDI, Uttar Pradesh
Procedia PDF Downloads 25028159 The Intention to Use E-Money Transaction: The Moderating Effect of Security in Conceptual Frammework
Authors: Husnil Khatimah, Fairol Halim
Abstract:
This research examines the moderating impact of security on intention to use e-money that adapted from some variables of the TAM (Technology Acceptance Model) and TPB (Theory of Planned Behavior). This study will use security as moderating variable and finds these relationship depends on customer intention to use e-money as payment tools. The conceptual framework of e-money transactions was reviewed to understand behavioral intention of consumers from perceived usefulness, perceived ease of use, perceived behavioral control and security. Quantitative method will be utilized as sources of data collection. A total of one thousand respondents will be selected using quota sampling method in Medan, Indonesia. Descriptive analysis and Multiple Regression analysis will be conducted to analyze the data. The article ended with suggestion for future studies.Keywords: e-money transaction, TAM & TPB, moderating variable, behavioral intention, conceptual paper
Procedia PDF Downloads 45428158 Dry Relaxation Shrinkage Prediction of Bordeaux Fiber Using a Feed Forward Neural
Authors: Baeza S. Roberto
Abstract:
The knitted fabric suffers a deformation in its dimensions due to stretching and tension factors, transverse and longitudinal respectively, during the process in rectilinear knitting machines so it performs a dry relaxation shrinkage procedure and thermal action of prefixed to obtain stable conditions in the knitting. This paper presents a dry relaxation shrinkage prediction of Bordeaux fiber using a feed forward neural network and linear regression models. Six operational alternatives of shrinkage were predicted. A comparison of the results was performed finding neural network models with higher levels of explanation of the variability and prediction. The presence of different reposes are included. The models were obtained through a neural toolbox of Matlab and Minitab software with real data in a knitting company of Southern Guanajuato. The results allow predicting dry relaxation shrinkage of each alternative operation.Keywords: neural network, dry relaxation, knitting, linear regression
Procedia PDF Downloads 58528157 Bankruptcy Prediction Analysis on Mining Sector Companies in Indonesia
Authors: Devina Aprilia Gunawan, Tasya Aspiranti, Inugrah Ratia Pratiwi
Abstract:
This research aims to classify the mining sector companies based on Altman’s Z-score model, and providing an analysis based on the Altman’s Z-score model’s financial ratios to provide a picture about the financial condition in mining sector companies in Indonesia and their viability in the future, and to find out the partial and simultaneous impact of each of the financial ratio variables in the Altman’s Z-score model, namely (WC/TA), (RE/TA), (EBIT/TA), (MVE/TL), and (S/TA), toward the financial condition represented by the Z-score itself. Among 38 mining sector companies listed in Indonesia Stock Exchange (IDX), 28 companies are selected as research sample according to the purposive sampling criteria.The results of this research showed that during 3 years research period at 2010-2012, the amount of the companies that was predicted to be healthy in each year was less than half of the total sample companies and not even reach up to 50%. The multiple regression analysis result showed that all of the research hypotheses are accepted, which means that (WC/TA), (RE/TA), (EBIT/TA), (MVE/TL), and (S/TA), both partially and simultaneously had an impact towards company’s financial condition.Keywords: Altman’s Z-score model, financial condition, mining companies, Indonesia
Procedia PDF Downloads 52928156 Unravelling the Impact of Job Resources: Alleviating Job-Related Anxiety to Forster Employee Creativity Within the Oil and Gas Industry
Authors: Nana Kojo Ayimadu Baafi, Kwesi Amponsah-Tawiah
Abstract:
The study investigated the relationship between job-related anxiety and employee creativity. The study further explored the role of job resources in moderating the relationship between job-related anxiety and employee creativity within the oil and gas industries. The study utilized a cross-sectional survey design. A non-probability sampling technique, specifically convenience sampling, was used to sample 1200 participants from multiple companies within the oil and gas industries. The collected data were analyzed using Regression analysis and PROCESS macro for the moderation analysis. The study empirically demonstrated a negative significant relationship between job-related anxiety and employee creativity. It also exhibited that job resources moderated the relationship between job-related anxiety and creativity. This study addresses gaps in previous studies by highlighting the significance of job resources in how job-related anxiety affects employee creativity.Keywords: employee creativity, job-related anxiety, job resource, human resources
Procedia PDF Downloads 4628155 Identifying Protein-Coding and Non-Coding Regions in Transcriptomes
Authors: Angela U. Makolo
Abstract:
Protein-coding and Non-coding regions determine the biology of a sequenced transcriptome. Research advances have shown that Non-coding regions are important in disease progression and clinical diagnosis. Existing bioinformatics tools have been targeted towards Protein-coding regions alone. Therefore, there are challenges associated with gaining biological insights from transcriptome sequence data. These tools are also limited to computationally intensive sequence alignment, which is inadequate and less accurate to identify both Protein-coding and Non-coding regions. Alignment-free techniques can overcome the limitation of identifying both regions. Therefore, this study was designed to develop an efficient sequence alignment-free model for identifying both Protein-coding and Non-coding regions in sequenced transcriptomes. Feature grouping and randomization procedures were applied to the input transcriptomes (37,503 data points). Successive iterations were carried out to compute the gradient vector that converged the developed Protein-coding and Non-coding Region Identifier (PNRI) model to the approximate coefficient vector. The logistic regression algorithm was used with a sigmoid activation function. A parameter vector was estimated for every sample in 37,503 data points in a bid to reduce the generalization error and cost. Maximum Likelihood Estimation (MLE) was used for parameter estimation by taking the log-likelihood of six features and combining them into a summation function. Dynamic thresholding was used to classify the Protein-coding and Non-coding regions, and the Receiver Operating Characteristic (ROC) curve was determined. The generalization performance of PNRI was determined in terms of F1 score, accuracy, sensitivity, and specificity. The average generalization performance of PNRI was determined using a benchmark of multi-species organisms. The generalization error for identifying Protein-coding and Non-coding regions decreased from 0.514 to 0.508 and to 0.378, respectively, after three iterations. The cost (difference between the predicted and the actual outcome) also decreased from 1.446 to 0.842 and to 0.718, respectively, for the first, second and third iterations. The iterations terminated at the 390th epoch, having an error of 0.036 and a cost of 0.316. The computed elements of the parameter vector that maximized the objective function were 0.043, 0.519, 0.715, 0.878, 1.157, and 2.575. The PNRI gave an ROC of 0.97, indicating an improved predictive ability. The PNRI identified both Protein-coding and Non-coding regions with an F1 score of 0.970, accuracy (0.969), sensitivity (0.966), and specificity of 0.973. Using 13 non-human multi-species model organisms, the average generalization performance of the traditional method was 74.4%, while that of the developed model was 85.2%, thereby making the developed model better in the identification of Protein-coding and Non-coding regions in transcriptomes. The developed Protein-coding and Non-coding region identifier model efficiently identified the Protein-coding and Non-coding transcriptomic regions. It could be used in genome annotation and in the analysis of transcriptomes.Keywords: sequence alignment-free model, dynamic thresholding classification, input randomization, genome annotation
Procedia PDF Downloads 6828154 Investigation into Relationship between Spaced Repetitions and Problems Solving Efficiency
Authors: Sidharth Talan, Rajlakshmi G. Majumdar
Abstract:
Problem-solving skill is one the few skills which is constantly endeavored to improve upon by the professionals and academicians around the world in order to sustain themselves in the ever-growing competitive environment. The given paper focuses on evaluating a hypothesized relationship between the problems solving efficiency of an individual with spaced repetitions, conducted with a time interval of one day over a period of two weeks. The paper has utilized uni-variate regression analysis technique to assess the best fit curve that can explain the significant relationship between the given two variables. The paper has incorporated Anagrams solving as the appropriate testing process for the analysis. Since Anagrams solving involves rearranging a jumbled word to form a correct word, it projects to be an efficient process to observe the attention span, visual- motor coordination and the verbal ability of an individual. Based on the analysis for a sample population of 30, it was observed that problem-solving efficiency of an individual, measured in terms of the score in each test was found to be significantly correlated with time period measured in days.Keywords: Anagrams, histogram plot, moving average curve, spacing effect
Procedia PDF Downloads 16528153 The Impact of COVID-19 on Antibiotic Prescribing in Primary Care in England: Evaluation and Risk Prediction of the Appropriateness of Type and Repeat Prescribing
Authors: Xiaomin Zhong, Alexander Pate, Ya-Ting Yang, Ali Fahmi, Darren M. Ashcroft, Ben Goldacre, Brian Mackenna, Amir Mehrkar, Sebastian C. J. Bacon, Jon Massey, Louis Fisher, Peter Inglesby, Kieran Hand, Tjeerd van Staa, Victoria Palin
Abstract:
Background: This study aimed to predict risks of potentially inappropriate antibiotic type and repeat prescribing and assess changes during COVID-19. Methods: With the approval of NHS England, we used the OpenSAFELY platform to access the TPP SystmOne electronic health record (EHR) system and selected patients prescribed antibiotics from 2019 to 2021. Multinomial logistic regression models predicted the patient’s probability of receiving an inappropriate antibiotic type or repeating the antibiotic course for each common infection. Findings: The population included 9.1 million patients with 29.2 million antibiotic prescriptions. 29.1% of prescriptions were identified as repeat prescribing. Those with same-day incident infection coded in the EHR had considerably lower rates of repeat prescribing (18.0%), and 8.6% had a potentially inappropriate type. No major changes in the rates of repeat antibiotic prescribing during COVID-19 were found. In the ten risk prediction models, good levels of calibration and moderate levels of discrimination were found. Important predictors included age, prior antibiotic prescribing, and region. Patients varied in their predicted risks. For sore throat, the range from 2.5 to 97.5th percentile was 2.7 to 23.5% (inappropriate type) and 6.0 to 27.2% (repeat prescription). For otitis externa, these numbers were 25.9 to 63.9% and 8.5 to 37.1%, respectively. Interpretation: Our study found no evidence of changes in the level of inappropriate or repeat antibiotic prescribing after the start of COVID-19. Repeat antibiotic prescribing was frequent and varied according to regional and patient characteristics. There is a need for treatment guidelines to be developed around antibiotic failure and clinicians provided with individualised patient information.Keywords: antibiotics, infection, COVID-19 pandemic, antibiotic stewardship, primary care
Procedia PDF Downloads 12028152 Technical Efficiency in Organic and Conventional Wheat Farms: Evidence from a Primary Survey from Two Districts of Ganga River Basin, India
Authors: S. P. Singh, Priya, Komal Sajwan
Abstract:
With the increasing spread of organic farming in India, costs, returns, efficiency, and social and environmental sustainability of organic vis-a-vis conventional farming systems have become topics of interest among agriculture scientists, economists, and policy analysts. A study on technical efficiency estimation under these farming systems, particularly in the Ganga River Basin, where the promotion of organic farming is incentivized, can help to understand whether the inputs are utilized to their maximum possible level and what measures can be taken to improve the efficiency. This paper, therefore, analyses the technical efficiency of wheat farms operating under organic and conventional farming systems. The study is based on a primary survey of 600 farms (300 organic ad 300 conventional) conducted in 2021 in two districts located in the Middle Ganga River Basin, India. Technical, managerial, and scale efficiencies of individual farms are estimated by applying the data envelopment analysis (DEA) methodology. The per hectare value of wheat production is taken as an output variable, and values of seeds, human labour, machine cost, plant nutrients, farm yard manure (FYM), plant protection, and irrigation charges are considered input variables for estimating the farm-level efficiencies. The post-DEA analysis is conducted using the Tobit regression model to know the efficiency determining factors. The results show that technical efficiency is significantly higher in conventional than organic farming systems due to a higher gap in scale efficiency than managerial efficiency. Further, 9.8% conventional and only 1.0% organic farms are found operating at the most productive scale size (MPSS), and 99% organic and 81% conventional farms at IRS. Organic farms perform well in managerial efficiency, but their technical efficiency is lower than conventional farms, mainly due to their relatively lower scale size. The paper suggests that technical efficiency in organic wheat can be increased by upscaling the farm size by incentivizing group/collective farming in clusters.Keywords: organic, conventional, technical efficiency, determinants, DEA, Tobit regression
Procedia PDF Downloads 9928151 Stop Texting While Learning: A Meta-Analysis of Social Networks Use and Academic Performances
Authors: Proud Arunrangsiwed, Sarinya Kongtieng
Abstract:
Teachers and university lecturers face an unsolved problem, which is students’ multitasking behaviors during class time, such as texting or playing a game. It is important to examine the most powerful predictor that can result in students’ educational performances. Meta-analysis was used to analyze the research articles, which were published with the keywords, multitasking, class performance, and texting. We selected 14 research articles published during 2008-2013 from online databases, and four articles met the predetermined inclusion criteria. Effect size of each pair of variables was used as the dependent variable. The findings revealed that the students’ expectancy and value on SNSs usages is the best significant predictor of their educational performances, followed by their motivation and ability in using SNSs, prior educational performances, usage behaviors of SNSs in class, and their personal characteristics, respectively. Future study should conduct a longitudinal design to better understand the effect of multitasking in the classroom.Keywords: meta-regression analysis, social networking sites, academic Performances, multitasking, motivation
Procedia PDF Downloads 27728150 The Investigation of Predictor Affect of Childhood Trauma, Dissociation, Alexithymia, and Gender on Dissociation in University Students
Authors: Gizem Akcan, Erdinc Ozturk
Abstract:
The purpose of the study was to determine some psychosocial variables that predict dissociation in university students. These psychosocial variables were perceived childhood trauma, alexithymia, and gender. 150 (75 males, 75 females) university students (bachelor, master and postgraduate) were enrolled in this study. They were chosen from universities in Istanbul at the education year of 2016-2017. Dissociative Experiences Scale (DES), Childhood Trauma Questionnaire (CTQ) and Toronto Alexithymia Scale were used to assess related variables. Demographic Information Form was given to students in order to have their demographic information. Frequency Distribution, Linear Regression Analysis, and t-test analysis were used for statistical analysis. Childhood trauma and alexithymia were found to have predictive value on dissociation among university students. However, physical abuse, physical neglect and emotional neglect sub dimensions of childhood trauma and externally-oriented thinking sub dimension of alexithymia did not have predictive value on dissociation. Moreover, there was no significant difference between males and females in terms of dissociation scores of participants.Keywords: childhood trauma, dissociation, alexithymia, gender
Procedia PDF Downloads 39528149 Robust Shrinkage Principal Component Parameter Estimator for Combating Multicollinearity and Outliers’ Problems in a Poisson Regression Model
Authors: Arum Kingsley Chinedu, Ugwuowo Fidelis Ifeanyi, Oranye Henrietta Ebele
Abstract:
The Poisson regression model (PRM) is a nonlinear model that belongs to the exponential family of distribution. PRM is suitable for studying count variables using appropriate covariates and sometimes experiences the problem of multicollinearity in the explanatory variables and outliers on the response variable. This study aims to address the problem of multicollinearity and outliers jointly in a Poisson regression model. We developed an estimator called the robust modified jackknife PCKL parameter estimator by combining the principal component estimator, modified jackknife KL and transformed M-estimator estimator to address both problems in a PRM. The superiority conditions for this estimator were established, and the properties of the estimator were also derived. The estimator inherits the characteristics of the combined estimators, thereby making it efficient in addressing both problems. And will also be of immediate interest to the research community and advance this study in terms of novelty compared to other studies undertaken in this area. The performance of the estimator (robust modified jackknife PCKL) with other existing estimators was compared using mean squared error (MSE) as a performance evaluation criterion through a Monte Carlo simulation study and the use of real-life data. The results of the analytical study show that the estimator outperformed other existing estimators compared with by having the smallest MSE across all sample sizes, different levels of correlation, percentages of outliers and different numbers of explanatory variables.Keywords: jackknife modified KL, outliers, multicollinearity, principal component, transformed M-estimator.
Procedia PDF Downloads 6628148 Indoor Air Pollution of the Flexographic Printing Environment
Authors: Jelena S. Kiurski, Vesna S. Kecić, Snežana M. Aksentijević
Abstract:
The identification and evaluation of organic and inorganic pollutants were performed in a flexographic facility in Novi Sad, Serbia. Air samples were collected and analyzed in situ, during 4-hours working time at five sampling points by the mobile gas chromatograph and ozonometer at the printing of collagen casing. Experimental results showed that the concentrations of isopropyl alcohol, acetone, total volatile organic compounds and ozone varied during the sampling times. The highest average concentrations of 94.80 ppm and 102.57 ppm were achieved at 200 minutes from starting the production for isopropyl alcohol and total volatile organic compounds, respectively. The mutual dependences between target hazardous and microclimate parameters were confirmed using a multiple linear regression model with software package STATISTICA 10. Obtained multiple coefficients of determination in the case of ozone and acetone (0.507 and 0.589) with microclimate parameters indicated a moderate correlation between the observed variables. However, a strong positive correlation was obtained for isopropyl alcohol and total volatile organic compounds (0.760 and 0.852) with microclimate parameters. Higher values of parameter F than Fcritical for all examined dependences indicated the existence of statistically significant difference between the concentration levels of target pollutants and microclimates parameters. Given that, the microclimate parameters significantly affect the emission of investigated gases and the application of eco-friendly materials in production process present a necessity.Keywords: flexographic printing, indoor air, multiple regression analysis, pollution emission
Procedia PDF Downloads 19728147 Prevalence of Sexually Transmitted Infections in Pregnancy, Preterm Birth, Low Birthweight, and the Importance of Prenatal Care: Data from the 2020 United States Birth Certificate
Authors: Anthony J. Kondracki, Bonzo Reddick, Jennifer L. Barkin
Abstract:
Background: Many pregnancies in the United States are affected each year with the most common sexually transmitted infections (STIs), including Chlamydia trachomatis (CT), Neisseria gonorrhoeae (NG), and Treponema pallidum (TP, syphilis), and the rate of congenital syphilis has reached a 20-year high. We sought to estimate the prevalence of CT, NG, and TP in pregnancy and the risk of preterm birth (PTB) (<37 weeks gestation) and low birthweight (LBW) (<2500g) deliveries according to utilization of prenatal care (PNC) during the COVID-19 pandemic. Methods: This study was based on the 2020 National Center for Health Statistics (NCHS) Natality File restricted to singleton births (N=3,512,858). We estimated the prevalence of CT, NG, TP, PTBand LBW across timing and the number of prenatal care (PNC) visits attended. In multivariable logistic regression models, adjusted odds ratios of PTB and LBW were assessed according to STIs and PNC status. E-values, based on effect size estimates and the lower bound of the 95% confidence intervals (CIs) of the association, examined the potential impact of unmeasured confounding. Results: CT (1.8%) was most prevalent in pregnancy, followed by NG (0.3%) and TP (0.1%). The strongest predictors of PTB and LBW were maternal NG (12.2% and 12.1%, respectively), late initiation/no PNC (8.5% and 7.6%, respectively), and ≤10 prenatal visits (13.1% and 10.3%, respectively). The odds of PTB and LBW were 2.5- to 3-fold greater for each STI in women who received ≤10 compared to >10 prenatal visits. E-values demonstrated the minimum strength of potential unmeasured confounding necessary to explain away observed associations. Conclusions: Timely initiation and receipt of recommended number of prenatal visits benefits screening and treatment of all women for STIs, including NG to substantially reduce infant morbidity and mortality related to PTB and LBW among infants born during the COVID-19 pandemic.Keywords: COVID-19 pandemic, sexually transmitted infections, preterm birth, low birthweight, prenatal care
Procedia PDF Downloads 15228146 Factors Affecting the Uptake of Modern Contraception Services in Oyo State, Nigeria
Authors: Folajinmi Oluwasina, Magbagbeola Dairo, Ikeoluwapo Ajayi
Abstract:
Contraception has proven to be an effective way of controlling fertility and spacing births. Studies have shown that contraception can avert the high-risk pregnancies and consequently reduce maternal deaths up to 32%. Uptake of modern contraception is promoted as a mechanism to address the reproductive health needs of men and women, as well as the crucial challenge of rapid population increase. A cross- sectional descriptive study using a two- stage systematic sampling technique was used to select 530 women of reproductive age out of 20,000 households. Respondents were interviewed using a semi-structured questionnaire. Knowledge was assessed on a 5 point score in which a score of ≤ 2 rated poor while perception was scored on 36 points score in which a score of ≤ 18 was rated low. Data were analyzed using descriptive statistics, Chi-square test and logistic regression at p< 0.05. There were 530 respondents. Age of respondents was 30.3 ±7.8 years, and 73.0% were married. About 90% had good knowledge of contraception while 60.8% had used contraceptives. The commonest source of information about contraception was mass media (72.8%). Minority (26.1%) obtained husbands approval before using contraceptive while 20.0% had used modern contraceptives before the first birth. Many (54.5%) of the respondents agreed that contraception helps in improving standard of living and 64.7% had good perception about contraception. Factors that hindered effective uptake of contraception services included poor service provider’s attitude (33.3%) and congestion at the service centers (4.5%). Respondents with nonuse of contraceptive before first birth are less likely to subsequently use contraceptives (OR= 0.324, 95% CI= 0.1-0.5). Husband approval of contraceptives use was the major determinant of women’s contraceptive use (OR = 3.4, 95% CI = 1.3-8.7). Respondents who had family planning centers not more than 5 kilometers walking distance to their residence did not significantly use contraception services (41.5%) more than 21.1% of those who had to take means of transportation to the service venues. This study showed that majority of the respondents were knowledgeable and aware of contraception services, but husband’s agreement on the use of modern contraceptives remains poor. Programmes that enhances husbands approval of modern contraception is thus recommended.Keywords: contraception services, service provider’s attitude, uptake, husbands approval
Procedia PDF Downloads 36528145 Associated Map and Inter-Purchase Time Model for Multiple-Category Products
Authors: Ching-I Chen
Abstract:
The continued rise of e-commerce is the main driver of the rapid growth of global online purchase. Consumers can nearly buy everything they want at one occasion through online shopping. The purchase behavior models which focus on single product category are insufficient to describe online shopping behavior. Therefore, analysis of multi-category purchase gets more and more popular. For example, market basket analysis explores customers’ buying tendency of the association between product categories. The information derived from market basket analysis facilitates to make cross-selling strategies and product recommendation system. To detect the association between different product categories, we use the market basket analysis with the multidimensional scaling technique to build an associated map which describes how likely multiple product categories are bought at the same time. Besides, we also build an inter-purchase time model for associated products to describe how likely a product will be bought after its associated product is bought. We classify inter-purchase time behaviors of multi-category products into nine types, and use a mixture regression model to integrate those behaviors under our assumptions of purchase sequences. Our sample data is from comScore which provides a panelist-label database that captures detailed browsing and buying behavior of internet users across the United States. Finding the inter-purchase time from books to movie is shorter than the inter-purchase time from movies to books. According to the model analysis and empirical results, this research finally proposes the applications and recommendations in the management.Keywords: multiple-category purchase behavior, inter-purchase time, market basket analysis, e-commerce
Procedia PDF Downloads 36828144 Sustainable Recycling Practices to Reduce Health Hazards of Municipal Solid Waste in Patna, India
Authors: Anupama Singh, Papia Raj
Abstract:
Though Municipal Solid Waste (MSW) is a worldwide problem, yet its implications are enormous in developing countries, as they are unable to provide proper Municipal Solid Waste Management (MSWM) for the large volume of MSW. As a result, the collected wastes are dumped in open dumping at landfilling sites while the uncollected wastes remain strewn on the roadside, many-a-time clogging drainage. Such unsafe and inadequate management of MSW causes various public health hazards. For example, MSW directly on contact or by leachate contaminate the soil, surface water, and ground water; open burning causes air pollution; anaerobic digestion between the piles of MSW enhance the greenhouse gases i.e., carbon dioxide and methane (CO2 and CH4) into the atmosphere. Moreover, open dumping can cause spread of vector borne disease like cholera, typhoid, dysentery, and so on. Patna, the capital city of Bihar, one of the most underdeveloped provinces in India, is a unique representation of this situation. Patna has been identified as the ‘garbage city’. Over the last decade there has been an exponential increase in the quantity of MSW generation in Patna. Though a large proportion of such MSW is recyclable in nature, only a negligible portion is recycled. Plastic constitutes the major chunk of the recyclable waste. The chemical composition of plastic is versatile consisting of toxic compounds, such as, plasticizers, like adipates and phthalates. Pigmented plastic is highly toxic and it contains harmful metals such as copper, lead, chromium, cobalt, selenium, and cadmium. Human population becomes vulnerable to an array of health problems as they are exposed to these toxic chemicals multiple times a day through air, water, dust, and food. Based on analysis of health data it can be emphasized that in Patna there has been an increase in the incidence of specific diseases, such as, diarrhoea, dysentry, acute respiratory infection (ARI), asthma, and other chronic respiratory diseases (CRD). This trend can be attributed to improper MSWM. The results were reiterated through a survey (N=127) conducted during 2014-15 in selected areas of Patna. Random sampling method of data collection was used to better understand the relationship between different variables affecting public health due to exposure to MSW and lack of MSWM. The results derived through bivariate and logistic regression analysis of the survey data indicate that segregation of wastes at source, segregation behavior, collection bins in the area, distance of collection bins from residential area, and transportation of MSW are the major determinants of public health issues. Sustainable recycling is a robust method for MSWM with its pioneer concerns being environment, society, and economy. It thus ensures minimal threat to environment and ecology consequently improving public health conditions. Hence, this paper concludes that sustainable recycling would be the most viable approach to manage MSW in Patna and would eventually reduce public health hazards.Keywords: municipal solid waste, Patna, public health, sustainable recycling
Procedia PDF Downloads 32428143 Text Localization in Fixed-Layout Documents Using Convolutional Networks in a Coarse-to-Fine Manner
Authors: Beier Zhu, Rui Zhang, Qi Song
Abstract:
Text contained within fixed-layout documents can be of great semantic value and so requires a high localization accuracy, such as ID cards, invoices, cheques, and passports. Recently, algorithms based on deep convolutional networks achieve high performance on text detection tasks. However, for text localization in fixed-layout documents, such algorithms detect word bounding boxes individually, which ignores the layout information. This paper presents a novel architecture built on convolutional neural networks (CNNs). A global text localization network and a regional bounding-box regression network are introduced to tackle the problem in a coarse-to-fine manner. The text localization network simultaneously locates word bounding points, which takes the layout information into account. The bounding-box regression network inputs the features pooled from arbitrarily sized RoIs and refine the localizations. These two networks share their convolutional features and are trained jointly. A typical type of fixed-layout documents: ID cards, is selected to evaluate the effectiveness of the proposed system. These networks are trained on data cropped from nature scene images, and synthetic data produced by a synthetic text generation engine. Experiments show that our approach locates high accuracy word bounding boxes and achieves state-of-the-art performance.Keywords: bounding box regression, convolutional networks, fixed-layout documents, text localization
Procedia PDF Downloads 19428142 Radar Track-based Classification of Birds and UAVs
Authors: Altilio Rosa, Chirico Francesco, Foglia Goffredo
Abstract:
In recent years, the number of Unmanned Aerial Vehicles (UAVs) has significantly increased. The rapid development of commercial and recreational drones makes them an important part of our society. Despite the growing list of their applications, these vehicles pose a huge threat to civil and military installations: detection, classification and neutralization of such flying objects become an urgent need. Radar is an effective remote sensing tool for detecting and tracking flying objects, but scenarios characterized by the presence of a high number of tracks related to flying birds make especially challenging the drone detection task: operator PPI is cluttered with a huge number of potential threats and his reaction time can be severely affected. Flying birds compared to UAVs show similar velocity, RADAR cross-section and, in general, similar characteristics. Building from the absence of a single feature that is able to distinguish UAVs and birds, this paper uses a multiple features approach where an original feature selection technique is developed to feed binary classifiers trained to distinguish birds and UAVs. RADAR tracks acquired on the field and related to different UAVs and birds performing various trajectories were used to extract specifically designed target movement-related features based on velocity, trajectory and signal strength. An optimization strategy based on a genetic algorithm is also introduced to select the optimal subset of features and to estimate the performance of several classification algorithms (Neural network, SVM, Logistic regression…) both in terms of the number of selected features and misclassification error. Results show that the proposed methods are able to reduce the dimension of the data space and to remove almost all non-drone false targets with a suitable classification accuracy (higher than 95%).Keywords: birds, classification, machine learning, UAVs
Procedia PDF Downloads 22228141 Association of 1565C/T Polymorphism of Integrin Beta-3 (ITGB3) Gene and Increased Risk for Myocardial Infarction in Patients with Premature Coronary Artery Disease among Iranian Population
Authors: Mehrdad Sheikhvatan, Mohammad Ali Boroumand, Mehrdad Behmanesh, Shayan Ziaee
Abstract:
Contradictory results have been obtained regarding the role of integrin, beta 3 (ITGB3) gene polymorphisms in occurrence of acute myocardial infarction (MI) in patients with coronary artery disease (CAD). Hence, we aimed to assess the association between 1565C/T polymorphism of ITGB3 gene and increased risk for acute MI in patients who suffered premature CAD in Iranian population. Our prospective study included 1000 patients (492 men and 508 women aged 21 to 55 years) referred to Tehran Heart center during a period of four years from 2008 to 2011 with the final diagnosis of premature CAD and classified into two groups with history of MI (n = 461) and without of MI (n = 539). The polymorphism variants were determined by PCR-RFLP technique by entering 10% of randomized samples and then genotyping of the polymorphism was also conducted by High Resolution Melting (HRM) method. Among study samples, 640 were followed with a median follow-up time 45.74 months for determining association of long-term major adverse cardiac events (MACE) and genotypes of polymorphisms. There was no significant difference in the frequency of 1565C/T polymorphism between the MI and non-MI groups. The frequency of wild genotype was 69.2% and 72.2%, the frequency of homozygous genotype was 21.3% and 18.4%, and the frequency of mutant genotype was 9.5% and 9.5%, respectively (p=0.505). Results were also similar when adjusted for covariates in a multivariate logistic regression model. No significant difference was also found in total-MACE free survival rate between the patients with different genotypes of 1565C/T polymorphism in both MI and non-MI group. The carriage of the 1565C/T polymorphism of ITGB3 gene seems unlikely to be a significant risk factor for the development of MI in Iranian patients with premature CAD. The presence of this ITGB3 gene polymorphism may not also predict long-term cardiac events.Keywords: coronary artery disease, myocardial infarction, gene, integrin, beta 3, polymorphism
Procedia PDF Downloads 39928140 Variations in Breast Aesthetic Reconstruction Rates between Asian and Caucasian Patients Post Mastectomy in a UK Tertiary Breast Referral Centre: A Five-Year Institutional Review
Authors: Wisam Ismail, Chole Wright, Elizabeth Baker, Cathy Tait, Mohamed Salhab, Richard Linforth
Abstract:
Background: Post-mastectomy breast reconstruction is an important treatment option for women with breast cancer with psychosocial, emotional and quality of life benefits. Despite this, Asian patients are one-fifth as likely as Caucasian patients to undergo reconstruction after mastectomy. Aim: This study aimed to assess the difference in breast reconstruction rates between Asian and Caucasian patients treated at Bradford Teaching Hospitals between May 2011 – December 2015.The long-term goal is to equip healthcare professionals to improve breast cancer treatment outcome by increasing breast reconstruction rates in this sub-population. Methods: All patients undergoing mastectomy were identified using a prospectively collected departmental database. Further data was obtained via retrospective electronic case note review. Bradford city population is about 530.000 by the end of 2015, with 67.44% of the city's population was White ethnic groups and 26.83% Asian Ethnic Groups (UK population consensus). The majority of Asian population speaks Urdu, hence an Urdu speaking breast care nurse was appointed to facilitate communications and deliver a better understanding of the reconstruction options and pathways. Statistical analysis was undertaken using the SAS program. Patients were stratified by age, self-reported ethnicity, axillary surgery and reconstruction. Relative odds were calculated using univariate and multivariate logistic regression analyses with adjustment for known confounders. An Urdu speaking breast care nurse was employed throughout this period to facilitate communication and patient decision making. Results: 506 patients underwent Mastectomy over 5 years. 72 (14%) Asian v. 434 (85%) Caucasian. Overall median age is 64 years (SD1.1). Asian median age is 62 (SD0.9), versus Caucasian 65 (SD1.2). Total axillary clearance rate was 30% (42% Asian v.30% Caucasian). Overall reconstruction rate was 126 patients (28.9%).Only 6 of 72 Asian patients (<1%) underwent breast reconstruction versus 121of 434 Caucasian (28%) (p < 0.04), Odds ratio 0.68, (95% confidence interval 0.57-0.79). Conclusions: There is a significant difference in post-mastectomy reconstruction rates between Asian and Caucasian patients. This difference is likely to be multi-factorial. Higher rates of axillary clearance in Asian patients might suggest later disease presentation and/or higher rates of subsequent adjuvant therapy, both of which, can impact on the suitability of breast reconstruction. Strategies aimed at reducing racial disparities in breast reconstruction should include symptom awareness to enable earlier presentation and facilitated communication to ensure informed decision-making.Keywords: aesthetic, Asian, breast, reconstruction
Procedia PDF Downloads 27628139 Enhancing Temporal Extrapolation of Wind Speed Using a Hybrid Technique: A Case Study in West Coast of Denmark
Authors: B. Elshafei, X. Mao
Abstract:
The demand for renewable energy is significantly increasing, major investments are being supplied to the wind power generation industry as a leading source of clean energy. The wind energy sector is entirely dependable and driven by the prediction of wind speed, which by the nature of wind is very stochastic and widely random. This s0tudy employs deep multi-fidelity Gaussian process regression, used to predict wind speeds for medium term time horizons. Data of the RUNE experiment in the west coast of Denmark were provided by the Technical University of Denmark, which represent the wind speed across the study area from the period between December 2015 and March 2016. The study aims to investigate the effect of pre-processing the data by denoising the signal using empirical wavelet transform (EWT) and engaging the vector components of wind speed to increase the number of input data layers for data fusion using deep multi-fidelity Gaussian process regression (GPR). The outcomes were compared using root mean square error (RMSE) and the results demonstrated a significant increase in the accuracy of predictions which demonstrated that using vector components of the wind speed as additional predictors exhibits more accurate predictions than strategies that ignore them, reflecting the importance of the inclusion of all sub data and pre-processing signals for wind speed forecasting models.Keywords: data fusion, Gaussian process regression, signal denoise, temporal extrapolation
Procedia PDF Downloads 13628138 Modelling the Indonesian Goverment Securities Yield Curve Using Nelson-Siegel-Svensson and Support Vector Regression
Authors: Jamilatuzzahro, Rezzy Eko Caraka
Abstract:
The yield curve is the plot of the yield to maturity of zero-coupon bonds against maturity. In practice, the yield curve is not observed but must be extracted from observed bond prices for a set of (usually) incomplete maturities. There exist many methodologies and theory to analyze of yield curve. We use two methods (the Nelson-Siegel Method, the Svensson Method, and the SVR method) in order to construct and compare our zero-coupon yield curves. The objectives of this research were: (i) to study the adequacy of NSS model and SVR to Indonesian government bonds data, (ii) to choose the best optimization or estimation method for NSS model and SVR. To obtain that objective, this research was done by the following steps: data preparation, cleaning or filtering data, modeling, and model evaluation.Keywords: support vector regression, Nelson-Siegel-Svensson, yield curve, Indonesian government
Procedia PDF Downloads 245