Search results for: character recognition
1297 Myth in Political Discourse as a Form of Linguistic Consciousness
Authors: Kuralay Kenzhekanova, Akmaral Dalelbekkyzy
Abstract:
The article is devoted to the problem of political discourse and its reflection on mass cognition. This article is dedicated to describe the myth as one of the main features of political discourse. The dominance of an expressional and emotional component in the myth is shown. Precedent phenomenon plays an important role in distinguishing the myth from the linguistic point of view. Precedent phenomena show the linguistic cognition, which is characterized by their fame and recognition. Four types of myths such as master myths, a foundation myth, sustaining myth, eschatological myths are observed. The myths about the national idea are characterized by national specificity. The main aim of the political discourse with the help of myths is to influence on the mass consciousness in order to motivate the addressee to certain actions so that the target purpose is reached owing to unity of forces.Keywords: cognition, myth, linguistic consciousness, types of myths, political discourse, political myth, precedent phenomena
Procedia PDF Downloads 4141296 Potentials of Additive Manufacturing: An Approach to Increase the Flexibility of Production Systems
Authors: A. Luft, S. Bremen, N. Balc
Abstract:
The task of flexibility planning and design, just like factory planning, for example, is to create the long-term systemic framework that constitutes the restriction for short-term operational management. This is a strategic challenge since, due to the decision defect character of the underlying flexibility problem, multiple types of flexibility need to be considered over the course of various scenarios, production programs, and production system configurations. In this context, an evaluation model has been developed that integrates both conventional and additive resources on a basic task level and allows the quantification of flexibility enhancement in terms of mix and volume flexibility, complexity reduction, and machine capacity. The model helps companies to decide in early decision-making processes about the potential gains of implementing additive manufacturing technologies on a strategic level. For companies, it is essential to consider both additive and conventional manufacturing beyond pure unit costs. It is necessary to achieve an integrative view of manufacturing that incorporates both additive and conventional manufacturing resources and quantifies their potential with regard to flexibility and manufacturing complexity. This also requires a structured process for the strategic production systems design that spans the design of various scenarios and allows for multi-dimensional and comparative analysis. A respective guideline for the planning of additive resources on a strategic level is being laid out in this paper.Keywords: additive manufacturing, production system design, flexibility enhancement, strategic guideline
Procedia PDF Downloads 1241295 Strategies for Patient Families Integration in Caregiving: A Consensus Opinion
Authors: Ibrahim A. Alkali
Abstract:
There is no reservation on the outstanding contribution of patient families in restoration of hospitalised patients, hence their consideration as essential component of hospital ward regimen. The psychological and emotional support a patient requires has been found to be solely provided by the patient’s family. However, consideration of their presence as one of the major functional requirements of an inpatient setting design have always been a source of disquiet, especially in developing countries where policies, norms and protocols of healthcare administration have no consideration for the patients’ family. This have been a major challenge to the hospital ward facilities, a concern for the hospital administration and patient management. The study therefore is aimed at obtaining a consensus opinion on the best approach for family integration in the design of an inpatient setting. A one day visioning charrette involving Architects, Nurses, Medical Doctors, Healthcare assistants and representatives from the Patient families was conducted with the aim of arriving at a consensus opinion on practical design approach for sustainable family integration. Patient’s family are found to be decisive character of hospital ward regimen that cannot be undermined. However, several challenges that impede family integration were identified and subsequently a recommendation for an ideal approach. This will serve as a guide to both architects and hospital management in implementing much desired Patient and Family Centred Care.Keywords: patient's family, inpatient setting, care giving, integration
Procedia PDF Downloads 2081294 The Twin Terminal of Pedestrian Trajectory Based on City Intelligent Model (CIM) 4.0
Authors: Chen Xi, Liu Xuebing, Lao Xueru, Kuan Sinman, Jiang Yike, Wang Hanwei, Yang Xiaolang, Zhou Junjie, Xie Jinpeng
Abstract:
To further promote the development of smart cities, the microscopic "nerve endings" of the City Intelligent Model (CIM) are extended to be more sensitive. In this paper, we develop a pedestrian trajectory twin terminal based on the CIM and CNN technology. It also uses 5G networks, architectural and geoinformatics technologies, convolutional neural networks, combined with deep learning networks for human behavior recognition models, to provide empirical data such as 'pedestrian flow data and human behavioral characteristics data', and ultimately form spatial performance evaluation criteria and spatial performance warning systems, to make the empirical data accurate and intelligent for prediction and decision making.Keywords: urban planning, urban governance, CIM, artificial intelligence, sustainable development
Procedia PDF Downloads 4191293 Induction Motor Eccentricity Fault Recognition Using Rotor Slot Harmonic with Stator Current Technique
Authors: Nouredine Benouzza, Ahmed Hamida Boudinar, Azeddine Bendiabdellah
Abstract:
An algorithm for Eccentricity Fault Detection (EFD) applied to a squirrel cage induction machine is proposed in this paper. This algorithm employs the behavior of the stator current spectral analysis and the localization of the Rotor Slot Harmonic (RSH) frequency to detect eccentricity faults in three phase induction machine. The RHS frequency once obtained is used as a key parameter into a simple developed expression to directly compute the eccentricity fault frequencies in the induction machine. Experimental tests performed for both a healthy motor and a faulty motor with different eccentricity fault severities illustrate the effectiveness and merits of the proposed EFD algorithm.Keywords: squirrel cage motor, diagnosis, eccentricity faults, current spectral analysis, rotor slot harmonic
Procedia PDF Downloads 4871292 A Semiparametric Approach to Estimate the Mode of Continuous Multivariate Data
Authors: Tiee-Jian Wu, Chih-Yuan Hsu
Abstract:
Mode estimation is an important task, because it has applications to data from a wide variety of sources. We propose a semi-parametric approach to estimate the mode of an unknown continuous multivariate density function. Our approach is based on a weighted average of a parametric density estimate using the Box-Cox transform and a non-parametric kernel density estimate. Our semi-parametric mode estimate improves both the parametric- and non-parametric- mode estimates. Specifically, our mode estimate solves the non-consistency problem of parametric mode estimates (at large sample sizes) and reduces the variability of non-parametric mode estimates (at small sample sizes). The performance of our method at practical sample sizes is demonstrated by simulation examples and two real examples from the fields of climatology and image recognition.Keywords: Box-Cox transform, density estimation, mode seeking, semiparametric method
Procedia PDF Downloads 2851291 Statistical Wavelet Features, PCA, and SVM-Based Approach for EEG Signals Classification
Authors: R. K. Chaurasiya, N. D. Londhe, S. Ghosh
Abstract:
The study of the electrical signals produced by neural activities of human brain is called Electroencephalography. In this paper, we propose an automatic and efficient EEG signal classification approach. The proposed approach is used to classify the EEG signal into two classes: epileptic seizure or not. In the proposed approach, we start with extracting the features by applying Discrete Wavelet Transform (DWT) in order to decompose the EEG signals into sub-bands. These features, extracted from details and approximation coefficients of DWT sub-bands, are used as input to Principal Component Analysis (PCA). The classification is based on reducing the feature dimension using PCA and deriving the support-vectors using Support Vector Machine (SVM). The experimental are performed on real and standard dataset. A very high level of classification accuracy is obtained in the result of classification.Keywords: discrete wavelet transform, electroencephalogram, pattern recognition, principal component analysis, support vector machine
Procedia PDF Downloads 6381290 The Ancient Oasis Architecture of Ghadames
Authors: Amer Rghei
Abstract:
The Sahara region potentially is one of the most attractive heritage areas in the world. Yet presently, the heritage of the Sahara is currently facing serious planning challenges of underdeveloped and neglected economic and physical potentials. Deterioration of heritage resources has been observed by the author during his several field tours for historic sites has discovered special heritage values such as in Ghadames which combines historic oasis, natural environment along with its exceptional urban fabric and architectural character. Despite the richness of Ghadames with historic significance, it is found that at the present time, Ghadames city, the UNESCO World Heritage site, is facing serious challenges including the abandonment by its tenants and inclusive negligence by its officials. The author believes that Ghadames can illustrate an excellent heritage example in North Africa with cultural pride and socio-economic opportunities that can contribute to overall economic development in the Sahara region. However, the paper deals with the case of Ghadames ‘The World Heritage Site’ in Libya and discusses the current challenges and possible planning for its heritage conservation strategy. The momentous resources in Ghadames with their historical, environmental, economic, social, cultural, and aesthetic values would benefit from a careful heritage planning and management program for its significant values. In this paper an attempt is made to investigate this issue seriously towards building a model of a strategy for heritage conservation planning for Ghadames is proposed.Keywords: Ghadames, Oasis architecture, Sahara region, heritage environment
Procedia PDF Downloads 2981289 The Urban Stray Animal Identification Management System Based on YOLOv5
Authors: Chen Xi, Kuan Sinman, LI Haofeng, Huang Hongming, Zeng Chengyu, Tong Zhiyuan
Abstract:
Stray animals are on the rise in mainland China's cities. There are legal reasons for this, namely the lack of protection for domestic pets in mainland China, where only wildlife protection laws exist. At a social level, the ease with which families adopt pets and the lack of a social view of animal nature has led to the frequent abandonment and loss of stray animals. If left unmanaged, conflicts between humans and stray animals can also increase. This project provides an inexpensive and widely applicable management tool for urban management by collecting videos and pictures of stray animals captured by surveillance or transmitted by humans and using artificial intelligence technology (mainly using YOLOv5 recognition technology) and recording and managing them in a database.Keywords: urban planning, urban governance, artificial intelligence, convolutional neural network
Procedia PDF Downloads 1041288 The “Prologue” in Tommy Orange’S There, There: Reinventing the Introductory Section
Authors: Kristin Murray
Abstract:
The proposed paper exams prologues in 20th and 21st century American literature in order to show how Native American writer Tommy Orange’s Prologue in his 2018 novel There, Thereis different. In an interview about his 2018 novel There, There, explains he feels “a kind of burden to catch the general reader up with what really happened, because history has got it so wrong and still continue to” (Laubernds). Orange, thus, includes a “Prologue” in his novel to do this work, catching readers upon Native Americans and their history. Prologues are usually from the narrator’s voice, a character’s voice, or even from a fictionalized version of the author, but the tone of Orange’s “Prologue” is that of a non-fictional first-person essayist. Examining prologues in American literature posits Orange’s prologue outside the norm. This paper also examines other introductory sections, the preface, in particular. The research and examination reveal that Orange is adding his personal voice in the Prologue to the multiple narratorsof the novel, and his is the voice of a writer who knows that his audience comes to his novel with a plethora of misinformation. The truths he tells are horrifying and hopeful. He tells of Thanksgiving as a “land deal” and a “successful massacre,” but he also tellsreaders how urban Indians have found a sense of the land, even through concrete. Native American writers contributed and still contribute to the genre of autobiography in ways that have changed our understanding of this genre. This examination of Orange’s Prologue reveals the new and unexpected way to view this often under-examined introductory section, the prologue.Keywords: native american literature, prologues, prefaces, 20th century american literature
Procedia PDF Downloads 1811287 Contribution to the Study of Automatic Epileptiform Pattern Recognition in Long Term EEG Signals
Authors: Christine F. Boos, Fernando M. Azevedo
Abstract:
Electroencephalogram (EEG) is a record of the electrical activity of the brain that has many applications, such as monitoring alertness, coma and brain death; locating damaged areas of the brain after head injury, stroke and tumor; monitoring anesthesia depth; researching physiology and sleep disorders; researching epilepsy and localizing the seizure focus. Epilepsy is a chronic condition, or a group of diseases of high prevalence, still poorly explained by science and whose diagnosis is still predominantly clinical. The EEG recording is considered an important test for epilepsy investigation and its visual analysis is very often applied for clinical confirmation of epilepsy diagnosis. Moreover, this EEG analysis can also be used to help define the types of epileptic syndrome, determine epileptiform zone, assist in the planning of drug treatment and provide additional information about the feasibility of surgical intervention. In the context of diagnosis confirmation the analysis is made using long term EEG recordings with at least 24 hours long and acquired by a minimum of 24 electrodes in which the neurophysiologists perform a thorough visual evaluation of EEG screens in search of specific electrographic patterns called epileptiform discharges. Considering that the EEG screens usually display 10 seconds of the recording, the neurophysiologist has to evaluate 360 screens per hour of EEG or a minimum of 8,640 screens per long term EEG recording. Analyzing thousands of EEG screens in search patterns that have a maximum duration of 200 ms is a very time consuming, complex and exhaustive task. Because of this, over the years several studies have proposed automated methodologies that could facilitate the neurophysiologists’ task of identifying epileptiform discharges and a large number of methodologies used neural networks for the pattern classification. One of the differences between all of these methodologies is the type of input stimuli presented to the networks, i.e., how the EEG signal is introduced in the network. Five types of input stimuli have been commonly found in literature: raw EEG signal, morphological descriptors (i.e. parameters related to the signal’s morphology), Fast Fourier Transform (FFT) spectrum, Short-Time Fourier Transform (STFT) spectrograms and Wavelet Transform features. This study evaluates the application of these five types of input stimuli and compares the classification results of neural networks that were implemented using each of these inputs. The performance of using raw signal varied between 43 and 84% efficiency. The results of FFT spectrum and STFT spectrograms were quite similar with average efficiency being 73 and 77%, respectively. The efficiency of Wavelet Transform features varied between 57 and 81% while the descriptors presented efficiency values between 62 and 93%. After simulations we could observe that the best results were achieved when either morphological descriptors or Wavelet features were used as input stimuli.Keywords: Artificial neural network, electroencephalogram signal, pattern recognition, signal processing
Procedia PDF Downloads 5281286 Adaptive Few-Shot Deep Metric Learning
Authors: Wentian Shi, Daming Shi, Maysam Orouskhani, Feng Tian
Abstract:
Whereas currently the most prevalent deep learning methods require a large amount of data for training, few-shot learning tries to learn a model from limited data without extensive retraining. In this paper, we present a loss function based on triplet loss for solving few-shot problem using metric based learning. Instead of setting the margin distance in triplet loss as a constant number empirically, we propose an adaptive margin distance strategy to obtain the appropriate margin distance automatically. We implement the strategy in the deep siamese network for deep metric embedding, by utilizing an optimization approach by penalizing the worst case and rewarding the best. Our experiments on image recognition and co-segmentation model demonstrate that using our proposed triplet loss with adaptive margin distance can significantly improve the performance.Keywords: few-shot learning, triplet network, adaptive margin, deep learning
Procedia PDF Downloads 1711285 Enhancing Fall Detection Accuracy with a Transfer Learning-Aided Transformer Model Using Computer Vision
Authors: Sheldon McCall, Miao Yu, Liyun Gong, Shigang Yue, Stefanos Kollias
Abstract:
Falls are a significant health concern for older adults globally, and prompt identification is critical to providing necessary healthcare support. Our study proposes a new fall detection method using computer vision based on modern deep learning techniques. Our approach involves training a trans- former model on a large 2D pose dataset for general action recognition, followed by transfer learning. Specifically, we freeze the first few layers of the trained transformer model and train only the last two layers for fall detection. Our experimental results demonstrate that our proposed method outperforms both classical machine learning and deep learning approaches in fall/non-fall classification. Overall, our study suggests that our proposed methodology could be a valuable tool for identifying falls.Keywords: healthcare, fall detection, transformer, transfer learning
Procedia PDF Downloads 1481284 Multimodal Characterization of Emotion within Multimedia Space
Authors: Dayo Samuel Banjo, Connice Trimmingham, Niloofar Yousefi, Nitin Agarwal
Abstract:
Technological advancement and its omnipresent connection have pushed humans past the boundaries and limitations of a computer screen, physical state, or geographical location. It has provided a depth of avenues that facilitate human-computer interaction that was once inconceivable such as audio and body language detection. Given the complex modularities of emotions, it becomes vital to study human-computer interaction, as it is the commencement of a thorough understanding of the emotional state of users and, in the context of social networks, the producers of multimodal information. This study first acknowledges the accuracy of classification found within multimodal emotion detection systems compared to unimodal solutions. Second, it explores the characterization of multimedia content produced based on their emotions and the coherence of emotion in different modalities by utilizing deep learning models to classify emotion across different modalities.Keywords: affective computing, deep learning, emotion recognition, multimodal
Procedia PDF Downloads 1581283 Painting in Neolithic of Northwest Iberia: Archaeometrical Studies Applied to Megalithic Monuments
Authors: César Oliveira, Ana M. S. Bettencourt, Luciano Vilas Boas, Luís Gonçalves, Carlo Bottaini
Abstract:
Funerary megalithic monuments are probably under the most remarkable remains of the Neolithic period of western Europe. Some monuments are well known for their paintings, sometimes associated with engraved motifs, giving the funerary crypts a character of great symbolic value. The engraved and painted motifs, the colors used in the paintings, and the offerings associated with the deposited corpses are archaeological data that, being part of the funeral rites, also reveal the ideological world of these communities and their way of interacting with the world. In this sense, the choice of colors to be used in the paintings, the pigments collected, and the proceeds for making the paints would also be significant performances. The present study will focus on the characterization of painted art from megalithic monuments located in different areas of North-Western Portugal (coastal and inland). The colorant composition of megalithic barrows decorated with rock art motifs was studied using a multi-analytical approach (XRD, SEM-EDS, FTIR, and GC-MS), allowing the characterization of the painting techniques, pigments, and the organic compounds used as binders. Some analyses revealed that the pigments used for painting were produced using a collection of mined or quarried organic and inorganic substances. The results will be analyzed from the perspective of contingencies and regularity among the different case studies in order to interpret more or less standardized behaviors.Keywords: funerary megalithic monuments, painting motifs, archaeometrical studies, Northwest Iberia, behaviors
Procedia PDF Downloads 1101282 Co-Composting of Poultry Manure with Different Organic Amendments
Authors: M. E. Silva, I. Brás
Abstract:
To study the influence of different organic amendments on the quality of poultry manure compost, three pilot composting trials were carried out with different mixes: poultry manure/carcasse meal/ashes/grape pomace (Pile 1), poultry manure/ cellulosic sludge (Pile 2) and poultry manure (Pile 3). For all piles, wood chips were applied as bulking agent. The process was monitored, over time, by evaluating standard physical and chemical parameters, such as, pH, electric conductivity, moisture, organic matter and ash content, total carbon and total nitrogen content, carbon/nitrogen ratio (C/N) and content in mineral elements. Piles 1 and 2 reached a thermophilic phase, however having different trends. Pile 1 reached this phase earlier than Pile 2. For both, the pH showed a slight alkaline character and the electric conductivity was lower than 2 mS/cm. Also, the initial C/N value was 22 and reached values lower than 15 at the end of composting process. The total N content of the Pile 1 increased slightly during composting, in contrast with the others piles. At the end of composting process, the phosphorus content ranged between 54 and 236 mg/kg dry matter, for Pile 2 and 3, respectively. Generally, the Piles 1 and 3 exhibited similar heavy metals content. This study showed that organic amendments can be used as carbon source, given that the final composts presented parameters within the range of those recommended in the 2nd Draft of EU regulation proposal (DG Env.A.2 2001) for compost quality.Keywords: co-composting, compost quality, organic ammendment, poultry manure
Procedia PDF Downloads 3051281 ACBM: Attention-Based CNN and Bi-LSTM Model for Continuous Identity Authentication
Authors: Rui Mao, Heming Ji, Xiaoyu Wang
Abstract:
Keystroke dynamics are widely used in identity recognition. It has the advantage that the individual typing rhythm is difficult to imitate. It also supports continuous authentication through the keyboard without extra devices. The existing keystroke dynamics authentication methods based on machine learning have a drawback in supporting relatively complex scenarios with massive data. There are drawbacks to both feature extraction and model optimization in these methods. To overcome the above weakness, an authentication model of keystroke dynamics based on deep learning is proposed. The model uses feature vectors formed by keystroke content and keystroke time. It ensures efficient continuous authentication by cooperating attention mechanisms with the combination of CNN and Bi-LSTM. The model has been tested with Open Data Buffalo dataset, and the result shows that the FRR is 3.09%, FAR is 3.03%, and EER is 4.23%. This proves that the model is efficient and accurate on continuous authentication.Keywords: keystroke dynamics, identity authentication, deep learning, CNN, LSTM
Procedia PDF Downloads 1551280 Intelligent Grading System of Apple Using Neural Network Arbitration
Authors: Ebenezer Obaloluwa Olaniyi
Abstract:
In this paper, an intelligent system has been designed to grade apple based on either its defective or healthy for production in food processing. This paper is segmented into two different phase. In the first phase, the image processing techniques were employed to extract the necessary features required in the apple. These techniques include grayscale conversion, segmentation where a threshold value is chosen to separate the foreground of the images from the background. Then edge detection was also employed to bring out the features in the images. These extracted features were then fed into the neural network in the second phase of the paper. The second phase is a classification phase where neural network employed to classify the defective apple from the healthy apple. In this phase, the network was trained with back propagation and tested with feed forward network. The recognition rate obtained from our system shows that our system is more accurate and faster as compared with previous work.Keywords: image processing, neural network, apple, intelligent system
Procedia PDF Downloads 3981279 Avatar Creation for E-Learning
Authors: M. Najib Osman, Hanafizan Hussain, Sri Kusuma Wati Mohd Daud
Abstract:
Avatar was used as user’s symbol of identity in online communications such as Facebook, Twitter, online game, and portal community between unknown people. The development of this symbol is the use of animated character or avatar, which can engage learners in a way that draws them into the e-Learning experience. Immersive learning is one of the most effective learning techniques, and animated characters can help create an immersive environment. E-learning is an ideal learning environment using modern means of information technology, through the effective integration of information technology and the curriculum to achieve, a new learning style which can fully reflect the main role of the students to reform the traditional teaching structure thoroughly. Essential in any e-learning is the degree of interactivity for the learner, and whether the learner is able to study at any time, or whether there is a need for the learner to be online or in a classroom with other learners at the same time (synchronous learning). Ideally, e-learning should engage the learners, allowing them to interact with the course materials, obtaining feedback on their progress and assistance whenever it is required. However, the degree of interactivity in e-learning depends on how the course has been developed and is dependent on the software used for its development, and the way the material is delivered to the learner. Therefore, users’ accessibility that allows access to information at any time and places and their positive attitude towards e-learning such as having interacting with a good teacher and the creation of a more natural and friendly environment for e-learning should be enhanced. This is to motivate their learning enthusiasm and it has been the responsibility of educators to incorporate new technology into their ways of teaching.Keywords: avatar, e-learning, higher education, students' perception
Procedia PDF Downloads 4111278 Comparison of the H-Index of Researchers of Google Scholar and Scopus
Authors: Adian Fatchur Rochim, Abdul Muis, Riri Fitri Sari
Abstract:
H-index has been widely used as a performance indicator of researchers around the world especially in Indonesia. The Government uses Scopus and Google scholar as indexing references in providing recognition and appreciation. However, those two indexing services yield to different H-index values. For that purpose, this paper evaluates the difference of the H-index from those services. Researchers indexed by Webometrics, are used as reference’s data in this paper. Currently, Webometrics only uses H-index from Google Scholar. This paper observed and compared corresponding researchers’ data from Scopus to get their H-index score. Subsequently, some researchers with huge differences in score are observed in more detail on their paper’s publisher. This paper shows that the H-index of researchers in Google Scholar is approximately 2.45 times of their Scopus H-Index. Most difference exists due to the existence of uncertified publishers, which is considered in Google Scholar but not in Scopus.Keywords: Google Scholar, H-index, Scopus, performance indicator
Procedia PDF Downloads 2751277 An Alternative Institutional Design for Efficient Management of Nepalese Irrigation Systems
Authors: Tirtha Raj Dhakal, Brian Davidson, Bob Farquharson
Abstract:
Institutional design is important if water resources are to be managed efficiently. In Nepal, the supply of water in both farmer- and agency-managed irrigation systems is inefficient because of the weak institutional frameworks. This type of inefficiency is linked with collective problems such as non-excludability of irrigation water, inadequate recognition of property rights and externalities. Irrigation scheme surveys from Nepal as well as existing literature revealed that the Nepalese irrigation sector is facing many issues such as low cost recovery, inadequate maintenance of the schemes and inefficient allocation and utilization of irrigation water. The institutional practices currently in place also fail to create/force any incentives for farmers to use water efficiently and to pay for its use. This, thus, compels the need of refined institutional framework that can address the collective problems and improve irrigation efficiency.Keywords: agency-managed, cost recovery, farmer-managed, institutional design
Procedia PDF Downloads 4241276 A Compact Ultra-Wide Band Antenna with C-Shaped Slot for WLAN Notching
Authors: Maryam Rasool, Farhan Munir, Fahad Nawaz, Saad Ahmad
Abstract:
A patch antenna operating in the Ultra-Wide Band of frequency (3.1 GHz – 10.6 GHz) is designed with enhanced security from interference from other applications by incorporating the notching technique. Patch antennas in the Ultra-Wide Band are becoming widely famous due to their low power, light weight and high data rate capability. Micro strip patch antenna’s patch can be altered to increase its bandwidth and introduce UWB character in it. The designed antenna is a patch antenna consisting of a conductive sheet of metal mounted over a large sheet of metal called the ground plane with a substrate separating the two. Notched bands are public safety WLAN, WLAN and FSS. Different techniques used to implement the UWB antenna were individually implemented and there results were examined. V shaped patch was then chosen and modified to an arrow shaped patch to give the optimized results operating on the entire UWB region with considerable return loss. The frequency notch prevents the operation of the antenna at a particular range of frequency, hence minimizing interference from other systems. There are countless techniques for introducing the notch but we have used inverted C-shaped slots in the UWB patch to get the notch characteristics as output and also wavelength resonators to introduce notch in UWB band. The designed antenna is simulated in High Frequency Structural Simulator (HFSS) 13.0 by Ansoft.Keywords: HFSS, Notch, UWB, WLAN
Procedia PDF Downloads 4161275 Academic Staff Recruitment in Islamic University: A Proposed Holistic Model
Authors: Syahruddin Sumardi Samindjaya, Indra Fajar Alamsyah, Junaidah Hashim
Abstract:
Purpose: This study attempts to explore and presents a proposed recruitment model in Islamic university which aligned with holistic role. Design/methodology/approach: It is a conceptual paper in nature. In turn, this study is designed to utilize exploratory approach. Literature and document review that related to this topic are used as the methods to analyse the content found. Findings: Recruitment for any organization is fundamental to achieve its goal effectively. Staffing in universities is vital due to the important role of lecturers. Currently, Islamic universities still adopt the common process of recruitment for their academic staffs. Whereas, they have own characteristics which are embedded in their institutions. Furthermore, the FCWC (Foundation, Capability, Worldview and Commitment) model of recruitment proposes to suit the holistic character of Islamic university. Research limitation/implications: Further studies are required to empirically validate the concept through systematic investigations. Additionally, measuring this model by a designed means is appreciated. Practical implications: The model provides the map and alternative tool of recruitment for Islamic universities to determine the process of recruitment which can appropriate their institutions. In addition, it also allows stakeholders and policy makers to consider regarding Islamic values that should inculcate in the Islamic higher learning institutions. Originality/value: This study initiates a foundational contribution for an early sequence of research.Keywords: academic staff, Islamic values, recruitment model, university
Procedia PDF Downloads 1851274 Face Sketch Recognition in Forensic Application Using Scale Invariant Feature Transform and Multiscale Local Binary Patterns Fusion
Authors: Gargi Phadke, Mugdha Joshi, Shamal Salunkhe
Abstract:
Facial sketches are used as a crucial clue by criminal investigators for identification of suspects when the description of eyewitness or victims are only available as evidence. A forensic artist develops a sketch as per the verbal description is given by an eyewitness that shows the facial look of the culprit. In this paper, the fusion of Scale Invariant Feature Transform (SIFT) and multiscale local binary patterns (MLBP) are proposed as a feature to recognize a forensic face sketch images from a gallery of mugshot photos. This work focuses on comparative analysis of proposed scheme with existing algorithms in different challenges like illumination change and rotation condition. Experimental results show that proposed scheme can lead to better performance for the defined problem.Keywords: SIFT feature, MLBP, PCA, face sketch
Procedia PDF Downloads 3361273 Spectacles of the City: An Analysis of the Effects of Festivals in the Formation of New Urban Identities
Authors: Anusmita Das
Abstract:
In the post-industrial scenario, cities in India have become critical sites of negotiation and are expected to become some of the largest urban agglomeration of the twenty-first century. This has created a pluralist identity resulting in a new multifarious urbanism pervading throughout the entire urban landscape. There is an ambiguity regarding the character of present day Indian cities with new meanings emerging and no methodical study to understand them. More than an abstract diagram, the present day cities can be looked at as an ensemble of meanings. One of the ways in which the meaning is reflected is through events. Festivals such as Diwali, Dussera, Durga Puja, Ganesh Chaturthi, etc have transpired as the phenomenon of the city, and their presence in the everyday landscape weaves itself through the urban fabric dominating the popular visual culture of Indian cities. Festivals influence people’s idea of a city. Ritual, festival, celebrations are important in shaping of the urban environment and in their influence on the intangible aspect of the urban setting. These festivals pertaining to the city in motion have emerged as the symbolic image of the emerging urban Indian condition giving birth to new urban identities. The study undertaken to understand the present context of temporality of Indian cities is important in analyzing the process of its formation and transformation. This study aims to review the evolution of new dimensions of urbanism in India as well as its implication on the identity of cities.Keywords: urban identities, urban design, festivals, rituals, celebrations, inter-disciplinary study
Procedia PDF Downloads 2531272 The Late School of Alexandria and Its Influence on Islamic Philosophy
Authors: Hussein El-Zohary
Abstract:
This research aims at studying the late Alexandrian school of philosophy in the 6th century AD, the adaptation of its methodologies by the Islamic world, and its impact on Muslim philosophical thought. The Alexandrian school has been underestimated by many scholars who regard its production at the end of the classical age as mere interpretations of previous writings and delimit its achievement to the preservation of ancient philosophical heritage. The research reviews the leading figures of the Alexandrian school and its production of philosophical commentaries studying ancient Greek philosophy in its entirety. It also traces the transmission of its heritage to the Islamic world through direct translations into Syriac first and then into Arabic. The research highlights the impact of the Alexandrian commentaries on Muslim recognition of Plato and Aristotle as well as its philosophical teaching methodology starting with the study of Aristotle’s Categories as introductory to understand Plato’s philosophy.Keywords: Alexandrian school of philosophy, categories, commentaries, Syriac
Procedia PDF Downloads 1451271 Diagnosis of the Lubrification System of a Gas Turbine Using the Adaptive Neuro-Fuzzy Inference System
Authors: H. Mahdjoub, B. Hamaidi, B. Zerouali, S. Rouabhia
Abstract:
The issue of fault detection and diagnosis (FDD) has gained widespread industrial interest in process condition monitoring applications. Accordingly, the use of neuro-fuzzy technic seems very promising. This paper treats a diagnosis modeling a strategic equipment of an industrial installation. We propose a diagnostic tool based on adaptive neuro-fuzzy inference system (ANFIS). The neuro-fuzzy network provides an abductive diagnosis. Moreover, it takes into account the uncertainties on the maintenance knowledge by giving a fuzzy characterization of each cause. This work was carried out with real data of a lubrication circuit from the gas turbine. The machine of interest is a gas turbine placed in a gas compressor station at South Industrial Centre (SIC Hassi Messaoud Ouargla, Algeria). We have defined the zones of good and bad functioning, and the results are presented to demonstrate the advantages of the proposed method.Keywords: fault detection and diagnosis, lubrication system, turbine, ANFIS, training, pattern recognition
Procedia PDF Downloads 4891270 Frequency Recognition Models for Steady State Visual Evoked Potential Based Brain Computer Interfaces (BCIs)
Authors: Zeki Oralhan, Mahmut Tokmakçı
Abstract:
SSVEP based brain computer interface (BCI) systems have been preferred, because of high information transfer rate (ITR) and practical use. ITR is the parameter of BCI overall performance. For high ITR value, one of specification BCI system is that has high accuracy. In this study, we investigated to recognize SSVEP with shorter time and lower error rate. In the experiment, there were 8 flickers on light crystal display (LCD). Participants gazed to flicker which had 12 Hz frequency and 50% duty cycle ratio on the LCD during 10 seconds. During the experiment, EEG signals were acquired via EEG device. The EEG data was filtered in preprocessing session. After that Canonical Correlation Analysis (CCA), Multiset CCA (MsetCCA), phase constrained CCA (PCCA), and Multiway CCA (MwayCCA) methods were applied on data. The highest average accuracy value was reached when MsetCCA was applied.Keywords: brain computer interface, canonical correlation analysis, human computer interaction, SSVEP
Procedia PDF Downloads 2661269 Identity Crisis and Class Difference in Charles Dickens' 'Great Expectations'
Authors: Ramin Barati, Atefeh Salemi
Abstract:
In Victorian era, the society had been surrounded by extreme class ranking in order to identify the people of the classes and to intensify power relationships due to the growth of industry in Charles Dickens's (1812-1870) Great Expectations (2003) in which he illustrates the clash and dichotomy in the 19th century London. The classes in Victorian period have socially divided the population into two parts, the lower and the upper class of the community. In such a panopticon society, the major character Pip was the best example of the working class who was under the domination of violence, malice, and abuse of Miss Havisham as a member of the ruling class in order to take revenge on her failures. The conflict and disunity represented in vindictiveness and the sense of revenge applied by Miss Havisham against his victim Pip, made him experience alienation and eventually suffer from identity crisis. This paper considers New Historicism based on the theories of the French critic Michel Foucault (1926-1984). The social concept, panopticism, was called after the panopticon society, basically elaborated by Foucault in his book Discipline and Punish (1975) and he considers the panopticon as a sign of punitive community of surveillance. This paper evaluates the problems of a dual society to show that the people of the lower class are under the domination of capitalist society.Keywords: class, identity crisis, violence, panoptic society, domination
Procedia PDF Downloads 2391268 Medical Neural Classifier Based on Improved Genetic Algorithm
Authors: Fadzil Ahmad, Noor Ashidi Mat Isa
Abstract:
This study introduces an improved genetic algorithm procedure that focuses search around near optimal solution corresponded to a group of elite chromosome. This is achieved through a novel crossover technique known as Segmented Multi Chromosome Crossover. It preserves the highly important information contained in a gene segment of elite chromosome and allows an offspring to carry information from gene segment of multiple chromosomes. In this way the algorithm has better possibility to effectively explore the solution space. The improved GA is applied for the automatic and simultaneous parameter optimization and feature selection of artificial neural network in pattern recognition of medical problem, the cancer and diabetes disease. The experimental result shows that the average classification accuracy of the cancer and diabetes dataset has improved by 0.1% and 0.3% respectively using the new algorithm.Keywords: genetic algorithm, artificial neural network, pattern clasification, classification accuracy
Procedia PDF Downloads 474