Search results for: Wind Energy Conversion Systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16866

Search results for: Wind Energy Conversion Systems

15756 Development of All-in-One Solar Kit

Authors: Azhan Azhar, Mohammed Sakib, Zaurez Ahmad

Abstract:

The energy we receive from the sun is known as solar energy, and it is a reliable, long-lasting, eco-friendly and the most widely used energy source in the 21st century. It is. There are several techniques for harnessing solar energy, and we are all seeing large utility-scale projects to collect maximum amperes from the sun using current technologies. Solar PV is now on the rise as a means of harvesting energy from the sun. Moving a step further, our project is focused on designing an All-in-one portable Solar Energy based solution. We considered the minimum load conditions and evaluated the requirements of various devices utilized in this study to resolve the power requirements of small stores, hawkers, or travelers.

Keywords: DOD-depth of discharge, pulse width modulation charge controller, renewable energy, solar PV- solar photovoltaic

Procedia PDF Downloads 353
15755 Impinging Acoustics Induced Combustion: An Alternative Technique to Prevent Thermoacoustic Instabilities

Authors: Sayantan Saha, Sambit Supriya Dash, Vinayak Malhotra

Abstract:

Efficient propulsive systems development is an area of major interest and concern in aerospace industry. Combustion forms the most reliable and basic form of propulsion for ground and space applications. The generation of large amount of energy from a small volume relates mostly to the flaming combustion. This study deals with instabilities associated with flaming combustion. Combustion is always accompanied by acoustics be it external or internal. Chemical propulsion oriented rockets and space systems are well known to encounter acoustic instabilities. Acoustic brings in changes in inter-energy conversion and alter the reaction rates. The modified heat fluxes, owing to wall temperature, reaction rates, and non-linear heat transfer are observed. The thermoacoustic instabilities significantly result in reduced combustion efficiency leading to uncontrolled liquid rocket engine performance, serious hazards to systems, assisted testing facilities, enormous loss of resources and every year a substantial amount of money is spent to prevent them. Present work attempts to fundamentally understand the mechanisms governing the thermoacoustic combustion in liquid rocket engine using a simplified experimental setup comprising a butane cylinder and an impinging acoustic source. Rocket engine produces sound pressure level in excess of 153 Db. The RL-10 engine generates noise of 180 Db at its base. Systematic studies are carried out for varying fuel flow rates, acoustic levels and observations are made on the flames. The work is expected to yield a good physical insight into the development of acoustic devices that when coupled with the present propulsive devices could effectively enhance combustion efficiency leading to better and safer missions. The results would be utilized to develop impinging acoustic devices that impinge sound on the combustion chambers leading to stable combustion thus, improving specific fuel consumption, specific impulse, reducing emissions, enhanced performance and fire safety. The results can be effectively applied to terrestrial and space application.

Keywords: combustion instability, fire safety, improved performance, liquid rocket engines, thermoacoustics

Procedia PDF Downloads 128
15754 Use of Soil Microorganisms for the Production of Electricity through Microbial Fuel Cells

Authors: Abhipsa Mohanty, Harit Jha

Abstract:

The world's energy demands are continuing to rise, resulting in a worldwide energy crisis and environmental pollution. Because of finite, declining supply and environmental damage, reliance on fossil fuels is unsustainable. As a result, experts are concentrating on alternative, renewable, and carbon-free energy sources. Energy sources that are both environmentally and economically sustainable are required. Microbial fuel cells (MFCs) have recently received a lot of attention due to their low operating temperatures and ability to use a variety of biodegradable substrates as fuel. There are single-chamber MFCs as well as traditional MFCs with anode and cathode compartments. Bioelectricity is produced when microorganisms actively catabolize substrate. MFCs can be used as a power source in small devices like biosensors. Understanding of its components, microbiological processes, limiting variables, and construction designs in MFC systems must be simplified, and large-scale systems must be developed for them to be cost-effective as well as increase electricity production. The purpose of this research was to review current microbiology knowledge in the field of electricity. The manufacturing process, the materials, and procedures utilized to construct the technology, as well as the applications of MFC technology, are all covered.

Keywords: bio-electricity, exoelectrogenic bacteria, microbial fuel cells, soil microorganisms

Procedia PDF Downloads 78
15753 Hydrogen Production Through Thermocatalytic Decomposition of Methane Over Biochar

Authors: Seyed Mohamad Rasool Mirkarimi, David Chiaramonti, Samir Bensaid

Abstract:

Catalytic methane decomposition (CMD, reaction 4) is a one-step process for hydrogen production where carbon in the methane molecule is sequestered in the form of stable and higher-value carbon materials. Metallic catalysts and carbon-based catalysts are two major types of catalysts utilized for the CDM process. Although carbon-based catalysts have lower activity compared to metallic ones, they are less expensive and offer high thermal stability and strong resistance to chemical impurities such as sulfur. Also, it would require less costly separation methods as some of the carbon-based catalysts may not have an active metal component in them. Since the regeneration of metallic catalysts requires burning of the C on their surfaces, which emits CO/CO2, in some cases, using carbon-based catalysts would be recommended because regeneration can be completely avoided, and the catalyst can be directly used in other processes. This work focuses on the effect of biochar as a carbon-based catalyst for the conversion of methane into hydrogen and carbon. Biochar produced from the pyrolysis of poplar wood and activated biochar are used as catalysts for this process. In order to observe the impact of carbon-based catalysts on methane conversion, methane cracking in the absence and presence of catalysts for a gas stream with different levels of methane concentration should be performed. The results of these experiments prove conversion of methane in the absence of catalysts at 900 °C is negligible, whereas in the presence of biochar and activated biochar, significant growth has been observed. Comparing the results of the tests related to using char and activated char shows the enhancement obtained in BET surface area of the catalyst through activation leads to more than 10 vol.% methane conversion.

Keywords: hydrogen production, catalytic methane decomposition, biochar, activated biochar, carbon-based catalyts

Procedia PDF Downloads 66
15752 Impact of Air Flow Structure on Distinct Shape of Differential Pressure Devices

Authors: A. Bertašienė

Abstract:

Energy harvesting from any structure makes a challenge. Different structure of air/wind flows in industrial, environmental and residential applications emerge the real flow investigation in detail. Many of the application fields are hardly achievable to the detailed description due to the lack of up-to-date statistical data analysis. In situ measurements aim crucial investments thus the simulation methods come to implement structural analysis of the flows. Different configurations of testing environment give an overview how important is the simple structure of field in limited area on efficiency of the system operation and the energy output. Several configurations of modeled working sections in air flow test facility was implemented in CFD ANSYS environment to compare experimentally and numerically air flow development stages and forms that make effects on efficiency of devices and processes. Effective form and amount of these flows under different geometry cases define the manner of instruments/devices that measure fluid flow parameters for effective operation of any system and emission flows to define. Different fluid flow regimes were examined to show the impact of fluctuations on the development of the whole volume of the flow in specific environment. The obtained results rise the discussion on how these simulated flow fields are similar to real application ones. Experimental results have some discrepancies from simulation ones due to the models implemented to fluid flow analysis in initial stage, not developed one and due to the difficulties of models to cover transitional regimes. Recommendations are essential for energy harvesting systems in both, indoor and outdoor cases. Further investigations aim to be shifted to experimental analysis of flow under laboratory conditions using state-of-the-art techniques as flow visualization tool and later on to in situ situations that is complicated, cost and time consuming study.

Keywords: fluid flow, initial region, tube coefficient, distinct shape

Procedia PDF Downloads 325
15751 Prediction of Pounding between Two SDOF Systems by Using Link Element Based On Mathematic Relations and Suggestion of New Equation for Impact Damping Ratio

Authors: Seyed M. Khatami, H. Naderpour, R. Vahdani, R. C. Barros

Abstract:

Many previous studies have been carried out to calculate the impact force and the dissipated energy between two neighboring buildings during seismic excitation, when they collide with each other. Numerical studies are an important part of impact, which several researchers have tried to simulate the impact by using different formulas. Estimation of the impact force and the dissipated energy depends significantly on some parameters of impact. Mass of bodies, stiffness of spring, coefficient of restitution, damping ratio of dashpot and impact velocity are some known and unknown parameters to simulate the impact and measure dissipated energy during collision. Collision is usually shown by force-displacement hysteresis curve. The enclosed area of the hysteresis loop explains the dissipated energy during impact. In this paper, the effect of using different types of impact models is investigated in order to calculate the impact force. To increase the accuracy of impact model and to optimize the results of simulations, a new damping equation is assumed and is validated to get the best results of impact force and dissipated energy, which can show the accuracy of suggested equation of motion in comparison with other formulas. This relation is called "n-m". Based on mathematical relation, an initial value is selected for the mentioned coefficients and kinetic energy loss is calculated. After each simulation, kinetic energy loss and energy dissipation are compared with each other. If they are equal, selected parameters are true and, if not, the constant of parameters are modified and a new analysis is performed. Finally, two unknown parameters are suggested to estimate the impact force and calculate the dissipated energy.

Keywords: impact force, dissipated energy, kinetic energy loss, damping relation

Procedia PDF Downloads 539
15750 Hybrid Intelligent Optimization Methods for Optimal Design of Horizontal-Axis Wind Turbine Blades

Authors: E. Tandis, E. Assareh

Abstract:

Designing the optimal shape of MW wind turbine blades is provided in a number of cases through evolutionary algorithms associated with mathematical modeling (Blade Element Momentum Theory). Evolutionary algorithms, among the optimization methods, enjoy many advantages, particularly in stability. However, they usually need a large number of function evaluations. Since there are a large number of local extremes, the optimization method has to find the global extreme accurately. The present paper introduces a new population-based hybrid algorithm called Genetic-Based Bees Algorithm (GBBA). This algorithm is meant to design the optimal shape for MW wind turbine blades. The current method employs crossover and neighborhood searching operators taken from the respective Genetic Algorithm (GA) and Bees Algorithm (BA) to provide a method with good performance in accuracy and speed convergence. Different blade designs, twenty-one to be exact, were considered based on the chord length, twist angle and tip speed ratio using GA results. They were compared with BA and GBBA optimum design results targeting the power coefficient and solidity. The results suggest that the final shape, obtained by the proposed hybrid algorithm, performs better compared to either BA or GA. Furthermore, the accuracy and speed convergence increases when the GBBA is employed

Keywords: Blade Design, Optimization, Genetic Algorithm, Bees Algorithm, Genetic-Based Bees Algorithm, Large Wind Turbine

Procedia PDF Downloads 306
15749 Simulation, Design, and 3D Print of Novel Highly Integrated TEG Device with Improved Thermal Energy Harvest Efficiency

Authors: Jaden Lu, Olivia Lu

Abstract:

Despite the remarkable advancement of solar cell technology, the challenge of optimizing total solar energy harvest efficiency persists, primarily due to significant heat loss. This excess heat not only diminishes solar panel output efficiency but also curtails its operational lifespan. A promising approach to address this issue is the conversion of surplus heat into electricity. In recent years, there is growing interest in the use of thermoelectric generators (TEG) as a potential solution. The integration of efficient TEG devices holds the promise of augmenting overall energy harvest efficiency while prolonging the longevity of solar panels. While certain research groups have proposed the integration of solar cells and TEG devices, a substantial gap between conceptualization and practical implementation remains, largely attributed to low thermal energy conversion efficiency of TEG devices. To bridge this gap and meet the requisites of practical application, a feasible strategy involves the incorporation of a substantial number of p-n junctions within a confined unit volume. However, the manufacturing of high-density TEG p-n junctions presents a formidable challenge. The prevalent solution often leads to large device sizes to accommodate enough p-n junctions, consequently complicating integration with solar cells. Recently, the adoption of 3D printing technology has emerged as a promising solution to address this challenge by fabricating high-density p-n arrays. Despite this, further developmental efforts are necessary. Presently, the primary focus is on the 3D printing of vertically layered TEG devices, wherein p-n junction density remains constrained by spatial limitations and the constraints of 3D printing techniques. This study proposes a novel device configuration featuring horizontally arrayed p-n junctions of Bi2Te3. The structural design of the device is subjected to simulation through the Finite Element Method (FEM) within COMSOL Multiphysics software. Various device configurations are simulated to identify optimal device structure. Based on the simulation results, a new TEG device is fabricated utilizing 3D Selective laser melting (SLM) printing technology. Fusion 360 facilitates the translation of the COMSOL device structure into a 3D print file. The horizontal design offers a unique advantage, enabling the fabrication of densely packed, three-dimensional p-n junction arrays. The fabrication process entails printing a singular row of horizontal p-n junctions using the 3D SLM printing technique in a single layer. Subsequently, successive rows of p-n junction arrays are printed within the same layer, interconnected by thermally conductive copper. This sequence is replicated across multiple layers, separated by thermal insulating glass. This integration created in a highly compact three-dimensional TEG device with high density p-n junctions. The fabricated TEG device is then attached to the bottom of the solar cell using thermal glue. The whole device is characterized, with output data closely matching with COMSOL simulation results. Future research endeavors will encompass the refinement of thermoelectric materials. This includes the advancement of high-resolution 3D printing techniques tailored to diverse thermoelectric materials, along with the optimization of material microstructures such as porosity and doping. The objective is to achieve an optimal and highly integrated PV-TEG device that can substantially increase the solar energy harvest efficiency.

Keywords: thermoelectric, finite element method, 3d print, energy conversion

Procedia PDF Downloads 48
15748 Biomass Energy in Improving Sustainable Economic Development

Authors: Dahiru Muhammad, Muhammad Danladi, Adamu Garba, Muhammad Yahaya

Abstract:

This paper put forward the potentialities of biomass for energy as divers means of sustainable economic development. The paper explains in brief the ways or methods that are used to generate energy from biomass, such as combustion, pyrolysis, anaerobic, and gasification, and also how biomass for energy can enhance the sustainable economic development of a Nation. Currently, the nation depends on fossil fuels as a sources of generating its energy which is finite and deflectable with time, while on the other hand, biomass is an alternative and endless product which consists of a forest biomass, agricultural residues, and energy crops. Finally, recommendations and conclusion were made on the role of biomass for energy in improving sustainable economic development.

Keywords: biomass, energy, sustainable, economic, development

Procedia PDF Downloads 107
15747 Environment Problems of Energy Exploitation and Utilization in Nigeria

Authors: Aliyu Mohammed Lawal

Abstract:

The problems placed on the environment as a result of energy generation and usage in Nigeria is: potential damage to the environment health by CO, CO2, SOx, and NOx, effluent gas emissions and global warming. For instance in the year 2004 in Nigeria energy consumption was 58% oil and 34% natural gas but about 94 million metric tons of CO2 was emitted out of which 64% came from fossil fuels while about 35% came from fuel wood. The findings from this research on how to alleviate these problems are that long term sustainable development solutions should be enhanced globally; energy should be used more rationally renewable energy resources should be exploited and the existing emissions should be controlled to tolerate limits because the increase in energy demand in Nigeria places enormous strain on current energy facilities.

Keywords: effluent gas, emissions, NOx, SOx

Procedia PDF Downloads 364
15746 Heat Recovery System from Air-Cooled Chillers in Iranian Hospitals

Authors: Saeed Vahidifar, Mohammad Nakhaee Sharif, Mohammad Ghaffari

Abstract:

Few people would dispute the fact that one of the most common applications of energy is creating comfort in buildings, so it is probably true to say that management of energy consumption is required due to the environmental issues and increasing the efficiency of mechanical systems. From the geographical point of view, Iran is located in a warm and semi-arid region; therefore, air-cooled chillers are usually used for cooling residential buildings, commercial buildings, medical buildings, etc. In this study, a heat exchanger was designed for providing laundry hot water by utilizing condenser heat lost base on analytical results of a 540-bed hospital in the city of Mashhad in Iran. In this paper, by using the analytical method, energy consumption reduces about 13%, and coefficient of performance increases a bit. Results show that this method can help in the management of energy consumption a lot.

Keywords: air cooled chiller, energy management, environmental issues, heat exchanger, hospital laundry system

Procedia PDF Downloads 135
15745 Developing Soil Accumulation Effect Correction Factor for Solar Photovoltaic Module

Authors: Kelebaone Tsamaase, Rapelang Kemoabe, Japhet Sakala, Edward Rakgati, Ishmael Zibani

Abstract:

Increasing demand for energy, depletion of non-renewable energy, effects of climate change, the abundance of renewable energy such as solar energy have increased the interest in investing in renewable energies, in particular solar photovoltaic (PV) energy. Solar photovoltaic energy systems as part of clean technology are considered to be environmentally friendly, freely available, offer clean production systems, long term costs benefits as opposed to conventional sources, and are the attractive power source for a wide range of applications in remote areas where there is no easy access to the national grid. To get maximum electrical power, maximum solar power should penetrate the module and be converted accordingly. However, some environmental and other geographical related factors reduce the electrical power. One of them is dust which accumulates on the surface of the module and forming a dust layer and in the process obstructing the solar power from penetrating PV module. This study intends to improve the performance of solar photovoltaic (PV) energy modules by establishing soil accumulation effects correction factor from dust characteristics and properties, and also from dust accumulation and retention pattern on PV module surface. The non-urban dry deposition flux model was adapted to determine monthly and yearly dust accumulation pattern. Consideration was done on prevailing environmental and other geographical conditions. Preliminary results showed that cumulative dust settlement increased during the months of July to October leading to a higher drop in module electrical output power.

Keywords: dust, electrical power output, PV module, soil correction factor

Procedia PDF Downloads 119
15744 Utilizing Computational Fluid Dynamics in the Analysis of Natural Ventilation in Buildings

Authors: A. W. J. Wong, I. H. Ibrahim

Abstract:

Increasing urbanisation has driven building designers to incorporate natural ventilation in the designs of sustainable buildings. This project utilises Computational Fluid Dynamics (CFD) to investigate the natural ventilation of an academic building, SIT@SP, using an assessment criterion based on daily mean temperature and mean velocity. The areas of interest are the pedestrian level of first and fourth levels of the building. A reference case recommended by the Architectural Institute of Japan was used to validate the simulation model. The validated simulation model was then used for coupled simulations on SIT@SP and neighbouring geometries, under two wind speeds. Both steady and transient simulations were used to identify differences in results. Steady and transient results are agreeable with the transient simulation identifying peak velocities during flow development. Under a lower wind speed, the first level was sufficiently ventilated while the fourth level was not. The first level has excessive wind velocities in the higher wind speed and the fourth level was adequately ventilated. Fourth level flow velocity was consistently lower than those of the first level. This is attributed to either simulation model error or poor building design. SIT@SP is concluded to have a sufficiently ventilated first level and insufficiently ventilated fourth level. Future works for this project extend to modifying the urban geometry, simulation model improvements, evaluation using other assessment metrics and extending the area of interest to the entire building.

Keywords: buildings, CFD Simulations, natural ventilation, urban airflow

Procedia PDF Downloads 204
15743 A Qualitative Exploration of the Strategic Management of Employee Resistance to Organisational Change

Authors: Muneeb Banday, Anukriti Dixit

Abstract:

Change in organizations is viewed as a conversion process of the organizational functioning. One of the crucial elements of this conversion process is the employee resistance to organizational change. The existing literature on change resistance has generally treated resistance as a barrier or an opportunity for successful implementation of change. However, there is little empirical research exploring how resistance to change is managed. This may be partially due to difficulty in getting information on resistance to change. The top management does not divulge such information to avoid negative evaluation whereas employees face huge risk in sharing information related to resistance. The focus of the study is to understand how the organization under study dealt with the employee resistance to change. The conversion process is a story of how the organization went from one stage to another. We used narrative approach to change. Data was collected data through company visits and interviews. The interviews were transcribed, coded, and themes were identified. We focused on the strands that left huge scope for alternative interpretations than the dominant narrative of change prevalent in the organization. The study reveals that the top management strategically uses the legitimacy of leadership, roles of key employees, and rationality of change to manage resistance.

Keywords: employee resistance, legitimacy of leadership, narrative analysis, organisational change

Procedia PDF Downloads 255
15742 Nearly Zero Energy Building: Analysis on How End-Users Affect Energy Savings Targets

Authors: Margarida Plana

Abstract:

One of the most important energy challenge of the European policies is the transition to a Net Zero Energy Building (NZEB) model. A NZEB is a new concept of building that has the aim of reducing both the energy consumption and the carbon emissions to nearly zero of the course of a year. To achieve this nearly zero consumption, apart from being buildings with high efficiency levels, the energy consumed by the building has to be produced on-site. This paper is focused on presenting the results of the analysis developed on basis of real projects’ data in order to quantify the impact of end-users behavior. The analysis is focused on how the behavior of building’s occupants can vary the achievement of the energy savings targets and how they can be limited. The results obtained show that on this kind of project, with very high energy performance, is required to limit the end-users interaction with the system operation to be able to reach the targets fixed.

Keywords: end-users impacts, energy efficiency, energy savings, NZEB model

Procedia PDF Downloads 356
15741 Finite Element Method (FEM) Simulation, design and 3D Print of Novel Highly Integrated PV-TEG Device with Improved Solar Energy Harvest Efficiency

Authors: Jaden Lu, Olivia Lu

Abstract:

Despite the remarkable advancement of solar cell technology, the challenge of optimizing total solar energy harvest efficiency persists, primarily due to significant heat loss. This excess heat not only diminishes solar panel output efficiency but also curtails its operational lifespan. A promising approach to address this issue is the conversion of surplus heat into electricity. In recent years, there is growing interest in the use of thermoelectric generators (TEG) as a potential solution. The integration of efficient TEG devices holds the promise of augmenting overall energy harvest efficiency while prolonging the longevity of solar panels. While certain research groups have proposed the integration of solar cells and TEG devices, a substantial gap between conceptualization and practical implementation remains, largely attributed to low thermal energy conversion efficiency of TEG devices. To bridge this gap and meet the requisites of practical application, a feasible strategy involves the incorporation of a substantial number of p-n junctions within a confined unit volume. However, the manufacturing of high-density TEG p-n junctions presents a formidable challenge. The prevalent solution often leads to large device sizes to accommodate enough p-n junctions, consequently complicating integration with solar cells. Recently, the adoption of 3D printing technology has emerged as a promising solution to address this challenge by fabricating high-density p-n arrays. Despite this, further developmental efforts are necessary. Presently, the primary focus is on the 3D printing of vertically layered TEG devices, wherein p-n junction density remains constrained by spatial limitations and the constraints of 3D printing techniques. This study proposes a novel device configuration featuring horizontally arrayed p-n junctions of Bi2Te3. The structural design of the device is subjected to simulation through the Finite Element Method (FEM) within COMSOL Multiphysics software. Various device configurations are simulated to identify optimal device structure. Based on the simulation results, a new TEG device is fabricated utilizing 3D Selective laser melting (SLM) printing technology. Fusion 360 facilitates the translation of the COMSOL device structure into a 3D print file. The horizontal design offers a unique advantage, enabling the fabrication of densely packed, three-dimensional p-n junction arrays. The fabrication process entails printing a singular row of horizontal p-n junctions using the 3D SLM printing technique in a single layer. Subsequently, successive rows of p-n junction arrays are printed within the same layer, interconnected by thermally conductive copper. This sequence is replicated across multiple layers, separated by thermal insulating glass. This integration created in a highly compact three-dimensional TEG device with high density p-n junctions. The fabricated TEG device is then attached to the bottom of the solar cell using thermal glue. The whole device is characterized, with output data closely matching with COMSOL simulation results. Future research endeavors will encompass the refinement of thermoelectric materials. This includes the advancement of high-resolution 3D printing techniques tailored to diverse thermoelectric materials, along with the optimization of material microstructures such as porosity and doping. The objective is to achieve an optimal and highly integrated PV-TEG device that can substantially increase the solar energy harvest efficiency.

Keywords: thermoelectric, finite element method, 3d print, energy conversion

Procedia PDF Downloads 53
15740 Adsorption Cooling Using Hybrid Energy Resources

Authors: R. Benelmir, M. El Kadri, A. Donnot, D. Descieux

Abstract:

HVAC represents a significant part of energy needs in buildings. Integrating renewable energy in cooling processes contributes to reducing primary energy consumption. Sorption refrigeration allows cold production through the use of solar/biomass/geothermal energy or even valuation of waste heat. This work presents an analysis of an experimental bench incorporating an adsorption chiller driven by hybrid energy resources associating solar thermal collectors with a cogeneration gas engine and a geothermal heat pump.

Keywords: solar cooling, cogeneration, geothermal heat pump, hybrid energy resources

Procedia PDF Downloads 339
15739 Feasibility Study for Implementation of Geothermal Energy Technology as a Means of Thermal Energy Supply for Medium Size Community Building

Authors: Sreto Boljevic

Abstract:

Heating systems based on geothermal energy sources are becoming increasingly popular among commercial/community buildings as management of these buildings looks for a more efficient and environmentally friendly way to manage the heating system. The thermal energy supply of most European commercial/community buildings at present is provided mainly by energy extracted from natural gas. In order to reduce greenhouse gas emissions and achieve climate change targets set by the EU, restructuring in the area of thermal energy supply is essential. At present, heating and cooling account for approx... 50% of the EU primary energy supply. Due to its physical characteristics, thermal energy cannot be distributed or exchange over long distances, contrary to electricity and gas energy carriers. Compared to electricity and the gas sectors, heating remains a generally black box, with large unknowns to a researcher and policymaker. Ain literature number of documents address policies for promoting renewable energy technology to facilitate heating for residential/community/commercial buildings and assess the balance between heat supply and heat savings. Ground source heat pump (GSHP) technology has been an extremely attractive alternative to traditional electric and fossil fuel space heating equipment used to supply thermal energy for residential/community/commercial buildings. The main purpose of this paper is to create an algorithm using an analytical approach that could enable a feasibility study regarding the implementation of GSHP technology in community building with existing fossil-fueled heating systems. The main results obtained by the algorithm will enable building management and GSHP system designers to define the optimal size of the system regarding technical, environmental, and economic impacts of the system implementation, including payback period time. In addition, an algorithm is created to be utilized for a feasibility study for many different types of buildings. The algorithm is tested on a building that was built in 1930 and is used as a church located in Cork city. The heating of the building is currently provided by a 105kW gas boiler.

Keywords: GSHP, greenhouse gas emission, low-enthalpy, renewable energy

Procedia PDF Downloads 198
15738 Investigation of Fluid-Structure-Seabed Interaction of Gravity Anchor Under Scour, and Anchor Transportation and Installation (T&I)

Authors: Vinay Kumar Vanjakula, Frank Adam

Abstract:

The generation of electricity through wind power is one of the leading renewable energy generation methods. Due to abundant higher wind speeds far away from shore, the construction of offshore wind turbines began in the last decades. However, the installation of offshore foundation-based (monopiles) wind turbines in deep waters are often associated with technical and financial challenges. To overcome such challenges, the concept of floating wind turbines is expanded as the basis of the oil and gas industry. For such a floating system, stabilization in harsh conditions is a challenging task. For that, a robust heavy-weight gravity anchor is needed. Transportation of such anchor requires a heavy vessel that increases the cost. To lower the cost, the gravity anchor is designed with ballast chambers that allow the anchor to float while towing and filled with water when lowering to the planned seabed location. The presence of such a large structure may influence the flow field around it. The changes in the flow field include, formation of vortices, turbulence generation, waves or currents flow breaking and pressure differentials around the seabed sediment. These changes influence the installation process. Also, after installation and under operating conditions, the flow around the anchor may allow the local seabed sediment to be carried off and results in Scour (erosion). These are a threat to the structure's stability. In recent decades, rapid developments of research work and the knowledge of scouring on fixed structures (bridges and monopiles) in rivers and oceans have been carried out, and very limited research work on scouring around a bluff-shaped gravity anchor. The objective of this study involves the application of different numerical models to simulate the anchor towing under waves and calm water conditions. Anchor lowering involves the investigation of anchor movements at certain water depths under wave/current. The motions of anchor drift, heave, and pitch is of special focus. The further study involves anchor scour, where the anchor is installed in the seabed; the flow of underwater current around the anchor induces vortices mainly at the front and corners that develop soil erosion. The study of scouring on a submerged gravity anchor is an interesting research question since the flow not only passes around the anchor but also over the structure that forms different flow vortices. The achieved results and the numerical model will be a basis for the development of other designs and concepts for marine structures. The Computational Fluid Dynamics (CFD) numerical model will build in OpenFOAM and other similar software.

Keywords: anchor lowering, anchor towing, gravity anchor, computational fluid dynamics, scour

Procedia PDF Downloads 151
15737 Central Energy Management for Optimizing Utility Grid Power Exchange with a Network of Smart Homes

Authors: Sima Aznavi, Poria Fajri, Hanif Livani

Abstract:

Smart homes are small energy systems which may be equipped with renewable energy sources, storage devices, and loads. Energy management strategy plays a main role in the efficient operation of smart homes. Effective energy scheduling of the renewable energy sources and storage devices guarantees efficient energy management in households while reducing the energy imports from the grid. Nevertheless, despite such strategies, independently day ahead energy schedules for multiple households can cause undesired effects such as high power exchange with the grid at certain times of the day. Therefore, the interactions between multiple smart home day ahead energy projections is a challenging issue in a smart grid system and if not managed appropriately, the imported energy from the power network can impose additional burden on the distribution grid. In this paper, a central energy management strategy for a network consisting of multiple households each equipped with renewable energy sources, storage devices, and Plug-in Electric Vehicles (PEV) is proposed. The decision-making strategy alongside the smart home energy management system, minimizes the energy purchase cost of the end users, while at the same time reducing the stress on the utility grid. In this approach, the smart home energy management system determines different operating scenarios based on the forecasted household daily load and the components connected to the household with the objective of minimizing the end user overall cost. Then, selected projections for each household that are within the same cost range are sent to the central decision-making system. The central controller then organizes the schedules to reduce the overall peak to average ratio of the total imported energy from the grid. To validate this approach simulations are carried out for a network of five smart homes with different load requirements and the results confirm that by applying the proposed central energy management strategy, the overall power demand from the grid can be significantly flattened. This is an effective approach to alleviate the stress on the network by distributing its energy to a network of multiple households over a 24- hour period.

Keywords: energy management, renewable energy sources, smart grid, smart home

Procedia PDF Downloads 227
15736 The Study of Adsorption of RuP onto TiO₂ (110) Surface Using Photoemission Deposited by Electrospray

Authors: Tahani Mashikhi

Abstract:

Countries worldwide rely on electric power as a critical economic growth and progress factor. Renewable energy sources, often referred to as alternative energy sources, such as wind, solar energy, geothermal energy, biomass, and hydropower, have garnered significant interest in response to the rising consumption of fossil fuels. Dye-sensitized solar cells (DSSCs) are a highly promising alternative for energy production as they possess numerous advantages compared to traditional silicon solar cells and thin-film solar cells. These include their low cost, high flexibility, straightforward preparation methodology, ease of production, low toxicity, different colors, semi-transparent quality, and high power conversion efficiency. A solar cell, also known as a photovoltaic cell, is a device that converts the energy of light from the sun into electrical energy through the photovoltaic effect. The Gratzel cell is the initial dye-sensitized solar cell made from colloidal titanium dioxide. The operational mechanism of DSSCs relies on various key elements, such as a layer composed of wide band gap semiconducting oxide materials (e.g. titanium dioxide [TiO₂]), as well as a photosensitizer or dye that absorbs sunlight to inject electrons into the conduction band, the electrolyte utilizes the triiodide/iodide redox pair (I− /I₃−) to regenerate dye molecules and a counter electrode made of carbon or platinum facilitates the movement of electrons across the circuit. Electrospray deposition permits the deposition of fragile, non-volatile molecules in a vacuum environment, including dye sensitizers, complex molecules, nanoparticles, and biomolecules. Surface science techniques, particularly X-ray photoelectron spectroscopy, are employed to examine dye-sensitized solar cells. This study investigates the possible application of electrospray deposition to build high-quality layers in situ in a vacuum. Two distinct categories of dyes can be employed as sensitizers in DSSCs: organometallic semiconductor sensitizers and purely organic dyes. Most organometallic dyes, including Ru533, RuC, and RuP, contain a ruthenium atom, which is a rare element. This ruthenium atom enhances the efficiency of dye-sensitized solar cells (DSSCs). These dyes are characterized by their high cost and typically appear as dark purple powders. On the other hand, organic dyes, such as SQ2, RK1, D5, SC4, and R6, exhibit reduced efficacy due to the lack of a ruthenium atom. These dyes appear in green, red, orange, and blue powder-colored. This study will specifically concentrate on metal-organic dyes. The adsorption of dye molecules onto the rutile TiO₂ (110) surface has been deposited in situ under ultra-high vacuum conditions by combining an electrospray deposition method with X-ray photoelectron spectroscopy. The X-ray photoelectron spectroscopy (XPS) technique examines chemical bonds and interactions between molecules and TiO₂ surfaces. The dyes were deposited at varying times, from 5 minutes to 40 minutes, to achieve distinct layers of coverage categorized as sub-monolayer, monolayer, few layers, or multilayer. Based on the O 1s photoelectron spectra data, it can be observed that the monolayer establishes a strong chemical bond with the Ti atoms of the oxide substrate by deprotonating the carboxylic acid groups through 2M-bidentate bridging anchors. The C 1s and N 1s photoelectron spectra indicate that the molecule remains intact at the surface. This can be due to the existence of all functional groups and a ruthenium atom, where the binding energy of Ru 3d is consistent with Ru2+.

Keywords: deposit, dye, electrospray, TiO₂, XPS

Procedia PDF Downloads 19
15735 Fuels and Platform Chemicals Production from Lignocellulosic Biomass: Current Status and Future Prospects

Authors: Chandan Kundu, Sankar Bhattacharya

Abstract:

A significant disadvantage of fossil fuel energy production is the considerable amount of carbon dioxide (CO₂) released, which is one of the contributors to climate change. Apart from environmental concerns, changing fossil fuel prices have pushed society gradually towards renewable energy sources in recent years. Biomass is a plentiful and renewable resource and a source of carbon. Recent years have seen increased research interest in generating fuels and chemicals from biomass. Unlike fossil-based resources, biomass is composed of lignocellulosic material, which does not contribute to the increase in atmospheric CO₂ over a longer term. These considerations contribute to the current move of the chemical industry from non-renewable feedstock to renewable biomass. This presentation focuses on generating bio-oil and two major platform chemicals that can potentially improve the environment. Thermochemical processes such as pyrolysis are considered viable methods for producing bio-oil and biomass-based platform chemicals. Fluidized bed reactors, on the other hand, are known to boost bio-oil yields during pyrolysis due to their superior mixing and heat transfer features, as well as their scalability. This review and the associated experimental work are focused on the thermochemical conversion of biomass to bio-oil and two high-value platform chemicals, Levoglucosenone (LGO) and 5-Chloromethyl furfural (5-CMF), in a fluidized bed reactor. These two active molecules with distinct features can potentially be useful monomers in the chemical and pharmaceutical industries since they are well adapted to the manufacture of biologically active products. This process took several meticulous steps. To begin, the biomass was delignified using a peracetic acid pretreatment to remove lignin. Because of its complicated structure, biomass must be pretreated to remove the lignin, increasing access to the carbohydrate components and converting them to platform chemicals. The biomass was then characterized by Thermogravimetric analysis, Synchrotron-based THz spectroscopy, and in-situ DRIFTS in the laboratory. Based on the results, a continuous-feeding fluidized bed reactor system was constructed to generate platform chemicals from pretreated biomass using hydrogen chloride acid-gas as a catalyst. The procedure also yields biochar, which has a number of potential applications, including soil remediation, wastewater treatment, electrode production, and energy resource utilization. Consequently, this research also includes a preliminary experimental evaluation of the biochar's prospective applications. The biochar obtained was evaluated for its CO₂ and steam reactivity. The outline of the presentation will comprise the following: Biomass pretreatment for effective delignification Mechanistic study of the thermal and thermochemical conversion of biomass Thermochemical conversion of untreated and pretreated biomass in the presence of an acid catalyst to produce LGO and CMF A thermo-catalytic process for the production of LGO and 5-CMF in a continuously-fed fluidized bed reactor and efficient separation of chemicals Use of biochar generated from the platform chemicals production through gasification

Keywords: biomass, pretreatment, pyrolysis, levoglucosenone

Procedia PDF Downloads 113
15734 Smart Grids Cyber Security Issues and Challenges

Authors: Imen Aouini, Lamia Ben Azzouz

Abstract:

The energy need is growing rapidly due to the population growth and the large new usage of power. Several works put considerable efforts to make the electricity grid more intelligent to reduce essentially energy consumption and provide efficiency and reliability of power systems. The Smart Grid is a complex architecture that covers critical devices and systems vulnerable to significant attacks. Hence, security is a crucial factor for the success and the wide deployment of Smart Grids. In this paper, we present security issues of the Smart Grid architecture and we highlight open issues that will make the Smart Grid security a challenging research area in the future.

Keywords: smart grids, smart meters, home area network, neighbor area network

Procedia PDF Downloads 405
15733 An Experimental Study of Diffuser-Enhanced Propeller Hydrokinetic Turbines

Authors: Matheus Nunes, Rafael Mendes, Taygoara Felamingo Oliveira, Antonio Brasil Junior

Abstract:

Wind tunnel experiments of horizontal axis propeller hydrokinetic turbines model were carried out, in order to determine the performance behavior for different configurations and operational range. The present experiments introduce the use of two different geometries of rear diffusers to enhance the performance of the free flow machine. The present paper reports an increase of the power coefficient about 50%-80%. It represents an important feature that has to be taken into account in the design of this kind of machine.

Keywords: diffuser-enhanced turbines, hydrokinetic turbine, wind tunnel experiments, micro hydro

Procedia PDF Downloads 254
15732 Enhancement of Thermal Performance of Latent Heat Solar Storage System

Authors: Rishindra M. Sarviya, Ashish Agrawal

Abstract:

Solar energy is available abundantly in the world, but it is not continuous and its intensity also varies with time. Due to above reason the acceptability and reliability of solar based thermal system is lower than conventional systems. A properly designed heat storage system increases the reliability of solar thermal systems by bridging the gap between the energy demand and availability. In the present work, two dimensional numerical simulation of the melting of heat storage material is presented in the horizontal annulus of double pipe latent heat storage system. Longitudinal fins were used as a thermal conductivity enhancement. Paraffin wax was used as a heat-storage or phase change material (PCM). Constant wall temperature is applied to heat transfer tube. Presented two-dimensional numerical analysis shows the movement of melting front in the finned cylindrical annulus for analyzing the thermal behavior of the system during melting.

Keywords: latent heat, numerical study, phase change material, solar energy

Procedia PDF Downloads 296
15731 CFD Analysis of a Two-Sided Windcatcher Inlet/Outlet Ducts’ Height in Ventilation Flow through a Three Dimensional Room

Authors: Amirreza Niktash, B. P. Huynh

Abstract:

A windcatcher is a structure fitted on the roof of a building for providing natural ventilation by using wind power; it exhausts the inside stale air to the outside and supplies the outside fresh air into the interior space of the building working by pressure difference between outside and inside of the building and using ventilation principles of passive stacks and wind tower, respectively. In this paper, the effect of different heights of inlet/outlets’ ducts of a two-sided windcatcher on the flow rate, flow velocity and flow pattern through a three-dimensional room fitted with the windcatcher are investigated and analysed by using RANS CFD technique and applying standard K-ε turbulence model via a commercial computational fluid dynamics (CFD) software package. The achieved results show that the inlet/outlet ducts height strongly affects flow rate, flow velocity and flow pattern especially in the living area of the room when the wind velocity is not too low. The results are confirmed by the experimental test for constructed scaled model in the laboratory and it develops the two-sided windcatcher’s performance in ventilation applications.

Keywords: CFD, RANS, ventilation, windcatcher

Procedia PDF Downloads 415
15730 Efficiency of Treatment in Patients with Newly Diagnosed Destructive Pulmonary Tuberculosis Using Intravenous Chemotherapy

Authors: M. Kuzhko, M. Gumeniuk, D. Butov, T. Tlustova, O. Denysov, T. Sprynsian

Abstract:

Background: The aim of the research was to determine the effectiveness of chemotherapy using intravenous antituberculosis drugs compared with their oral administration during the intensive phase of treatment. Methods: 152 tuberculosis patients were randomized into 2 groups: Main (n=65) who received isoniazid, ethambutol and sodium rifamycin intravenous + pyrazinamide per os and control (n=87) who received all the drugs (isoniazid, rifampicin, ethambutol, pyrazinamide) orally. Results: After 2 weeks of treatment symptoms of intoxication disappeared in 59 (90.7±3.59 %) of patients of the main group and 60 (68.9±4.9 %) patients in the control group, p<0.05. The mean duration of symptoms of intoxication in patients main group was 9.6±0.7 days, in control group – 13.7±0.9 days. After completing intensive phase sputum conversion was found in all the patients main group and 71 (81.6±4.1 %) patients control group p < 0.05. The average time of sputum conversion in main group was 1.6±0.1 months and 1.9±0.1 months in control group, p > 0.05. In patients with destructive pulmonary tuberculosis time to sputum conversion was 1.7±0.1 months in main group and 2.2±0.2 months in control group, p < 0.05. The average time of cavities healing in main group was 2.9±0.2 months and 3.9±0.2 months in the control group, p < 0.05. Conclusions: In patients with newly diagnosed destructive pulmonary tuberculosis use of isoniazid, ethambutol and sodium rifamycin intravenous in the intensive phase of chemotherapy resulted in a significant reduction in terms of the disappearance of symptoms of intoxication and sputum conversion.

Keywords: intravenous chemotherapy, tuberculosis, treatment efficiency, tuberculosis drugs

Procedia PDF Downloads 187
15729 Increasing System Adequacy Using Integration of Pumped Storage: Renewable Energy to Reduce Thermal Power Generations Towards RE100 Target, Thailand

Authors: Mathuravech Thanaphon, Thephasit Nat

Abstract:

The Electricity Generating Authority of Thailand (EGAT) is focusing on expanding its pumped storage hydropower (PSH) capacity to increase the reliability of the system during peak demand and allow for greater integration of renewables. To achieve this requirement, Thailand will have to double its current renewable electricity production. To address the challenges of balancing supply and demand in the grid with increasing levels of RE penetration, as well as rising peak demand, EGAT has already been studying the potential for additional PSH capacity for several years to enable an increased share of RE and replace existing fossil fuel-fired generation. In addition, the role that pumped-storage hydropower would play in fulfilling multiple grid functions and renewable integration. The proposed sites for new PSH would help increase the reliability of power generation in Thailand. However, most of the electricity generation will come from RE, chiefly wind and photovoltaic, and significant additional Energy Storage capacity will be needed. In this paper, the impact of integrating the PSH system on the adequacy of renewable rich power generating systems to reduce the thermal power generating units is investigated. The variations of system adequacy indices are analyzed for different PSH-renewables capacities and storage levels. Power Development Plan 2018 rev.1 (PDP2018 rev.1), which is modified by integrating a six-new PSH system and RE planning and development aftermath in 2030, is the very challenge. The system adequacy indices through power generation are obtained using Multi-Objective Genetic Algorithm (MOGA) Optimization. MOGA is a probabilistic heuristic and stochastic algorithm that is able to find the global minima, which have the advantage that the fitness function does not necessarily require the gradient. In this sense, the method is more flexible in solving reliability optimization problems for a composite power system. The optimization with hourly time step takes years of planning horizon much larger than the weekly horizon that usually sets the scheduling studies. The objective function is to be optimized to maximize RE energy generation, minimize energy imbalances, and minimize thermal power generation using MATLAB. The PDP2018 rev.1 was set to be simulated based on its planned capacity stepping into 2030 and 2050. Therefore, the four main scenario analyses are conducted as the target of renewables share: 1) Business-As-Usual (BAU), 2) National Targets (30% RE in 2030), 3) Carbon Neutrality Targets (50% RE in 2050), and 5) 100% RE or full-decarbonization. According to the results, the generating system adequacy is significantly affected by both PSH-RE and Thermal units. When a PSH is integrated, it can provide hourly capacity to the power system as well as better allocate renewable energy generation to reduce thermal generations and improve system reliability. These results show that a significant level of reliability improvement can be obtained by PSH, especially in renewable-rich power systems.

Keywords: pumped storage hydropower, renewable energy integration, system adequacy, power development planning, RE100, multi-objective genetic algorithm

Procedia PDF Downloads 40
15728 Optimization of Cobalt Oxide Conversion to Co-Based Metal-Organic Frameworks

Authors: Aleksander Ejsmont, Stefan Wuttke, Joanna Goscianska

Abstract:

Gaining control over particle shape, size and crystallinity is an ongoing challenge for many materials. Especially metalorganic frameworks (MOFs) are recently widely studied. Besides their remarkable porosity and interesting topologies, morphology has proven to be a significant feature. It can affect the further material application. Thus seeking new approaches that enable MOF morphology modulation is important. MOFs are reticular structures, where building blocks are made up of organic linkers and metallic nodes. The most common strategy of ensuring metal source is using salts, which usually exhibit high solubility and hinder morphology control. However, there has been a growing interest in using metal oxides as structure-directing agents towards MOFs due to their very low solubility and shape preservation. Metal oxides can be treated as a metal reservoir during MOF synthesis. Up to now, reports in which receiving MOFs from metal oxides mostly present ZnO conversion to ZIF-8. However, there are other oxides, for instance, Co₃O₄, which often is overlooked due to their structural stability and insolubility in aqueous solutions. Cobalt-based materials are famed for catalytic activity. Therefore the development of their efficient synthesis is worth attention. In the presented work, an optimized Co₃O₄transition to Co-MOFviaa solvothermal approach was proposed. The starting point of the research was the synthesis of Co₃O₄ flower petals and needles under hydrothermal conditions using different cobalt salts (e.g., cobalt(II) chloride and cobalt(II) nitrate), in the presence of urea, and hexadecyltrimethylammonium bromide (CTAB) surfactant as a capping agent. After receiving cobalt hydroxide, the calcination process was performed at various temperatures (300–500 °C). Then cobalt oxides as a source of cobalt cations were subjected to reaction with trimesic acid in solvothermal environment and temperature of 120 °C leading to Co-MOF fabrication. The solution maintained in the system was a mixture of water, dimethylformamide, and ethanol, with the addition of strong acids (HF and HNO₃). To establish how solvents affect metal oxide conversion, several different solvent ratios were also applied. The materials received were characterized with analytical techniques, including X-ray powder diffraction, energy dispersive spectroscopy,low-temperature nitrogen adsorption/desorption, scanning, and transmission electron microscopy. It was confirmed that the synthetic routes have led to the formation of Co₃O₄ and Co-based MOF varied in shape and size of particles. The diffractograms showed receiving crystalline phase for Co₃O₄, and also for Co-MOF. The Co₃O₄ obtained from nitrates and with using low-temperature calcination resulted in smaller particles. The study indicated that cobalt oxide particles of different size influence the efficiency of conversion and morphology of Co-MOF. The highest conversion was achieved using metal oxides with small crystallites.

Keywords: Co-MOF, solvothermal synthesis, morphology control, core-shell

Procedia PDF Downloads 144
15727 Spectral Efficiency Improvement in 5G Systems by Polyphase Decomposition

Authors: Wilson Enríquez, Daniel Cardenas

Abstract:

This article proposes a filter bank format combined with the mathematical tool called polyphase decomposition and the discrete Fourier transform (DFT) with the purpose of improving the performance of the fifth-generation communication systems (5G). We started with a review of the literature and the study of the filter bank theory and its combination with DFT in order to improve the performance of wireless communications since it reduces the computational complexity of these communication systems. With the proposed technique, several experiments were carried out in order to evaluate the structures in 5G systems. Finally, the results are presented in graphical form in terms of bit error rate against the ratio bit energy/noise power spectral density (BER vs. Eb / No).

Keywords: multi-carrier system (5G), filter bank, polyphase decomposition, FIR equalizer

Procedia PDF Downloads 183