Search results for: surface structure
1959 Graphene-Intercalated P4Se3@CNF Hybrid Electrode for Sustainable Energy Storage Solution: Enabling High Energy Density and Ultra-long Cyclic Stability
Authors: Daya Rani
Abstract:
Non-metal-based compounds have emerged as promising electrodes in recent years to replace scarce and expensive transition-metals for energy storage applications. Herein, a simple electro-spinning technique followed by carbonization is used to create tetraphosphorus triselenide(P4Se3)nano-flakes encapsulated in carbon nanofiber (P4Se3@CNF) to obtain a binder-free, metal-free and flexible hybrid electrode with high electrical conductivity and cyclic stability. A remarkable capacitive performance (5.5-folds@P4Se3) of 810Fg-1/[email protected] has been obtained using P4Se3@CNF electrode with an excellent rate capability compared to pristine(P4Se3) which is further supported by theoretical calculations via intercalating graphene within bare P4Se3 flakes inducing partial charge redistribution in hetero-structure. A flexible pouch-type hybrid-supercapacitor followed by coin-cell has been manufactured offering exceptional energy-density without sacrificing power density and ultra-long durability over 35000 and 100000-cycles with capacitance-retention of 99.77% and 100%, respectively. It has been demonstrated that as-fabricated device has practical usefulness towards renewable energy harvesting and storage via integrating commercial solar cell module with supercapattery array that can enlighten the blue LED approximately for 31minutes, rotate the homemade windmill device, power Arduino and glow “INST” against 2minutes of charging. This work demonstrates a facile route towards the development of metal-free electrochemical renewable energy storage/transfer devices offering an inevitable adoption in industrial platforms.Keywords: metal free, carbon nano-fiber, pouch-type hybrid super-capacitor, nano-flakes
Procedia PDF Downloads 221958 Genetic Variation of Lactoferrin Gene and Its Association with Productive Traits in Egyptian Goats
Authors: Othman E. Othman, Hassan R. Darwish, Amira M. Nowier
Abstract:
Lactoferrin (LF) is a multifunctional protein involved in economically production traits like milk protein composition and skeletal structure in small ruminants including sheep and goat. So, LF gene - with its genetic polymorphisms associated with production traits - is considered a candidate genetic marker used in marker-assisted selection in goats. This study aimed to identify the different alleles and genotypes of this gene in three Egyptian goat breeds using PCR-SSCP (polymerase chain reaction-single-strand conformation polymorphism) and DNA sequencing. Genomic DNA was extracted from 120 animals belonging to Barki, Zaraibi, and Damascus goat breeds. Using specific primers, PCR amplified 247-bp fragments from exon 2 of LF goat gene. The PCR products were subjected to Single-Strand Conformation Polymorphism (SSCP) technique. The results showed the presence of two genotypes GG and AG in the tested animals. The frequencies of both genotypes varied among the three tested breeds with the highest frequencies of GG genotype in all tested goat breeds. The sequence analysis of PCR products representing these two detected genotypes declared the presence of an SNP (single nucleotide polymorphisms) substitution (G/A) among G and A alleles of this gene. The association between different LF genotypes and milk composition as well as body measurement was estimated. The comparison showed that the animals possess AG genotypes are superior over those with GG genotypes for different parameters of milk protein compositions and skeletal structures. This finding declared that allele A of LF gene is considered the promising marker for the productive traits in goat. In conclusion, the Egyptian goat breeds will be needed to enhance their milk protein composition and growth trait parameters through the increasing of allele A frequency in their herds depending on the superior production traits of this allele in goats.Keywords: lLactoferrin gene, PCR-SSCP, SNPs, Egyptian goat
Procedia PDF Downloads 1551957 Brain Atrophy in Alzheimer's Patients
Authors: Tansa Nisan Gunerhan
Abstract:
Dementia comes in different forms, including Alzheimer's disease. The most common dementia diagnosis among elderly individuals is Alzheimer's disease. On average, for patients with Alzheimer’s, life expectancy is around 4-8 years after the diagnosis; however, expectancy can go as high as twenty years or more, depending on the shrinkage of the brain. Normally, along with aging, the brain shrinks at some level but doesn’t lose a vast amount of neurons. However, Alzheimer's patients' neurons are destroyed rapidly; hence problems with loss of memory, communication, and other metabolic activities begin. The toxic changes in the brain affect the stability of the neurons. Beta-amyloid and tau are two proteins that are believed to play a role in the development of Alzheimer's disease through their toxic changes. Beta-amyloid is a protein that is produced in the brain and is normally broken down and removed from the body. However, in people with Alzheimer's disease, the production of beta-amyloid increases, and it begins to accumulate in the brain. These plaques are thought to disrupt communication between nerve cells and may contribute to the death of brain cells. Tau is a protein that helps to stabilize microtubules, which are essential for the transportation of nutrients and other substances within brain cells. In people with Alzheimer's disease, tau becomes abnormal and begins to accumulate inside brain cells, forming neurofibrillary tangles. These tangles disrupt the normal functioning of brain cells and may contribute to their death, forming amyloid plaques which are deposits of a protein called amyloid-beta that build up between nerve cells in the brain. The accumulation of amyloid plaques and neurofibrillary tangles in the brain is thought to contribute to the shrinkage of brain tissue. As the brain shrinks, the size of the brain may decrease, leading to a reduction in brain volume. Brain atrophy in Alzheimer's disease is often accompanied by changes in the structure and function of brain cells and the connections between them, leading to a decline in brain function. These toxic changes that accumulate can cause symptoms such as memory loss, difficulty with thinking and problem-solving, and changes in behavior and personality.Keywords: Alzheimer, amyloid-beta, brain atrophy, neuron, shrinkage
Procedia PDF Downloads 951956 La₀.₈Ba₀.₂FeO₃ Perovskite as an Additive in the Three-Way Catalyst (TWCs) for Reduction of PGMs Loading
Authors: Mahshid Davoodpoor, Zahra Shamohammadi Ghahsareh, Saeid Razfar, Alaleh Dabbaghi
Abstract:
Nowadays, air pollution has become a topic of great concern all over the world. One of the main sources of air pollution is automobile exhaust gas, which introduces a large number of toxic gases, including CO, unburned hydrocarbons (HCs), NOx, and non-methane hydrocarbons (NMHCs), into the air. The application of three-way catalysts (TWCs) is still the most effective strategy to mitigate the emission of these pollutants. Due to the stringent environmental regulations which continuously become stricter, studies on the TWCs are ongoing despite several years of research and development. This arises from the washcoat complexity and the several numbers of parameters involved in the redox reactions. The main objectives of these studies are the optimization of washcoat formulation and the investigation of different coating modes. Perovskite (ABO₃), as a promising class of materials, has unique features that make it versatile to use as an alternative to commonly mixed oxides in washcoats. High catalytic activity for oxidation reactions and its relatively high oxygen storage capacity are important properties of perovskites in catalytic applications. Herein, La₀.₈Ba₀.₂FeO₃ perovskite material was synthesized using the co-precipitation method and characterized by XRD, ICP, and BET analysis. The effect of synthesis conditions, including B site metal (Fe and Co), metal precursor concentration, and dopant (Ba), were examined on the phase purity of the products. The selected perovskite sample was used as one of the components in the TWC formulation to evaluate its catalytic performance through Light-off, oxygen storage capacity, and emission analysis. Results showed a remarkable increment in oxygen storage capacity and also revealed that T50 and emission of CO, HC, and NOx reduced in the presence of perovskite structure which approves the enhancement of catalytic performance for the new washcoat formulation. This study shows the brilliant future of advanced oxide structures in the TWCs.Keywords: Perovskite, three-way catalyst, PGMs, PGMs reduction
Procedia PDF Downloads 671955 Design and Synthesis of Copper Doped Zeolite Composite for Antimicrobial Activity and Heavy Metal Removal from Waste Water
Authors: Feleke Terefe Fanta
Abstract:
The existence of heavy metals and microbial contaminants in aquatic system of Akaki river basin, a sub city of Addis Ababa, has become a public concern as human population increases and land development continues. This is because effluents from chemical and pharmaceutical industries are directly discharged onto surrounding land, irrigation fields and surface water bodies. In the present study, we synthesised zeolites and copper- zeolite composite based adsorbent through cost effective and simple approach to mitigate the problem. The study presents determination of heavy metal content and microbial contamination level of waste water sample collected from Akaki river using zeolites and copper- doped zeolites as adsorbents. The synthesis of copper- zeolite X composite was carried out by ion exchange method of copper ions into zeolites frameworks. The optimum amount of copper ions loaded into the zeolites frameworks were studied using the pore size determination concept via iodine test. The copper- loaded zeolites were characterized by X-ray diffraction (XRD). The XRD analysis showed clear difference in phase purity of zeolite before and after copper ion exchange. The concentration of Cd, Cr, and Pb were determined in waste water sample using atomic absorption spectrophotometry. The mean concentrations of Cd, Cr, and Pb in untreated sample were 0.795, 0.654 and 0.7025 mg/L respectively. The concentration of Cd, Cr, and Pb decreased to 0.005, 0.052 and BDL mg/L for sample treated with bare zeolite X while a further decrease in concentration of Cd, Cr, and Pb (0.005, BDL and BDL) mg/L respectively was observed for the sample treated with copper- zeolite composite. The antimicrobial activity was investigated by exposing the total coliform to the Zeolite X and Copper-modified Zeolite X. Zeolite X and Copper-modified Zeolite X showed complete elimination of microbilas after 90 and 50 minutes contact time respectively. This demonstrates effectiveness of copper- zeolite composite as efficient disinfectant. To understand the mode of heavy metals removal and antimicrobial activity of the copper-loaded zeolites; the adsorbent dose, contact time, temperature was studied. Overall, the results obtained in this study showed high antimicrobial disinfection and heavy metal removal efficiencies of the synthesized adsorbent.Keywords: waste water, copper doped zeolite x, adsorption heavy metal, disinfection
Procedia PDF Downloads 821954 Planning and Strategies for Risks Prevention, Mitigating, and Recovery of Ancient Theatres Heritage: Investigation and Recommendations
Authors: Naif A. Haddad
Abstract:
Greek, Hellenistic and Roman theatre heritage are exposed to multiple risks at varied times or simultaneously. There is no single reason why a theatre building becomes ‘at risk’, as each case has different circumstances which have led to the theatre building decay. There are complicated processes of destruction and distress that show divergence in theatre building materials' decay. Theatre modern use for cultural performances causes much of the risks concerning the physical structure and authenticity of theatre sites. In addition, there are some deterioration and deformations due to previous poor quality restorations and interventions through related excavation and conservation programmes as also risks to authenticity due to new additions. For preventive conservation, theatre natural and anthropogenic risks management can provide a framework for decision making. These risks to ancient theatre heritage may stem from exposure to one or more risk or synergy of many factors. We, therefore, need to link the theatre natural risks to the risks that come from anthropogenic factors associated with social and economic development. However, this requires a holistic approach, and systematic methodology for understanding these risks from various sources while incorporating specific actions, planning and strategies for each specific risk. Elaborating on recent relevant studies, and ERATO and ATHENA EU projects for ancient theaters and odea and general surveys, this paper attempts to discuss the main aspects of the ancient Greek, Hellenistic and Roman theatres risk related issues. Relevant case studies shall also be discussed and investigated to examine frameworks for risk mitigation, and related guidelines and recommendations that provide a systematic approach for sustainable management and planning in relation mainly to ‘compatible use’ of theatre sites.Keywords: cultural heritage management, European ancient theatres projects, Anthropogenic risks mitigation, sustainable management and planning, preventive conservation, modern use, compatible use
Procedia PDF Downloads 2981953 Effect of Water Addition on Catalytic Activity for CO2 Purification from Oxyfuel Combustion
Authors: Joudia Akil, Stephane Siffert, Laurence Pirault-Roy, Renaud Cousin, Christophe Poupin
Abstract:
Oxyfuel combustion is a promising method that enables to obtain a CO2 rich stream, with water vapor ( ̴10%), unburned components such as CO and NO, which must be cleaned before the use of CO2. Our objective is then the final treatment of CO and NO by catalysis. Three-way catalysts are well-developed material for simultaneous conversion of NO, CO and hydrocarbons. Pt and/or Rh ensure a quasi-complete removal of NOx, CO and HC and there is also a growing interest in partly replacing Pt with less-expensive Pd. The use of alumina and ceria as support ensures, respectively, the stabilization of such species in active state and discharging or storing oxygen to control the oxidation of CO and HC and the reduction of NOx. In this work, we will compare different metals (Pd, Rh and Pt) supported on Al2O3 and CeO2, for CO2 purification from oxyfuel combustion. The catalyst must reduce NO by CO in an oxidizing environment, in the presence of CO2 rich stream and resistant to water. In this study, Al2O3 and CeO2 were used as support materials of the catalysts. 1wt% M/Support where M = Pd, Rh or Pt catalysts were obtained by wet impregnation on supports with a precursor of palladium [Pd(acac)2], rhodium [Rh(NO3)3] and platinum [Pt(NO2)2(NO3)2]. Materials were characterized by BET surface area, H2 chemisorption, and TEM. Catalytic activity was evaluated in CO2 purification which is carried out in a fixed-bed flow reactor containing 150 mg of catalyst at atmospheric pressure. The flow of the reactant gases is composed of: 20% CO2, 10% O2, 0.5% CO, 0.02% NO and 8.2% H2O (He as eluent gas) with a total flow of 200 mL.min−1, with same GHSV (2.24x104 h-1). The catalytic performances of the samples were investigated with and without water. It shows that the total oxidation of CO occurred over the different materials. This study evidenced an important effect of the nature of the metals, supports and the presence or absence of H2O during the reduction of NO by CO in oxyfuel combustions conditions. Rh based catalysts show that the addition of water has a very positive influence especially on the Rh catalyst on CeO2. Pt based catalysts keep a good activity despite the addition of water on the both supports studied. For the NO reduction, addition of water act as a poison with Pd catalysts. The interesting results of Rh based catalysts with water can be explained by a production of hydrogen through the water gas shift reaction. The produced hydrogen acts as a more effective reductant than CO for NO removal. Furthermore, in TWCs, Rh is the main component responsible for NOx reduction due to its especially high activity for NO dissociation. Moreover, cerium oxide is a promotor for WGSR.Keywords: carbon dioxide, environmental chemistry, heterogeneous catalysis
Procedia PDF Downloads 1821952 Cocoon Characterization of Sericigenous Insects in North-East India and Prospects
Authors: Tarali Kalita, Karabi Dutta
Abstract:
The North Eastern Region of India, with diverse climatic conditions and a wide range of ecological habitats, makes an ideal natural abode for a good number of silk-producing insects. Cocoon is the economically important life stage from where silk of economic importance is obtained. In recent years, silk-based biomaterials have gained considerable attention, which is dependent on the structure and properties of the silkworm cocoons as well as silk yarn. The present investigation deals with the morphological study of cocoons, including cocoon color, cocoon size, shell weight and shell ratio of eleven different species of silk insects collected from different regions of North East India. The Scanning Electron Microscopic study and X-ray photoelectron spectroscopy were performed to know the arrangement of silk threads in cocoons and the atomic elemental analysis, respectively. Further, collected cocoons were degummed and reeled/spun on a reeling machine or spinning wheel to know the filament length, linear density and tensile strength by using Universal Testing Machine. The study showed significant variation in terms of cocoon color, cocoon shape, cocoon weight and filament packaging. XPS analysis revealed the presence of elements (Mass %) C, N, O, Si and Ca in varying amounts. The wild cocoons showed the presence of Calcium oxalate crystals which makes the cocoons hard and needs further treatment to reel. In the present investigation, the highest percentage of strain (%) and toughness (g/den) were observed in Antheraea assamensis, which implies that the muga silk is a more compact packing of molecules. It is expected that this study will be the basis for further biomimetic studies to design and manufacture artificial fiber composites with novel morphologies and associated material properties.Keywords: cocoon characterization, north-east India, prospects, silk characterization
Procedia PDF Downloads 901951 Frequency Selective Filters for Estimating the Equivalent Circuit Parameters of Li-Ion Battery
Authors: Arpita Mondal, Aurobinda Routray, Sreeraj Puravankara, Rajashree Biswas
Abstract:
The most difficult part of designing a battery management system (BMS) is battery modeling. A good battery model can capture the dynamics which helps in energy management, by accurate model-based state estimation algorithms. So far the most suitable and fruitful model is the equivalent circuit model (ECM). However, in real-time applications, the model parameters are time-varying, changes with current, temperature, state of charge (SOC), and aging of the battery and this make a great impact on the performance of the model. Therefore, to increase the equivalent circuit model performance, the parameter estimation has been carried out in the frequency domain. The battery is a very complex system, which is associated with various chemical reactions and heat generation. Therefore, it’s very difficult to select the optimal model structure. As we know, if the model order is increased, the model accuracy will be improved automatically. However, the higher order model will face the tendency of over-parameterization and unfavorable prediction capability, while the model complexity will increase enormously. In the time domain, it becomes difficult to solve higher order differential equations as the model order increases. This problem can be resolved by frequency domain analysis, where the overall computational problems due to ill-conditioning reduce. In the frequency domain, several dominating frequencies can be found in the input as well as output data. The selective frequency domain estimation has been carried out, first by estimating the frequencies of the input and output by subspace decomposition, then by choosing the specific bands from the most dominating to the least, while carrying out the least-square, recursive least square and Kalman Filter based parameter estimation. In this paper, a second order battery model consisting of three resistors, two capacitors, and one SOC controlled voltage source has been chosen. For model identification and validation hybrid pulse power characterization (HPPC) tests have been carried out on a 2.6 Ah LiFePO₄ battery.Keywords: equivalent circuit model, frequency estimation, parameter estimation, subspace decomposition
Procedia PDF Downloads 1501950 Financial Performance Model of Local Economic Enterprises in Matalam, Cotabato
Authors: Kristel Faye Tandog
Abstract:
The State Owned Enterprise (SOE) or also called Public Enterprise (PE) has been playing a vital role in a country’s social and economic development. Following this idea, this study focused on the Factor Structures of Financial Performance of the Local Economic Enterprises (LEEs) namely: Food Court, Market, Slaughterhouse, and Terminal in Matalam, Cotabato. It aimed to determine the profile of the LEEs in terms of organizational structure, manner of creation, years in operation, source of initial operating requirements, annual operating budget, geographical location, and size or description of the facility. This study also included the different financial ratios of LEE that covered a five year period from Calendar Year 2009 to 2013. Primary data using survey questionnaire was administered to 468 respondents and secondary data were sourced out from the government archives and financial documents of the said LGU. There were 12 dominant factors identified namely: “management”, “enforcement of laws”, “strategic location”, “existence of non-formal competitors”, “proper maintenance”, “pricing”, “customer service”, “collection process”, “rentals and services”, “efficient use of resources”, “staffing”, and “timeliness and accuracy”. On the other hand, the financial performance of the LEE of Matalam, Cotabato using financial ratios needs reformatting. This denotes that refinement as to the following ratios: Cash Flow Indicator, Activity, Profitability and Growth is necessary. The cash flow indicator ratio showed difficulty in covering its debts in successive years. Likewise, the activity ratios showed that the LEE had not been effective in putting its investment at work. Moreover, profitability ratios revealed that it had operated in minimum capacity and had incurred net losses and thus, it had a weak profit performance. Furthermore, growth ratios showed that LEE had a declining growth trend particularly in net income.Keywords: factor structures, financial performance, financial ratios, state owned enterprises
Procedia PDF Downloads 2551949 Numerical Validation of Liquid Nitrogen Phase Change in a Star-Shaped Ambient Vaporizer
Authors: Yusuf Yilmaz, Gamze Gediz Ilis
Abstract:
Gas Nitrogen where has a boiling point of -189.52oC at atmospheric pressure widely used in the industry. Nitrogen that used in the industry should be transported in liquid form to the plant area. Ambient air vaporizer (AAV) generally used for vaporization of cryogenic gases such as liquid nitrogen (LN2), liquid oxygen (LOX), liquid natural gas (LNG), and liquid argon (LAR) etc. AAV is a group of star-shaped fin vaporizer. The design and the effect of the shape of fins of the vaporizer is one of the most important criteria for the performance of the vaporizer. In this study, the performance of AAV working with liquid nitrogen was analyzed numerically in a star-shaped aluminum finned pipe. The numerical analysis is performed in order to investigate the heat capacity of the vaporizer per meter pipe length. By this way, the vaporizer capacity can be predicted for the industrial applications. In order to achieve the validation of the numerical solution, the experimental setup is constructed. The setup includes a liquid nitrogen tank with a pressure of 9 bar. The star-shaped aluminum finned tube vaporizer is connected to the LN2 tank. The inlet and the outlet pressure and temperatures of the LN2 of the vaporizer are measured. The mass flow rate of the LN2 is also measured and collected. The comparison of the numerical solution is performed by these measured data. The ambient conditions of the experiment are given as boundary conditions to the numerical model. The surface tension and contact angle have a significant effect on the boiling of liquid nitrogen. Average heat transfer coefficient including convective and nucleated boiling components should be obtained for liquid nitrogen saturated flow boiling in the finned tube. Fluent CFD module is used to simulate the numerical solution. The turbulent k-ε model is taken to simulate the liquid nitrogen flow. The phase change is simulated by using the evaporation-condensation approach used with user-defined functions (UDF). The comparison of the numerical and experimental results will be shared in this study. Besides, the performance capacity of the star-shaped finned pipe vaporizer will be calculated in this study. Based on this numerical analysis, the performance of the vaporizer per unit length can be predicted for the industrial applications and the suitable pipe length of the vaporizer can be found for the special cases.Keywords: liquid nitrogen, numerical modeling, two-phase flow, cryogenics
Procedia PDF Downloads 1191948 Specific Language Impairment: Assessing Bilingual Children for Identifying Children with Specific Language Impairment (SLI)
Authors: Manish Madappa, Madhavi Gayathri Raman
Abstract:
The primary vehicle of human communication is language. A breakdown occurring in any aspect of communication may lead to frustration and isolation among the learners and the teachers. Over seven percent of the population in the world currently experience limitations and those children who exhibit a deviant/deficient language acquisition curve even when being in a language rich environment as their peers may be at risk of having a language disorder or language impairment. The difficulty may be in the word level [vocabulary/word knowledge] and/or the sentence level [syntax/morphology) Children with SLI appear to be developing normally in all aspects except for their receptive and/or expressive language skills. Thus, it is utmost importance to identify children with or at risk of SLI so that an early intervention can foster language and social growth, provide the best possible learning environment with special support for language to be explicitly taught and a step in providing continuous and ongoing support. The present study looks at Kannada English bilingual children and works towards identifying children at risk of “specific language impairment”. The study was conducted through an exploratory study which systematically enquired into the narratives of young Kannada-English bilinguals and to investigate the data for story structure in their narrative formulations. Oral narrative offers a rich source of data about a child’s language use in a relatively natural context. The fundamental objective is to ensure comparability and to be more universal and thus allows for the evaluation narrative text competence. The data was collected from 10 class three students at a primary school in Mysore, Karnataka and analyzed for macrostructure component reflecting the goal directed behavior of a protagonist who is motivated to carry out some kind of action with the intention of attaining a goal. The results show that the children exhibiting a deviation of -1.25 SD are at risk of SLI. Two learners were identified to be at risk of Specific Language Impairment with a standard deviation of more the 1.25 below the mean score.Keywords: bilingual, oral narratives, SLI, macrostructure
Procedia PDF Downloads 2881947 Determination of Stress-Strain Curve of Duplex Stainless Steel Welds
Authors: Carolina Payares-Asprino
Abstract:
Dual-phase duplex stainless steel comprised of ferrite and austenite has shown high strength and corrosion resistance in many aggressive environments. Joining duplex alloys is challenging due to several embrittling precipitates and metallurgical changes during the welding process. The welding parameters strongly influence the quality of a weld joint. Therefore, it is necessary to quantify the weld bead’s integral properties as a function of welding parameters, especially when part of the weld bead is removed through a machining process due to aesthetic reasons or to couple the elements in the in-service structure. The present study uses the existing stress-strain model to predict the stress-strain curves for duplex stainless-steel welds under different welding conditions. Having mathematical expressions that predict the shape of the stress-strain curve is advantageous since it reduces the experimental work in obtaining the tensile test. In analysis and design, such stress-strain modeling simplifies the time of operations by being integrated into calculation tools, such as the finite element program codes. The elastic zone and the plastic zone of the curve can be defined by specific parameters, generating expressions that simulate the curve with great precision. There are empirical equations that describe the stress-strain curves. However, they only refer to the stress-strain curve for the stainless steel, but not when the material is under the welding process. It is a significant contribution to the applications of duplex stainless steel welds. For this study, a 3x3 matrix with a low, medium, and high level for each of the welding parameters were applied, giving a total of 27 weld bead plates. Two tensile specimens were manufactured from each welded plate, resulting in 54 tensile specimens for testing. When evaluating the four models used to predict the stress-strain curve in the welded specimens, only one model (Rasmussen) presented a good correlation in predicting the strain stress curve.Keywords: duplex stainless steels, modeling, stress-stress curve, tensile test, welding
Procedia PDF Downloads 1671946 Biological Hotspots in the Galápagos Islands: Exploring Seasonal Trends of Ocean Climate Drivers to Monitor Algal Blooms
Authors: Emily Kislik, Gabriel Mantilla Saltos, Gladys Torres, Mercy Borbor-Córdova
Abstract:
The Galápagos Marine Reserve (GMR) is an internationally-recognized region of consistent upwelling events, high productivity, and rich biodiversity. Despite its high-nutrient, low-chlorophyll condition, the archipelago has experienced phytoplankton blooms, especially in the western section between Isabela and Fernandina Islands. However, little is known about how climate variability will affect future phytoplankton standing stock in the Galápagos, and no consistent protocols currently exist to quantify phytoplankton biomass, identify species, or monitor for potential harmful algal blooms (HABs) within the archipelago. This analysis investigates physical, chemical, and biological oceanic variables that contribute to algal blooms within the GMR, using 4 km Aqua MODIS satellite imagery and 0.125-degree wind stress data from January 2003 to December 2016. Furthermore, this study analyzes chlorophyll-a concentrations at varying spatial scales— within the greater archipelago, as well as within five smaller bioregions based on species biodiversity in the GMR. Seasonal and interannual trend analyses, correlations, and hotspot identification were performed. Results demonstrate that chlorophyll-a is expressed in two seasons throughout the year in the GMR, most frequently in September and March, with a notable hotspot in the Elizabeth Bay bioregion. Interannual chlorophyll-a trend analyses revealed highest peaks in 2003, 2007, 2013, and 2016, and variables that correlate highly with chlorophyll-a include surface temperature and particulate organic carbon. This study recommends future in situ sampling locations for phytoplankton monitoring, including the Elizabeth Bay bioregion. Conclusions from this study contribute to the knowledge of oceanic drivers that catalyze primary productivity and consequently affect species biodiversity within the GMR. Additionally, this research can inform policy and decision-making strategies for species conservation and management within bioregions of the Galápagos.Keywords: bioregions, ecological monitoring, phytoplankton, remote sensing
Procedia PDF Downloads 2651945 Comparison of Microbiological Assessment of Non-adhesive Use and the Use of Adhesive on Complete Dentures
Authors: Hyvee Gean Cabuso, Arvin Taruc, Danielle Villanueva, Channela Anais Hipolito, Jia Bianca Alfonso
Abstract:
Introduction: Denture adhesive aids to provide additional retention, support and comfort for patients with loose dentures, as well as for patients who seek to achieve optimal denture adhesion. But due to its growing popularity, arising oral health issues should be considered, including its possible impact that may alter the microbiological condition of the denture. Changes as such may further resolve to denture-related oral diseases that can affect the day-to-day lives of patients. Purpose: The study aims to assess and compare the microbiological status of dentures without adhesives versus dentures when adhesives were applied. The study also intends to identify the presence of specific microorganisms, their colony concentration and their possible effects on the oral microflora. This study also aims to educate subjects by introducing an alternative denture cleaning method as well as denture and oral health care. Methodology: Edentulous subjects age 50-80 years old, both physically and medically fit, were selected to participate. Before obtaining samples for the study, the alternative cleaning method was introduced by demonstrating a step-by-step cleaning process. Samples were obtained by swabbing the intaglio surface of their upper and lower prosthesis. These swabs were placed in a thioglycollate broth, which served as a transport and enrichment medium. The swabs were then processed through bacterial culture. The colony-forming units (CFUs) were calculated on MacConkey Agar Plate (MAP) and Blood Agar Plate (BAP) in order to identify and assess the microbiological status, including species identification and microbial counting. Result: Upon evaluation and analysis of collected data, the microbiological assessment of the upper dentures with adhesives showed little to no difference compared to dentures without adhesives, but for the lower dentures, (P=0.005), which is less than α = 0.05; therefore, the researchers reject (Ho) and that there is a significant difference between the mean ranks of the lower denture without adhesive to those with, implying that there is a significant decrease in the bacterial count. Conclusion: These results findings may implicate the possibility that the addition of denture adhesives may contribute to the significant decrease of microbial colonization on the dentures.Keywords: denture, denture adhesive, denture-related, microbiological assessment
Procedia PDF Downloads 1281944 Characterization of Banana Based Farming Systems in the Arumeru District, Arusha- Tanzania
Authors: Siah Koka, Rony Swennen
Abstract:
Arumeru district is located in Arusha region in Upper Pangani basin in Tanzania. Economically it is dominated with agricultural activities. Banana, coffee, maize, beans, tomatoes, and cassava are the most important food and cash crops. This paper characterized the banana-based farming system of Arumeru district, evaluates its sustainability as well as research needs. The household questionnaire was performed on-site and on farm observation. Transect walk also involved to identify different agro- ecological zones. Results show that farm holdings (home gardens) are smaller than a hectare (0.7 ha) and continue to fragment as population continues to grow. Banana cultivation is the backbone of the farming systems present both in the upland and plains. In the upper belt banana found their place in the forest, which form the home garden structure typical to East African highland banana production systems. However, in the plains, cultivation is done in monoculture and depends heavily on irrigation. We found slightly less cultivars present and hypothetically more pest and disease pressure. This was mainly seen for Fusarium oxysporum species, which eradicates susceptible cultivars such as Mchare cultivars rapidly given the method of irrigation. The smaller permanent upland home garden plots provide thus a more suitable environment where banana perform better. It should be noted that findings indicated good performance to occur in the less suitable plains too. Good management is believed to be the most influencing factor, although our survey failed in identifying them. Population pressure is currently pushing the sustainable system in the uplands to its boundaries. Nutrient mining, deforestation and changing rain patterns threat production not only on Mt. Meru but on a global scale.Keywords: Arumeru district, banana-based farming system, Tanzania, Arumeru district
Procedia PDF Downloads 1801943 New Methods to Acquire Grammatical Skills in A Foreign Language
Authors: Indu ray
Abstract:
In today’s digital world the internet is already flooded with information on how to master grammar in a foreign language. It is well known that one cannot master a language without grammar. Grammar is the backbone of any language. Without grammar there would be no structure to help you speak/write or listen/read. Successful communication is only possible if the form and function of linguistic utterances are firmly related to one another. Grammar has its own rules of use to formulate an easier-to-understand language. Like a tool, grammar formulates our thoughts and knowledge in a meaningful way. Every language has its own grammar. With grammar, we can quickly analyze whether there is any action in this text: (Present, past, future). Knowledge of grammar is an important prerequisite for mastering a foreign language. What’s most important is how teachers can make grammar lessons more interesting for students and thus promote grammar skills more successfully. Through this paper, we discuss a few important methods like (Interactive Grammar Exercises between students, Interactive Grammar Exercise between student to teacher, Grammar translation method, Audio -Visual Method, Deductive Method, Inductive Method). This paper is divided into two sections. In the first part, brief definitions and principles of these approaches will be provided. Then the possibility and the case of combination of this approach will be analyzed. In the last section of the paper, I would like to present a survey result conducted at my university on a few methods to quickly learn grammar in Foreign Language. We divided the Grammatical Skills in six Parts. 1.Grammatical Competence 2. Speaking Skills 3. Phonology 4. The syntax and the Semantics 5. Rule 6. Cognitive Function and conducted a survey among students. From our survey results, we can observe that phonology, speaking ability, syntax and semantics can be improved by inductive method, Audio-visual Method, and grammatical translation method, for grammar rules and cognitive functions we should choose IGE (teacher-student) method. and the IGE method (pupil-pupil). The study’s findings revealed, that the teacher delivery Methods should be blend or fusion based on the content of the Grammar.Keywords: innovative method, grammatical skills, audio-visual, translation
Procedia PDF Downloads 771942 Computer-Assisted Management of Building Climate and Microgrid with Model Predictive Control
Authors: Vinko Lešić, Mario Vašak, Anita Martinčević, Marko Gulin, Antonio Starčić, Hrvoje Novak
Abstract:
With 40% of total world energy consumption, building systems are developing into technically complex large energy consumers suitable for application of sophisticated power management approaches to largely increase the energy efficiency and even make them active energy market participants. Centralized control system of building heating and cooling managed by economically-optimal model predictive control shows promising results with estimated 30% of energy efficiency increase. The research is focused on implementation of such a method on a case study performed on two floors of our faculty building with corresponding sensors wireless data acquisition, remote heating/cooling units and central climate controller. Building walls are mathematically modeled with corresponding material types, surface shapes and sizes. Models are then exploited to predict thermal characteristics and changes in different building zones. Exterior influences such as environmental conditions and weather forecast, people behavior and comfort demands are all taken into account for deriving price-optimal climate control. Finally, a DC microgrid with photovoltaics, wind turbine, supercapacitor, batteries and fuel cell stacks is added to make the building a unit capable of active participation in a price-varying energy market. Computational burden of applying model predictive control on such a complex system is relaxed through a hierarchical decomposition of the microgrid and climate control, where the former is designed as higher hierarchical level with pre-calculated price-optimal power flows control, and latter is designed as lower level control responsible to ensure thermal comfort and exploit the optimal supply conditions enabled by microgrid energy flows management. Such an approach is expected to enable the inclusion of more complex building subsystems into consideration in order to further increase the energy efficiency.Keywords: price-optimal building climate control, Microgrid power flow optimisation, hierarchical model predictive control, energy efficient buildings, energy market participation
Procedia PDF Downloads 4651941 Reduction of Nitrogen Monoxide with Carbon Monoxide from Gas Streams by 10% wt. Cu-Ce-Fe-Co/Activated Carbon
Authors: K. L. Pan, M. B. Chang
Abstract:
Nitrogen oxides (NOₓ) is regarded as one of the most important air pollutants. It not only causes adverse environmental effects but also harms human lungs and respiratory system. As a post-combustion treatment, selective catalytic reduction (SCR) possess the highest NO removal efficiency ( ≥ 85%), which is considered as the most effective technique for removing NO from gas streams. However, injection of reducing agent such as NH₃ is requested, and it is costly and may cause secondary pollution. Reduction of NO with carbon monoxide (CO) as reducing agent has been previously investigated. In this process, the key step involves the NO adsorption and dissociation. Also, the high performance mainly relies on the amounts of oxygen vacancy on catalyst surface and redox ability of catalyst, because oxygen vacancy can activate the N-O bond to promote its dissociation. Additionally, perfect redox ability can promote the adsorption of NO and oxidation of CO. Typically, noble metals such as iridium (Ir), platinum (Pt), and palladium (Pd) are used as catalyst for the reduction of NO with CO; however, high cost has limited their applications. Recently, transition metal oxides have been investigated for the reduction of NO with CO, especially CuₓOy, CoₓOy, Fe₂O₃, and MnOₓ are considered as effective catalysts. However, deactivation is inevitable as oxygen (O₂) exists in the gas streams because active sites (oxygen vacancies) of catalyst are occupied by O₂. In this study, Cu-Ce-Fe-Co is prepared and supported on activated carbon by impregnation method to form 10% wt. Cu-Ce-Fe-Co/activated carbon catalyst. Generally, addition of activated carbon on catalyst can bring several advantages: (1) NO can be effectively adsorbed by interaction between catalyst and activated carbon, resulting in the improvement of NO removal, (2) direct NO decomposition may be achieved over carbon associated with catalyst, and (3) reduction of NO could be enhanced by a reducing agent over carbon-supported catalyst. Therefore, 10% wt. Cu-Ce-Fe-Co/activated carbon may have better performance for reduction of NO with CO. Experimental results indicate that NO conversion achieved with 10% wt. Cu-Ce-Fe-Co/activated carbon reaches 83% at 150°C with 300 ppm NO and 10,000 ppm CO. As temperature is further increased to 200°C, 100% NO conversion could be achieved, implying that 10% wt. Cu-Ce-Fe-Co/activated carbon prepared has good activity for the reduction of NO with CO. In order to investigate the effect of O₂ on reduction of NO with CO, 1-5% O₂ are introduced into the system. The results indicate that NO conversions still maintain at ≥ 90% with 1-5% O₂ conditions at 200°C. It is worth noting that effect of O₂ on reduction of NO with CO could be significantly improved as carbon is used as support. It is inferred that carbon support can react with O₂ to produce CO₂ as O₂ exists in the gas streams. Overall, 10% wt. Cu-Ce-Fe-Co/activated carbon is demonstrated with good potential for reduction of NO with CO, and possible mechanisms will be elucidated in this paper.Keywords: nitrogen oxides (NOₓ), carbon monoxide (CO), reduction of NO with CO, carbon material, catalysis
Procedia PDF Downloads 2561940 An Evaluation Study of Sleep and Sleep-Related Factors in Clinic Clients with Sleep Difficulties
Authors: Chi-Feng Lai, Wen-Chun Liao Liao
Abstract:
Many people are bothered by sleep difficulties in Taiwan’s society. However, majority of patients get medical treatments without a comprehensive sleep assessment. It is still a big challenge to formulate a comprehensive assessment of sleep difficulties in clinical settings, even though many assessment tools have existed in literature. This study tries to implement reliable and effective ‘comprehensive sleep assessment scales’ in a medical center and to explore differences in sleep-related factors between clinic clients with or without sleep difficulty complaints. The comprehensive sleep assessment (CSA) scales were composed of 5 dimensions: ‘personal factors’, ‘physiological factors’, ‘psychological factors’, ‘social factors’ and ‘environmental factors, and were first evaluated by expert validity and 20 participants with test-retest reliability. The Content Validity Index (CVI) of the CSA was 0.94 and the alpha of the consistency reliability ranged 0.996-1.000. Clients who visited sleep clinic due to sleep difficulties (n=32, 16 males and 16 females, ages 43.66 ±14.214) and gender-and age- matched healthy subjects without sleep difficulties (n=96, 47 males and 49 females, ages 41.99 ±13.69) were randomly recruited at a ratio of 1:3 (with sleep difficulties vs. without sleep difficulties) to compare their sleep and the CSA factors. Results show that all clinic clients with sleep difficulties did have poor sleep quality (PSQI>5) and mild to moderate daytime sleepiness (ESS >11). Personal factors of long working hours (χ2= 10.315, p=0.001), shift workers (χ2= 8.964, p=0.003), night shift (χ2=9.395, p=0.004) and perceived stress (χ2=9.503, p=0.002) were disruptors of sleep difficulties. Physiological factors from physical examination including breathing by mouth, low soft palate, high narrow palate, Edward Angle, tongue hypertrophy, and occlusion of the worn surface were observed in clinic clients. Psychological factors including higher perceived stress (χ2=32.542, p=0.000), anxiety and depression (χ2=32.868, p=0.000); social factors including lack of leisure activities (χ2=39.857, p=0.000), more drinking habits (χ2=1.798, p=0.018), irregular amount and frequency in meals (χ2=5.086, p=0.024), excessive dinner (χ2=21.511, p=0.000), being incapable of getting up on time due to previous poor night sleep (χ2=4.444, p=0.035); and environmental factors including lights (χ2=7.683, p=0.006), noise (χ2=5.086, p=0.024), low or high bedroom temperature (χ2=4.595, p=0.032) were existed in clients. In conclusion, the CSA scales can work as valid and reliable instruments for evaluating sleep-related factors. Findings of this study provide important reference for assessing clinic clients with sleep difficulties.Keywords: comprehensive sleep assessment, sleep-related factors, sleep difficulties
Procedia PDF Downloads 2751939 Bioreactor for Cell-Based Impedance Measuring with Diamond Coated Gold Interdigitated Electrodes
Authors: Roman Matejka, Vaclav Prochazka, Tibor Izak, Jana Stepanovska, Martina Travnickova, Alexander Kromka
Abstract:
Cell-based impedance spectroscopy is suitable method for electrical monitoring of cell activity especially on substrates that cannot be easily inspected by optical microscope (without fluorescent markers) like decellularized tissues, nano-fibrous scaffold etc. Special sensor for this measurement was developed. This sensor consists of corning glass substrate with gold interdigitated electrodes covered with diamond layer. This diamond layer provides biocompatible non-conductive surface for cells. Also, a special PPFC flow cultivation chamber was developed. This chamber is able to fix sensor in place. The spring contacts are connecting sensor pads with external measuring device. Construction allows real-time live cell imaging. Combining with perfusion system allows medium circulation and generating shear stress stimulation. Experimental evaluation consist of several setups, including pure sensor without any coating and also collagen and fibrin coating was done. The Adipose derived stem cells (ASC) and Human umbilical vein endothelial cells (HUVEC) were seeded onto sensor in cultivation chamber. Then the chamber was installed into microscope system for live-cell imaging. The impedance measurement was utilized by vector impedance analyzer. The measured range was from 10 Hz to 40 kHz. These impedance measurements were correlated with live-cell microscopic imaging and immunofluorescent staining. Data analysis of measured signals showed response to cell adhesion of substrates, their proliferation and also change after shear stress stimulation which are important parameters during cultivation. Further experiments plan to use decellularized tissue as scaffold fixed on sensor. This kind of impedance sensor can provide feedback about cell culture conditions on opaque surfaces and scaffolds that can be used in tissue engineering in development artificial prostheses. This work was supported by the Ministry of Health, grants No. 15-29153A and 15-33018A.Keywords: bio-impedance measuring, bioreactor, cell cultivation, diamond layer, gold interdigitated electrodes, tissue engineering
Procedia PDF Downloads 3011938 Acquisition of French (L3) Direct Object by Persian (L1) Speakers of English (L2) as EFL Learners
Authors: Ali Akbar Jabbari
Abstract:
The present study assessed the acquisition of L3 French direct objects by Persian speakers who had already learned English as their L2. The ultimate goal of this paper is to extend the current knowledge about the CLI phenomenon in the realm of third language acquisition by examining the role of Persian and English as background languages and learners’ English level of proficiency in their performance on French direct object. To fulfill this, the assumptions of three L3 hypotheses, namely L1 Transfer, L2 Status Factor, and Cumulative Enhancement Model, were examined. The research sample was comprised of 40 undergraduate students in the fields of English language and literature and translation studies at Birjand University in Iran. According to the English proficiency level of learners revealed by the Quick Oxford English Placement test, the participants were grouped as upper intermediate and lower intermediate. A grammaticality judgment and a translation test were administered to gather the required data on learners' comprehension and production of the desired structure in French. It was demonstrated that the rate of positive transfer from previously learned languages was more potent than the rate of negative transfer. A Comparison of groups' performances revealed a significant difference between upper and lower intermediate groups in positing French direct objects correctly. However, the upper intermediate group did not significantly differ from the lower intermediate group in negative transfer. It can be said that by increasing the L2 proficiency of the learners, they could use their previous linguistic knowledge more efficiently. Although further examinations are needed, the current study contributed to a better characterization of cross-linguistic influence in third language acquisition. The findings help French teachers and learners to positively exploit the prior knowledge of Persian and English and apply it in in the multilingual context of French direct object's teaching and learning process.Keywords: Cross-Linguistic Influence, Persian, French & English Direct Object, Third Language Acquisition, Language Transfer
Procedia PDF Downloads 681937 Libyan Residents in Britain and Identity of Place
Authors: Intesar Ibrahim
Abstract:
Large-scale Libyan emigration is a relatively new phenomenon. Most of the Libyan families in the UK are new immigrants, unlike the other neighbouring countries of Egypt, Tunisia, Algeria and even Sudan. Libyans have no particular history of large-scale migration. On the other hand, many Libyan families live in modest homes located in large Muslim communities of Pakistanis and Yemenis. In the UK as a whole, there are currently 16 Libyan schools most of which are run during the weekend for children of school age. There are three such weekend schools in Sheffield that teach a Libyan school curriculum, and Libyan women and men run these schools. Further, there is also a Masjid (mosque) that is operated by Libyans, beside the other Masjids in the city, which most of the Libyan community attend for prayer and for other activities such as writing marriage contracts. The presence of this Masjid increases the attraction for Libyans to reside in the Sheffield area. This paper studies how Libyan immigrants in the UK make their decisions on their housing and living environment in the UK. Libyan residents in the UK come from different Libyan regions, social classes and lifestyles; this may have an impact on their choices in the interior designs of their houses in the UK. A number of case studies were chosen from Libyan immigrants who came from different types of dwellings in Libya, in order to compare with their homes and their community lifestyle in the UK and those in Libya. This study explores the meaning and the ways of using living rooms in Libyan emigrants’ houses in the UK and compares those with those in their houses back in their home country. For example, the way they set up furniture in rooms acts as an indicator of the hierarchical structure of society. The design of furniture for Libyan sitting rooms for floor-seating is different from that of the traditional English sitting room. The paper explores the identity and cultural differences that affected the style and design of the living rooms for Libyan immigrants in the UK. The study is carried out based on the "production of space" theory that any culture has its needs, style of living and way of thinking. I argue that the study found more than 70% of Libyan immigrants in the UK still furnish the living room in their traditional way (flooring seating).Keywords: place, identity, culture, immigrants
Procedia PDF Downloads 2851936 Application of Homer Optimization to Investigate the Prospects of Hybrid Renewable Energy System in Rural Area: Case of Rwanda
Authors: Emile Niringiyimana, LI Ji Qing, Giovanni Dushimimana, Virginie Umwere
Abstract:
The development and utilization of renewable energy (RE) can not only effectively reduce carbon dioxide (CO2) emissions, but also became a solution to electricity shortage mitigation in rural areas. Hybrid RE systems are promising ways to provide consistent and continuous power for isolated areas. This work investigated the prospect and cost effectiveness of hybrid system complementarity between a 100kW solar PV system and a small-scale 200kW hydropower station in the South of Rwanda. In order to establish the optimal size of a RE system with adequate sizing of system components, electricity demand, solar radiation, hydrology, climate data are utilized as system input. The average daily solar radiation in Rukarara is 5.6 kWh/m2 and average wind speed is 3.5 m/s. The ideal integrated RE system, according to Homer optimization, consists of 91.21kW PV, 146kW hydropower, 12 x 24V li-ion batteries with a 20kW converter. The method of enhancing such hybrid systems control, sizing and choice of components is to reduce the Net present cost (NPC) of the system, unmet load, the cost of energy and reduction of CO2. The power consumption varies according to dominant source of energy in the system by controlling the energy compensation depending on the generation capacity of each power source. The initial investment of the RE system is $977,689.25, and its operation and maintenance expenses is $142,769.39 over a 25-year period. Although the investment is very high, the targeted profits in future are huge, taking into consideration of high investment in rural electrification structure implementations, tied with an increase of electricity cost and the 5 years payback period. The study outcomes suggest that the standalone hybrid PV-Hydropower system is feasible with zero pollution in Rukara community.Keywords: HOMER optimization, hybrid power system, renewable energy, NPC and solar pv systems
Procedia PDF Downloads 611935 Seismic Performance of Highway Bridges with Partially Self-Centering Isolation Bearings against Near-Fault Ground Motions
Authors: Shengxin Yu
Abstract:
Earthquakes can cause varying degrees of damage to building and bridge structures. Traditional laminated natural rubber bearings (NRB) exhibit inadequate energy dissipation and restraint, particularly under near-fault ground motions, resulting in excessive displacements in the superstructure. This paper presents a composite natural rubber bearing (NFUD-NRB) incorporating two types of shape memory alloy (SMA) U-shaped dampers (UD). The bearing exhibits adjustable features, predominantly characterized by partial self-centering and multi-level energy dissipation, facilitated by nickel-titanium-based SMA (NiTi-SMA) and iron-based SMA (Fe-SMA) UDs. The hysteresis characteristics of NFUD-NRB can be tailored by manipulating the configuration of NiTi-SMA and Fe-SMA UDs. Firstly, the proposed bearing's geometric configuration and working principle are introduced. The rationality of the modeling strategy for the bearing is validated through existing experimental results. Parameterized numerical simulations are subsequently performed to investigate the partially self-centering behavior of NFUD-NRB. The findings indicate that NFUD-NRB can attain the anticipated nonlinear behavior and deliver adequate energy dissipation. Finally, the impact of NFUD-NRB on improving the seismic resilience of highway bridges is examined using the OpenSees software, with particular emphasis on the seismic performance of NFUD-NRB under near-fault ground motions. System-level analysis reveals that bridge systems equipped with NFUD-NRBs exhibit satisfactory residual deformations and higher energy dissipation than those equipped with traditional NRBs. Moreover, NFUD-NRB markedly mitigates the detrimental impacts of near-fault ground motions on the main structure of bridges.Keywords: partially self-centering behavior, energy dissipation, natural rubber bearing, shape memory alloy, U-shaped damper, numerical investigation, near-fault ground motion
Procedia PDF Downloads 581934 Understanding the Influence of Cross-National Distances on Tourist Expenditure
Authors: Wei-Ting Hung
Abstract:
Inbound tourist expenditure might not only have influenced by individual tourist characteristics but may also be affected by nationality characteristics. The cross national distance effects on tourist consumption behavior should be incorporated in the analytical framework. Additionally, the often used factor analysis, cluster analysis and regression analysis overlook the hierarchical tourist consumption data structure and may lead to misleading results. The objectives of the present study were twofold. First, we propose a multilevel model that takes individual and cross-national differences into account under a hierarchical framework. Second, we further sought to determine the types of cross-national differences affecting tourist expenditure. Thus, this study incorporates the individual tourist effects and cross national distance effects simultaneously, uses the data of 2010 Annual Survey Report on Visitors’ Expenditure and Trends in Taiwan to investigate the determinants of inbound tourist expenditure. Multilevel analysis was used to investigate the influence of individual tourist effects and cross national distance effects on inbound tourist expenditure. The empirical results show that cross national distance plays a crucial role in tourist consumption behavior. Our findings also indicate age and income have positive influence on tourism expenditure., whereas education and gender do not have significant impact. Regarding macro-level factors, geographic and cultural differences exhibited significant positive relationships on tourism expenditure, while economic differences did not. Based on the above empirical results, it is suggested that tour operators should take tourists’ individual attributes, particularly their income and age, into consideration when arranging tours. In addition, nationality holds sway over tourists’ consumption behavior, of which geographic and cultural differences are the two major factors at play. The empirical results of this study serve as practical suggestions for tourism marketing strategies and policy implications for government policies.Keywords: cross national distance, inbound tourist, multilevel analysis, tourist expenditure
Procedia PDF Downloads 3601933 Sound Analysis of Young Broilers Reared under Different Stocking Densities in Intensive Poultry Farming
Authors: Xiaoyang Zhao, Kaiying Wang
Abstract:
The choice of stocking density in poultry farming is a potential way for determining welfare level of poultry. However, it is difficult to measure stocking densities in poultry farming because of a lot of variables such as species, age and weight, feeding way, house structure and geographical location in different broiler houses. A method was proposed in this paper to measure the differences of young broilers reared under different stocking densities by sound analysis. Vocalisations of broilers were recorded and analysed under different stocking densities to identify the relationship between sounds and stocking densities. Recordings were made continuously for three-week-old chickens in order to evaluate the variation of sounds emitted by the animals at the beginning. The experimental trial was carried out in an indoor reared broiler farm; the audio recording procedures lasted for 5 days. Broilers were divided into 5 groups, stocking density treatments were 8/m², 10/m², 12/m² (96birds/pen), 14/m² and 16/m², all conditions including ventilation and feed conditions were kept same except from stocking densities in every group. The recordings and analysis of sounds of chickens were made noninvasively. Sound recordings were manually analysed and labelled using sound analysis software: GoldWave Digital Audio Editor. After sound acquisition process, the Mel Frequency Cepstrum Coefficients (MFCC) was extracted from sound data, and the Support Vector Machine (SVM) was used as an early detector and classifier. This preliminary study, conducted in an indoor reared broiler farm shows that this method can be used to classify sounds of chickens under different densities economically (only a cheap microphone and recorder can be used), the classification accuracy is 85.7%. This method can predict the optimum stocking density of broilers with the complement of animal welfare indicators, animal productive indicators and so on.Keywords: broiler, stocking density, poultry farming, sound monitoring, Mel Frequency Cepstrum Coefficients (MFCC), Support Vector Machine (SVM)
Procedia PDF Downloads 1621932 Soft Robotic System for Mechanical Stimulation of Scaffolds During Dynamic Cell Culture
Authors: Johanna Perdomo, Riki Lamont, Edmund Pickering, Naomi C. Paxton, Maria A. Woodruff
Abstract:
Background: Tissue Engineering (TE) has combined advanced materials, such as biomaterials, to create affordable scaffolds and dynamic systems to generate stimulation of seeded cells on these scaffolds, improving and maintaining the cellular growth process in a cell culture. However, Few TE skin products have been clinically translated, and more research is required to produce highly biomimetic skin substitutes that mimic the native elasticity of skin in a controlled manner. Therefore, this work will be focused on the fabrication of a novel mechanical system to enhance the TE treatment approaches for the reparation of damaged tissue skin. Aims: To archive this, a soft robotic device will be created to emulate different deformation of skin stress. The design of this soft robot will allow the attachment of scaffolds, which will then be mechanically actuated. This will provide a novel and highly adaptable platform for dynamic cell culture. Methods: Novel, low-cost soft robot is fabricated via 3D printed moulds and silicone. A low cost, electro-mechanical device was constructed to actuate the soft robot through the controlled combination of positive and negative air pressure to control the different state of movements. Mechanical tests were conducted to assess the performance and calibration of each electronic component. Similarly, pressure-displacement test was performed on scaffolds, which were attached to the soft robot, applying various mechanical loading regimes. Lastly, digital image correlation test was performed to obtain strain distributions over the soft robot’s surface. Results: The control system can control and stabilise positive pressure changes for long hours. Similarly, pressure-displacement test demonstrated that scaffolds with 5µm of diameter and wavy geometry can displace at 100%, applying a maximum pressure of 1.5 PSI. Lastly, during the inflation state, the displacement of silicone was measured using DIC method, and this showed a parameter of 4.78 mm and strain of 0.0652. Discussion And Conclusion: The developed soft robot system provides a novel and low-cost platform for the dynamic actuation of tissue scaffolds with a target towards dynamic cell culture.Keywords: soft robot, tissue engineering, mechanical stimulation, dynamic cell culture, bioreactor
Procedia PDF Downloads 961931 Structural Design of a Relief Valve Considering Strength
Authors: Nam-Hee Kim, Jang-Hoon Ko, Kwon-Hee Lee
Abstract:
A relief valve is a mechanical element to keep safety by controlling high pressure. Usually, the high pressure is relieved by using the spring force and letting the fluid to flow from another way out of system. When its normal pressure is reached, the relief valve can return to initial state. The relief valve in this study has been applied for pressure vessel, evaporator, piping line, etc. The relief valve should be designed for smooth operation and should satisfy the structural safety requirement under operating condition. In general, the structural analysis is performed by following fluid flow analysis. In this process, the FSI (Fluid-Structure Interaction) is required to input the force obtained from the output of the flow analysis. Firstly, this study predicts the velocity profile and the pressure distribution in the given system. In this study, the assumptions for flow analysis are as follows: • The flow is steady-state and three-dimensional. • The fluid is Newtonian and incompressible. • The walls of the pipe and valve are smooth. The flow characteristics in this relief valve does not induce any problem. The commercial software ANSYS/CFX is utilized for flow analysis. On the contrary, very high pressure may cause structural problem due to severe stress. The relief valve is made of body, bonnet, guide, piston and nozzle, and its material is stainless steel. To investigate its structural safety, the worst case loading is considered as the pressure of 700 bar. The load is applied to inside the valve, which is greater than the load obtained from FSI. The maximum stress is calculated as 378 MPa by performing the finite element analysis. However, the value is greater than its allowable value. Thus, an alternative design is suggested to improve the structural performance through case study. We found that the sensitive design variable to the strength is the shape of the nozzle. The case study is to vary the size of the nozzle. Finally, it can be seen that the suggested design satisfy the structural design requirement. The FE analysis is performed by using the commercial software ANSYS/Workbench.Keywords: relief valve, structural analysis, structural design, strength, safety factor
Procedia PDF Downloads 3031930 Caffeic Acid Methyl and Ethyl Esters Exhibit Beneficial Effect on Glucose and Lipid Metabolism in Cultured Murine Insulin-Sensitive Cells
Authors: Hoda M. Eid, Abir Nachar, Farah Thong, Gary Sweeney, Pierre S. Haddad
Abstract:
Caffeic acid methyl ester (CAME) and caffeic ethyl esters (CAEE) were previously reported to potently stimulate glucose uptake in cultured C2C12 skeletal muscle cells via insulin-independent mechanisms involving the activation of adenosine monophosphate-activated protein kinase (AMPK). In the present study, we investigated the effect of the two compounds on the translocation of glucose transporter GLUT4 in L6 skeletal muscle cells. The cells were treated with the optimum non-toxic concentration (50 µM) of either CAME or CAEE for 18 h. Levels of GLUT4myc at the cell surface were measured by O-phenylenediamine dihydrochloride (OPD) assay. The effects of CAME and CAEE on GLUT1 and GLUT4 protein content were also measured by western immunoblot. Our results show that CAME and CAEE significantly increased glucose uptake, GLUT4 translocation and GLUT4 protein content. Furthermore, the effect of the two CA esters on two insulin-sensitive cell lines: H4IIE rat hepatoma and 3T3-L1 adipocytes were investigated. CAME and CAEE reduced the enzymatic activity of the key hepatic gluconeogenic enzyme glucose-6-phosphatase in a concentration-dependent manner. In addition, they exerted a concentration-dependent antiadipogenic effect on 3T3-L1 cells. Mitotic clonal expansion (MCE), a prerequisite for adipocytes differentiation was also concentration-dependently inhibited. The two compounds abrogated lipid droplet accumulation, blocked MCE and maintained cells in fibroblast-like state when applied at the maximum non-toxic concentration (100 µM). In addition, the expression of the early key adipogenic transcription factors CCAAT enhancer-binding protein beta (C/EBP-β) and the master regulator of adipogenesis peroxisome-proliferator-activated receptor gamma (PPAR-γ) were inhibited. We, therefore, conclude that CAME and CAEE exert pleiotropic benefits in several insulin-sensitive cell lines through insulin-independent mechanisms involving AMPK, hence they may treat obesity, diabetes and other metabolic diseases.Keywords: type 2 diabetes mellitus, insulin resistance, GLUT4, Akt, AMPK.
Procedia PDF Downloads 309