Search results for: electrical state prediction
10045 Physically Informed Kernels for Wave Loading Prediction
Authors: Daniel James Pitchforth, Timothy James Rogers, Ulf Tyge Tygesen, Elizabeth Jane Cross
Abstract:
Wave loading is a primary cause of fatigue within offshore structures and its quantification presents a challenging and important subtask within the SHM framework. The accurate representation of physics in such environments is difficult, however, driving the development of data-driven techniques in recent years. Within many industrial applications, empirical laws remain the preferred method of wave loading prediction due to their low computational cost and ease of implementation. This paper aims to develop an approach that combines data-driven Gaussian process models with physical empirical solutions for wave loading, including Morison’s Equation. The aim here is to incorporate physics directly into the covariance function (kernel) of the Gaussian process, enforcing derived behaviors whilst still allowing enough flexibility to account for phenomena such as vortex shedding, which may not be represented within the empirical laws. The combined approach has a number of advantages, including improved performance over either component used independently and interpretable hyperparameters.Keywords: offshore structures, Gaussian processes, Physics informed machine learning, Kernel design
Procedia PDF Downloads 19310044 Experimental Study on the Creep Characteristics of FRC Base for Composite Pavement System
Authors: Woo-Tai Jung, Sung-Yong Choi, Young-Hwan Park
Abstract:
The composite pavement system considered in this paper is composed of a functional surface layer, a fiber reinforced asphalt middle layer and a fiber reinforced lean concrete base layer. The mix design of the fiber reinforced lean concrete corresponds to the mix composition of conventional lean concrete but reinforced by fibers. The quasi-absence of research on the durability or long-term performances (fatigue, creep, etc.) of such mix design stresses the necessity to evaluate experimentally the long-term characteristics of this layer composition. This study tests the creep characteristics as one of the long-term characteristics of the fiber reinforced lean concrete layer for composite pavement using a new creep device. The test results reveal that the lean concrete mixed with fiber reinforcement and fly ash develops smaller creep than the conventional lean concrete. The results of the application of the CEB-FIP prediction equation indicate that a modified creep prediction equation should be developed to fit with the new mix design of the layer.Keywords: creep, lean concrete, pavement, fiber reinforced concrete, base
Procedia PDF Downloads 52210043 Analysis of State Documents on Environmental Awareness Aspects in Kazakhstan
Authors: Y. A. Kumar
Abstract:
Environmental awareness issues in Kazakhstan are one of the most undermined topics both among the public community and in terms of state rhetoric. In the context of official state documents, so far only two official environmental codes and national programs called Zhasyl Kazakhstan were introduced in the country in 2021. While on the one hand the Environmental Code was introduced with the purpose to modernize, frame and enlist main legislative aspects on various sectors of environmental law in Kazakhstan, on the other hand, the Zhasyl Kazakhstan Program has been implemented as a state program to address with numerous environmental projects various environmental issues ranging from air pollution to waste management as well as aspects related to ecological education and low environmental awareness matters. In this regard, the main goal of this paper is to analyze critically the main content of both of these documents with a particular focus on sections related to environmental awareness-raising aspects. For that, this paper applied a subjective-based content analysis in order to identify interesting insights on regulatory legal aspects, future research streams, and uncovering of improved legislative frameworks in the context of an environmental awareness issue. Apart from that, five open-ended questions were sent out to the Ministry of Ecology, Geology and Natural Resources to obtain primary data on the state’s view in regards to current previous, recent and future aspects of environmental awareness issues in the country.Keywords: Kazakhstan, environmental awareness, environmental code, Zhasyl Kazakhstan, content analysis
Procedia PDF Downloads 9410042 Friction Stir Welding Process as a Solid State Joining -A Review
Authors: Mohd Anees Siddiqui, S. A. H. Jafri, Shahnawaz Alam
Abstract:
Through this paper an attempt is made to review a special welding technology of friction stir welding (FSW) which is a solid-state joining. Friction stir welding is used for joining of two plates which are applied compressive force by using fixtures over the work table. This is a non consumable type welding technique in which a rotating tool of cylindrical shape is used. Process parameters such as tool geometry, joint design and process speed are discussed in the paper. Comparative study of Friction stir welding with other welding techniques such as MIG, TIG & GMAW is also done. Some light is put on several major applications of friction stir welding in different industries. Quality and environmental aspects of friction stir welding is also discussed.Keywords: friction stir welding (FSW), process parameters, tool, solid state joining processes
Procedia PDF Downloads 50310041 Establishing a Surrogate Approach to Assess the Exposure Concentrations during Coating Process
Authors: Shan-Hong Ying, Ying-Fang Wang
Abstract:
A surrogate approach was deployed for assessing exposures of multiple chemicals at the selected working area of coating processes and applied to assess the exposure concentration of similar exposed groups using the same chemicals but different formula ratios. For the selected area, 6 to 12 portable photoionization detector (PID) were placed uniformly in its workplace to measure its total VOCs concentrations (CT-VOCs) for 6 randomly selected workshifts. Simultaneously, one sampling strain was placed beside one of these portable PIDs, and the collected air sample was analyzed for individual concentration (CVOCi) of 5 VOCs (xylene, butanone, toluene, butyl acetate, and dimethylformamide). Predictive models were established by relating the CT-VOCs to CVOCi of each individual compound via simple regression analysis. The established predictive models were employed to predict each CVOCi based on the measured CT-VOC for each the similar working area using the same portable PID. Results show that predictive models obtained from simple linear regression analyses were found with an R2 = 0.83~0.99 indicating that CT-VOCs were adequate for predicting CVOCi. In order to verify the validity of the exposure prediction model, the sampling analysis of the above chemical substances was further carried out and the correlation between the measured value (Cm) and the predicted value (Cp) was analyzed. It was found that there is a good correction between the predicted value and measured value of each measured chemical substance (R2=0.83~0.98). Therefore, the surrogate approach could be assessed the exposure concentration of similar exposed groups using the same chemicals but different formula ratios. However, it is recommended to establish the prediction model between the chemical substances belonging to each coater and the direct-reading PID, which is more representative of reality exposure situation and more accurately to estimate the long-term exposure concentration of operators.Keywords: exposure assessment, exposure prediction model, surrogate approach, TVOC
Procedia PDF Downloads 15010040 Game Structure and Spatio-Temporal Action Detection in Soccer Using Graphs and 3D Convolutional Networks
Authors: Jérémie Ochin
Abstract:
Soccer analytics are built on two data sources: the frame-by-frame position of each player on the terrain and the sequences of events, such as ball drive, pass, cross, shot, throw-in... With more than 2000 ball-events per soccer game, their precise and exhaustive annotation, based on a monocular video stream such as a TV broadcast, remains a tedious and costly manual task. State-of-the-art methods for spatio-temporal action detection from a monocular video stream, often based on 3D convolutional neural networks, are close to reach levels of performances in mean Average Precision (mAP) compatibles with the automation of such task. Nevertheless, to meet their expectation of exhaustiveness in the context of data analytics, such methods must be applied in a regime of high recall – low precision, using low confidence score thresholds. This setting unavoidably leads to the detection of false positives that are the product of the well documented overconfidence behaviour of neural networks and, in this case, their limited access to contextual information and understanding of the game: their predictions are highly unstructured. Based on the assumption that professional soccer players’ behaviour, pose, positions and velocity are highly interrelated and locally driven by the player performing a ball-action, it is hypothesized that the addition of information regarding surrounding player’s appearance, positions and velocity in the prediction methods can improve their metrics. Several methods are compared to build a proper representation of the game surrounding a player, from handcrafted features of the local graph, based on domain knowledge, to the use of Graph Neural Networks trained in an end-to-end fashion with existing state-of-the-art 3D convolutional neural networks. It is shown that the inclusion of information regarding surrounding players helps reaching higher metrics.Keywords: fine-grained action recognition, human action recognition, convolutional neural networks, graph neural networks, spatio-temporal action recognition
Procedia PDF Downloads 2410039 Open Forging of Cylindrical Blanks Subjected to Lateral Instability
Authors: A. H. Elkholy, D. M. Almutairi
Abstract:
The successful and efficient execution of a forging process is dependent upon the correct analysis of loading and metal flow of blanks. This paper investigates the Upper Bound Technique (UBT) and its application in the analysis of open forging process when a possibility of blank bulging exists. The UBT is one of the energy rate minimization methods for the solution of metal forming process based on the upper bound theorem. In this regards, the kinematically admissible velocity field is obtained by minimizing the total forging energy rate. A computer program is developed in this research to implement the UBT. The significant advantages of this method is the speed of execution while maintaining a fairly high degree of accuracy and the wide prediction capability. The information from this analysis is useful for the design of forging processes and dies. Results for the prediction of forging loads and stresses, metal flow and surface profiles with the assured benefits in terms of press selection and blank preform design are outlined in some detail. The obtained predictions are ready for comparison with both laboratory and industrial results.Keywords: forging, upper bound technique, metal forming, forging energy, forging die/platen
Procedia PDF Downloads 29310038 Urban Big Data: An Experimental Approach to Building-Value Estimation Using Web-Based Data
Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin
Abstract:
Current real-estate value estimation, difficult for laymen, usually is performed by specialists. This paper presents an automated estimation process based on big data and machine-learning technology that calculates influences of building conditions on real-estate price measurement. The present study analyzed actual building sales sample data for Nonhyeon-dong, Gangnam-gu, Seoul, Korea, measuring the major influencing factors among the various building conditions. Further to that analysis, a prediction model was established and applied using RapidMiner Studio, a graphical user interface (GUI)-based tool for derivation of machine-learning prototypes. The prediction model is formulated by reference to previous examples. When new examples are applied, it analyses and predicts accordingly. The analysis process discerns the crucial factors effecting price increases by calculation of weighted values. The model was verified, and its accuracy determined, by comparing its predicted values with actual price increases.Keywords: apartment complex, big data, life-cycle building value analysis, machine learning
Procedia PDF Downloads 37410037 Jewish Law in Israel: State, Law, and Religion
Authors: Yuval Sinai
Abstract:
As part of the historical, religious and cultural heritage of the Jewish people, Jewish law is part of the legal system in Israel, which is a Jewish and democratic state. The proper degree of use of Jewish law in judicial decisions is an issue that crops up in Israeli law from time to time. This was a burning question in the 1980s in the wake of the enactment of the Foundations of Law Act 1980, which declared Jewish heritage a supplementary legal method to Israeli law. The enactment of the Basic Law: Human Dignity and Liberty 1992, which decreed that the basic Israeli legal principles must be interpreted in light of the values of a Jewish and democratic state, marks a significant change in the impact of Judaism in the law created and applied by the courts. Both of these legislative developments revived the initiative to grant a central status to Jewish law within the state law. How should Jewish law be applied in Israel’s secular courts? This is not a simple question. It is not merely a question of identifying the relevant rule of Jewish law or tracing its development from the Talmud to modern times. Nor is it the same as asking how a rabbinic court would handle the issue. It is a matter of delicate judgment to distill out of the often conflicting Jewish law sources a rule that will fit into the existing framework of Israeli law so as to advance a policy that will best promote the interests of Israel’s society. We shall point out the occasional tensions between Jewish religious law and secular law, and introduce opinions as to how reconciliation of the two can best be achieved in light of Jewish legal tradition and in light of the reality in the modern State of Israel.Keywords: law and politics, law and religion, comparative law, law and society
Procedia PDF Downloads 7310036 Machine Learning Assisted Prediction of Sintered Density of Binary W(MO) Alloys
Authors: Hexiong Liu
Abstract:
Powder metallurgy is the optimal method for the consolidation and preparation of W(Mo) alloys, which exhibit excellent application prospects at high temperatures. The properties of W(Mo) alloys are closely related to the sintered density. However, controlling the sintered density and porosity of these alloys is still challenging. In the past, the regulation methods mainly focused on time-consuming and costly trial-and-error experiments. In this study, the sintering data for more than a dozen W(Mo) alloys constituted a small-scale dataset, including both solid and liquid phases of sintering. Furthermore, simple descriptors were used to predict the sintered density of W(Mo) alloys based on the descriptor selection strategy and machine learning method (ML), where the ML algorithm included the least absolute shrinkage and selection operator (Lasso) regression, k-nearest neighbor (k-NN), random forest (RF), and multi-layer perceptron (MLP). The results showed that the interpretable descriptors extracted by our proposed selection strategy and the MLP neural network achieved a high prediction accuracy (R>0.950). By further predicting the sintered density of W(Mo) alloys using different sintering processes, the error between the predicted and experimental values was less than 0.063, confirming the application potential of the model.Keywords: sintered density, machine learning, interpretable descriptors, W(Mo) alloy
Procedia PDF Downloads 8210035 Prospectivity Mapping of Orogenic Lode Gold Deposits Using Fuzzy Models: A Case Study of Saqqez Area, Northwestern Iran
Authors: Fanous Mohammadi, Majid H. Tangestani, Mohammad H. Tayebi
Abstract:
This research aims to evaluate and compare Geographical Information Systems (GIS)-based fuzzy models for producing orogenic gold prospectivity maps in the Saqqez area, NW of Iran. Gold occurrences are hosted in sericite schist and mafic to felsic meta-volcanic rocks in this area and are associated with hydrothermal alterations that extend over ductile to brittle shear zones. The predictor maps, which represent the Pre-(Source/Trigger/Pathway), syn-(deposition/physical/chemical traps) and post-mineralization (preservation/distribution of indicator minerals) subsystems for gold mineralization, were generated using empirical understandings of the specifications of known orogenic gold deposits and gold mineral systems and were then pre-processed and integrated to produce mineral prospectivity maps. Five fuzzy logic operators, including AND, OR, Fuzzy Algebraic Product (FAP), Fuzzy Algebraic Sum (FAS), and GAMMA, were applied to the predictor maps in order to find the most efficient prediction model. Prediction-Area (P-A) plots and field observations were used to assess and evaluate the accuracy of prediction models. Mineral prospectivity maps generated by AND, OR, FAP, and FAS operators were inaccurate and, therefore, unable to pinpoint the exact location of discovered gold occurrences. The GAMMA operator, on the other hand, produced acceptable results and identified potentially economic target sites. The P-A plot revealed that 68 percent of known orogenic gold deposits are found in high and very high potential regions. The GAMMA operator was shown to be useful in predicting and defining cost-effective target sites for orogenic gold deposits, as well as optimizing mineral deposit exploitation.Keywords: mineral prospectivity mapping, fuzzy logic, GIS, orogenic gold deposit, Saqqez, Iran
Procedia PDF Downloads 12110034 State’s Responsibility of Space Debris
Authors: Athari Farhani
Abstract:
Abstract The existence of space debris is a direct implication of human activities in outer space. The amount of orbital debris resulting from human exploration and use of outer space has been steadily increasing in the history of human exploration and use of outer space, so that space debris in the responsibility of the launching state. Space debris not only hs a direct impact on environmentalpollution but can also harm and endanger the safety of human life. Despite the legal provisions governing the exploration and use of outer space, both international space law and liability convention, however, these legal provisions are only basic prinsiples, so that further thought or effort are needed, such as new international legal instruments to regulate the existence of space debris. The method used in this research is normative juridical with an approach to written legal regulation, especially international agreements related to space law.Keywords: state’s responsibility, space debris, outerspace, international law
Procedia PDF Downloads 10510033 Long Short-Term Memory Based Model for Modeling Nicotine Consumption Using an Electronic Cigarette and Internet of Things Devices
Authors: Hamdi Amroun, Yacine Benziani, Mehdi Ammi
Abstract:
In this paper, we want to determine whether the accurate prediction of nicotine concentration can be obtained by using a network of smart objects and an e-cigarette. The approach consists of, first, the recognition of factors influencing smoking cessation such as physical activity recognition and participant’s behaviors (using both smartphone and smartwatch), then the prediction of the configuration of the e-cigarette (in terms of nicotine concentration, power, and resistance of e-cigarette). The study uses a network of commonly connected objects; a smartwatch, a smartphone, and an e-cigarette transported by the participants during an uncontrolled experiment. The data obtained from sensors carried in the three devices were trained by a Long short-term memory algorithm (LSTM). Results show that our LSTM-based model allows predicting the configuration of the e-cigarette in terms of nicotine concentration, power, and resistance with a root mean square error percentage of 12.9%, 9.15%, and 11.84%, respectively. This study can help to better control consumption of nicotine and offer an intelligent configuration of the e-cigarette to users.Keywords: Iot, activity recognition, automatic classification, unconstrained environment
Procedia PDF Downloads 22410032 Effect of Carbon Nanotubes on Nanocomposite from Nanofibrillated Cellulose
Authors: M. Z. Shazana, R. Rosazley, M. A. Izzati, A. W. Fareezal, I. Rushdan, A. B. Suriani, S. Zakaria
Abstract:
There is an increasing interest in the development of flexible energy storage for application of Carbon Nanotubes and nanofibrillated cellulose (NFC). In this study, nanocomposite is consisting of Carbon Nanotube (CNT) mixed with suspension of nanofibrillated cellulose (NFC) from Oil Palm Empty Fruit Bunch (OPEFB). The use of Carbon Nanotube (CNT) as additive nanocomposite was improved the conductivity and mechanical properties of nanocomposite from nanofibrillated cellulose (NFC). The nanocomposite were characterized for electrical conductivity and mechanical properties in uniaxial tension, which were tensile to measure the bond of fibers in nanocomposite. The processing route is environmental friendly which leads to well-mixed structures and good results as well.Keywords: carbon nanotube (CNT), nanofibrillated cellulose (NFC), mechanical properties, electrical conductivity
Procedia PDF Downloads 33410031 Conflict of the Thai-Malaysian Gas Pipeline Project
Authors: Nopadol Burananuth
Abstract:
This research was aimed to investigate (1) the relationship among local social movements, non-governmental Organization activities and state measures deployment; and (2) the effects of local social movements, non-governmental Organization activities, and state measures deployment on conflict of local people towards the Thai-Malaysian gas pipeline project. These people included 1,000 residents of the four districts in Songkhla province. The methods of data analysis consist of multiple regression analysis. The results of the analysis showed that: (1) local social movements depended on information, and mass communication; deployment of state measures depended on compromise, coordination, and mass communication; and (2) the conflict of local people depended on mobilization, negotiation, and campaigning for participation of people in the project. Thus, it is recommended that to successfully implement any government policy, consideration must be paid to the conflict of local people, mobilization, negotiation, and campaigning for people’s participation in the project.Keywords: conflict, NGO activities, social movements, state measures
Procedia PDF Downloads 32210030 Affects Associations Analysis in Emergency Situations
Authors: Joanna Grzybowska, Magdalena Igras, Mariusz Ziółko
Abstract:
Association rule learning is an approach for discovering interesting relationships in large databases. The analysis of relations, invisible at first glance, is a source of new knowledge which can be subsequently used for prediction. We used this data mining technique (which is an automatic and objective method) to learn about interesting affects associations in a corpus of emergency phone calls. We also made an attempt to match revealed rules with their possible situational context. The corpus was collected and subjectively annotated by two researchers. Each of 3306 recordings contains information on emotion: (1) type (sadness, weariness, anxiety, surprise, stress, anger, frustration, calm, relief, compassion, contentment, amusement, joy) (2) valence (negative, neutral, or positive) (3) intensity (low, typical, alternating, high). Also, additional information, that is a clue to speaker’s emotional state, was annotated: speech rate (slow, normal, fast), characteristic vocabulary (filled pauses, repeated words) and conversation style (normal, chaotic). Exponentially many rules can be extracted from a set of items (an item is a previously annotated single information). To generate the rules in the form of an implication X → Y (where X and Y are frequent k-itemsets) the Apriori algorithm was used - it avoids performing needless computations. Then, two basic measures (Support and Confidence) and several additional symmetric and asymmetric objective measures (e.g. Laplace, Conviction, Interest Factor, Cosine, correlation coefficient) were calculated for each rule. Each applied interestingness measure revealed different rules - we selected some top rules for each measure. Owing to the specificity of the corpus (emergency situations), most of the strong rules contain only negative emotions. There are though strong rules including neutral or even positive emotions. Three examples of the strongest rules are: {sadness} → {anxiety}; {sadness, weariness, stress, frustration} → {anger}; {compassion} → {sadness}. Association rule learning revealed the strongest configurations of affects (as well as configurations of affects with affect-related information) in our emergency phone calls corpus. The acquired knowledge can be used for prediction to fulfill the emotional profile of a new caller. Furthermore, a rule-related possible context analysis may be a clue to the situation a caller is in.Keywords: data mining, emergency phone calls, emotional profiles, rules
Procedia PDF Downloads 40810029 Influence of Flexible Plate's Contour on Dynamic Behavior of High Speed Flexible Coupling of Combat Aircraft
Authors: Dineshsingh Thakur, S. Nagesh, J. Basha
Abstract:
A lightweight High Speed Flexible Coupling (HSFC) is used to connect the Engine Gear Box (EGB) with an Accessory Gear Box (AGB) of the combat aircraft. The HSFC transmits the power at high speeds ranging from 10000 to 18000 rpm from the EGB to AGB. The HSFC is also accommodates larger misalignments resulting from thermal expansion of the aircraft engine and mounting arrangement. The HSFC has the series of metallic contoured annular thin cross-sectioned flexible plates to accommodate the misalignments. The flexible plates are accommodating the misalignment by the elastic material flexure. As the HSFC operates at higher speed, the flexural and axial resonance frequencies are to be kept away from the operating speed and proper prediction is required to prevent failure in the transmission line of a single engine fighter aircraft. To study the influence of flexible plate’s contour on the lateral critical speed (LCS) of HSFC, a mathematical model of HSFC as a elven rotor system is developed. The flexible plate being the bending member of the system, its bending stiffness which results from the contoured governs the LCS. Using transfer matrix method, Influence of various flexible plate contours on critical speed is analyzed. In the above analysis, the support bearing flexibility on critical speed prediction is also considered. Based on the study, a model is built with the optimum contour of flexible plate, for validation by experimental modal analysis. A good correlation between the theoretical prediction and model behavior is observed. From the study, it is found that the flexible plate’s contour is playing vital role in modification of system’s dynamic behavior and the present model can be extended for the development of similar type of flexible couplings for its computational simplicity and reliability.Keywords: flexible rotor, critical speed, experimental modal analysis, high speed flexible coupling (HSFC), misalignment
Procedia PDF Downloads 21510028 Recombination Rate Coefficients for NIII and OIV Ions
Authors: Shahin A. Abdel-Naby, Asad T. Hassan
Abstract:
Electron-ion recombination data are needed for plasma modeling. The recombination processes include radiative recombination (RR), dielectronic recombination (DR), and trielectronic recombination (TR). When a free electron is captured by an ion with simultaneous excitation of its core, a doubly-exited intermediate state may be formed. The doubly excited state relaxes either by electron emission (autoionization) or by radiative decay (photon emission). DR process takes place when the relaxation occurs to a bound state by photon emission. Reliable laboratory astrophysics data (theory and experiment) for DR rate coefficients are needed to determine the charge state distribution in photoionized sources such as X-ray binaries and active galactic nuclei. DR rate coefficients for NIII and OIV ions are calculated using state-of-the-art multi-configuration Breit-Pauli atomic structure AUTOSTRUCTURE collisional package within the generalized collisional-radiative framework. Level-resolved calculations for RR and DR rate coefficients from the ground and metastable initial states are produced in an intermediate coupling scheme associated with Δn = 0 (2→2) and Δn = 1 (2 →3) core-excitations. DR cross sections for these ions are convoluted with the experimental electron-cooler temperatures to produce DR rate coefficients. Good agreements are found between these rate coefficients and the experimental measurements performed at the CRYRING heavy-ion storage ring for both ions.Keywords: atomic data, atomic process, electron-ion collision, plasmas
Procedia PDF Downloads 15110027 Effect of the Addition of Additives on the Improvement of the Performances of Lead–Acid Batteries
Authors: Malika Foudia, Larbi Zerroual
Abstract:
The objective of this work is to improve the electrical proprieties of lead-acid battery with the addition of additives in electrolyte and in the cured plates before oxidation. The results showed that the addition of surfactant in sulfuric acid and 3% mineral additive in the cured plates change the morphology and the crystallite size of PAM after oxidation. The discharge capacity increases with the decrease of the crystallite size and the resistance of the active mass. This shows that the addition of mineral additive and the surfactant additive to the PAM, the electrical performance and the cycle life of lead- acid battery are significantly increases.Keywords: lead-acid battery, additives, positive plate, impedance (EIS).
Procedia PDF Downloads 41810026 The Power House of Mind: Determination of Action
Authors: Sheetla Prasad
Abstract:
The focus issue of this article is to determine the mechanism of mind with geometrical analysis of human face. Research paradigm has been designed for study of spatial dynamic of face and it was found that different shapes of face have their own function for determine the action of mind. The functional ratio (FR) of face has determined the behaviour operation of human beings. It is not based on the formulistic approach of prediction but scientific dogmatism and mathematical analysis is the root of the prediction of behaviour. For analysis, formulae were developed and standardized. It was found that human psyche is designed in three forms; manipulated, manifested and real psyche. Functional output of the psyche has been determined by degree of energy flow in the psyche and reserve energy for future. Face is the recipient and transmitter of energy but distribution and control is the possible by mind. Mind directs behaviour. FR indicates that the face is a power house of energy and as per its geometrical domain force of behaviours has been designed and actions are possible in the nature of individual. The impact factor of this study is the promotion of human capital for job fitness objective and minimization of criminalization in society.Keywords: functional ratio, manipulated psyche, manifested psyche, real psyche
Procedia PDF Downloads 45310025 An Empirical Study to Predict Myocardial Infarction Using K-Means and Hierarchical Clustering
Authors: Md. Minhazul Islam, Shah Ashisul Abed Nipun, Majharul Islam, Md. Abdur Rakib Rahat, Jonayet Miah, Salsavil Kayyum, Anwar Shadaab, Faiz Al Faisal
Abstract:
The target of this research is to predict Myocardial Infarction using unsupervised Machine Learning algorithms. Myocardial Infarction Prediction related to heart disease is a challenging factor faced by doctors & hospitals. In this prediction, accuracy of the heart disease plays a vital role. From this concern, the authors have analyzed on a myocardial dataset to predict myocardial infarction using some popular Machine Learning algorithms K-Means and Hierarchical Clustering. This research includes a collection of data and the classification of data using Machine Learning Algorithms. The authors collected 345 instances along with 26 attributes from different hospitals in Bangladesh. This data have been collected from patients suffering from myocardial infarction along with other symptoms. This model would be able to find and mine hidden facts from historical Myocardial Infarction cases. The aim of this study is to analyze the accuracy level to predict Myocardial Infarction by using Machine Learning techniques.Keywords: Machine Learning, K-means, Hierarchical Clustering, Myocardial Infarction, Heart Disease
Procedia PDF Downloads 20310024 Effect of Ba Addition on the Dielectric Properties and Microstructure of (Ca₀.₆Sr₀.₄)ZrO₃
Authors: Ying-Chieh Lee, Huei-Jyun Shih, Ting-Yang Wang, Christian Pithan
Abstract:
This study focuses on the synthesis and characterization of Ca₀.₆Sr₀.₄₋ₓBaₓZrO₃ (x = 0.01, 0.04, 0.07, and 0.10) ceramics prepared via the solid-state method and sintered at 1450 °C. The impact of Sr substitution by Ba at the A-site of the perovskite structure on crystalline properties and microwave dielectric performance was investigated. The experimental results show the formation of a single-phase structure, Ca₀.₆₁₂Sr₀.₃₈₈ZrO₃(CSZ), across the entire range of x values. It is evident that the Ca₀.₆Sr₀.₃₉Ba₀.₀₁ZrO₃ ceramics exhibit the highest sintering density and the lowest porosity. These ceramics exhibit impressive dielectric properties, including a high permittivity of 28.38, low dielectric loss of 4.0×10⁻⁴, and a Q factor value of 22988 at 9~10GHz. The research reveals that the influences of Sr substitution by Ba in enhancing the microwave dielectric properties of Ca₀.₆₁₂Sr₀.₃₈₈ZrO₃ ceramics and the impedance curves clearly showed effects on the electrical properties.Keywords: NPO dielectric material, (Ca₀.₆Sr₀.₄)ZrO₃, microwave dielectric properties
Procedia PDF Downloads 5810023 Convex Restrictions for Outage Constrained MU-MISO Downlink under Imperfect Channel State Information
Authors: A. Preetha Priyadharshini, S. B. M. Priya
Abstract:
In this paper, we consider the MU-MISO downlink scenario, under imperfect channel state information (CSI). The main issue in imperfect CSI is to keep the probability of each user achievable outage rate below the given threshold level. Such a rate outage constraints present significant and analytical challenges. There are many probabilistic methods are used to minimize the transmit optimization problem under imperfect CSI. Here, decomposition based large deviation inequality and Bernstein type inequality convex restriction methods are used to perform the optimization problem under imperfect CSI. These methods are used for achieving improved output quality and lower complexity. They provide a safe tractable approximation of the original rate outage constraints. Based on these method implementations, performance has been evaluated in the terms of feasible rate and average transmission power. The simulation results are shown that all the two methods offer significantly improved outage quality and lower computational complexity.Keywords: imperfect channel state information, outage probability, multiuser- multi input single output, channel state information
Procedia PDF Downloads 81410022 Performance Analysis of Photovoltaic Solar Energy Systems
Authors: Zakariyya Hassan Abdullahi, Zainab Suleiman Abdullahi, Nuhu Alhaji Muhammad
Abstract:
In this paper, a thorough review of photovoltaic and photovoltaic thermal systems is done on the basis of its performance based on electrical as well as thermal output. Photovoltaic systems are classified according to their use, i.e., electricity production, and thermal, Photovoltaic systems behave in an extraordinary and useful way, they react to light by transforming part of it into electricity useful way and unique, since photovoltaic and thermal applications along with the electricity production. The application of various photovoltaic systems is also discussed in detail. The performance analysis including all aspects, e.g., electrical, thermal, energy, and energy efficiency are also discussed. A case study for PV and PV/T system based on energetic analysis is presented.Keywords: photovoltaic, renewable, performance, efficiency, energy
Procedia PDF Downloads 51710021 Surface Modification of SUS-304 Using Nitriding Treatment for Application of Bipolar Plates of Proton Exchange Membrane Fuel Cells
Authors: Wei-Ru Chang, Jenn-Jiang Hwang, Zen-Ting Hsiao, Shu-Feng Lee
Abstract:
Proton exchange membrane (PEM) fuel cells are widely used in electrical systems as an economical, low-polluting energy source. This study investigates the effects of PEMFC gas nitriding treatment on metal bipolar plates. The test material was SUS304 stainless steel. The study explored five different pretreatment processes, varying the corrosion resistance and electrical conductivity conditions. The most effective process was industrial acid washing, followed by heating to 500 °C. Under the condition, the corrosion current density was 8.695 μA, significantly lower than that of the untreated pretreatment sample flakes, which was measured as 38.351 μA.Keywords: nitriding, bipolar, 304, corrosion, resistance, pretreatment
Procedia PDF Downloads 108710020 The Assessment of Some Biological Parameters With Dynamic Energy Budget of Mussels in Agadir Bay
Authors: Zahra Okba, Hassan El Ouizgani
Abstract:
Anticipating an individual’s behavior to the environmental factors allows for having relevant ecological forecasts. The Dynamic Energy Budget model facilitates prediction, and it is mechanically dependent on biology to abiotic factors but is generally field verified under relatively stable physical conditions. Dynamic Energy Budget Theory (DEB) is a robust framework that can link the individual state to environmental factors, and in our work, we have tested its ability to account for variability by looking at model predictions in the Agadir Bay, which is characterized by a semi-arid climate and temperature is strongly influenced by the trade winds front and nutritional availability. From previous works in our laboratory, we have collected different biological DEB model parameters of Mytilus galloprovincialis mussel in Agadir Bay. We mathematically formulated the equations that make up the DEB model and then adjusted our analytical functions with the observed biological data of our local species. We also assumed the condition of constant immersion, and then we integrated the details of the tidal cycles to calculate the metabolic depression at low tide. Our results are quite satisfactory concerning the length and shape of the shell in one part and the gonadosomatic index in another part.Keywords: dynamic energy budget, mussels, mytilus galloprovincialis, agadir bay, DEB model
Procedia PDF Downloads 11410019 Development of Electromyography (EMG) Signal Acquisition System by Simple Electronic Circuits
Authors: Divya Pradip Roy, Md. Zahirul Alam Chowdhury
Abstract:
Electromyography (EMG) sensors are generally used to record the electrical activity produced by skeletal muscles. The conventional EMG sensors available in the market are expensive. This research suggests a low cost EMG sensor design which can be built with simple devices within our reach. In this research, one instrumentation amplifier, two high pass filters, two low pass filters and an inverting amplifier is connected sequentially. The output from the circuit exhibits electrical potential generated by the muscle cells when they are neurologically activated. This electromyography signal is used to control prosthetic devices, identifying neuromuscular diseases and for various other purposes.Keywords: EMG, high pass filter, instrumentation amplifier, inverting amplifier, low pass filter, neuromuscular
Procedia PDF Downloads 17510018 Comparison and Description of Enhanced Department-Based Arc Flash Safety Assessment with Substation-Based Arc Flash Safety Assessment for the Improvement of Work Place Safety
Authors: Md. Abid Khan
Abstract:
Arc Flash safety assessment is a critical component for continuous improvement of any company’s safe electrical arc flash standard (SEAFS). The standard requires periodic internal or external audits to verify compliance and assess implementation. Assessments will identify strengths and opportunities for improvement, and serve as the basis for corrective actions. An arc flash safety assessment is comprised of a review of any existing safe electrical arc flash standard documentation (e.g., such as work procedures or other supporting documents), onsite interviews, and observations (e.g., facility inspections and work task observations). Substation-based arc flash assessment is very popular as it is more specific for each substation. The enhanced department-based arc flash safety assessment will shift focus to more effective hazard control measures and emphasis will be placed on highlighting inherently unsafe equipment to support resolution actions by facility management, rather than relying on lessor effective control methods in the hierarchy of controls currently deployed at a number of facilities.Keywords: assessment, remote racking device (RRD), key performance indicator (KPI), personal protective equipment (PPE), operation & maintenance (O&M), safety management system (SMS), safe electrical arc flash standard (SEAFS)
Procedia PDF Downloads 7510017 Reduction of Impulsive Noise in OFDM System using Adaptive Algorithm
Authors: Alina Mirza, Sumrin M. Kabir, Shahzad A. Sheikh
Abstract:
The Orthogonal Frequency Division Multiplexing (OFDM) with high data rate, high spectral efficiency and its ability to mitigate the effects of multipath makes them most suitable in wireless application. Impulsive noise distorts the OFDM transmission and therefore methods must be investigated to suppress this noise. In this paper, a State Space Recursive Least Square (SSRLS) algorithm based adaptive impulsive noise suppressor for OFDM communication system is proposed. And a comparison with another adaptive algorithm is conducted. The state space model-dependent recursive parameters of proposed scheme enables to achieve steady state mean squared error (MSE), low bit error rate (BER), and faster convergence than that of some of existing algorithm.Keywords: OFDM, impulsive noise, SSRLS, BER
Procedia PDF Downloads 45810016 Deepnic, A Method to Transform Each Variable into Image for Deep Learning
Authors: Nguyen J. M., Lucas G., Brunner M., Ruan S., Antonioli D.
Abstract:
Deep learning based on convolutional neural networks (CNN) is a very powerful technique for classifying information from an image. We propose a new method, DeepNic, to transform each variable of a tabular dataset into an image where each pixel represents a set of conditions that allow the variable to make an error-free prediction. The contrast of each pixel is proportional to its prediction performance and the color of each pixel corresponds to a sub-family of NICs. NICs are probabilities that depend on the number of inputs to each neuron and the range of coefficients of the inputs. Each variable can therefore be expressed as a function of a matrix of 2 vectors corresponding to an image whose pixels express predictive capabilities. Our objective is to transform each variable of tabular data into images into an image that can be analysed by CNNs, unlike other methods which use all the variables to construct an image. We analyse the NIC information of each variable and express it as a function of the number of neurons and the range of coefficients used. The predictive value and the category of the NIC are expressed by the contrast and the color of the pixel. We have developed a pipeline to implement this technology and have successfully applied it to genomic expressions on an Affymetrix chip.Keywords: tabular data, deep learning, perfect trees, NICS
Procedia PDF Downloads 90