Search results for: web-based learning systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15781

Search results for: web-based learning systems

4561 Thermodynamic Modeling of Cryogenic Fuel Tanks with a Model-Based Inverse Method

Authors: Pedro A. Marques, Francisco Monteiro, Alessandra Zumbo, Alessia Simonini, Miguel A. Mendez

Abstract:

Cryogenic fuels such as Liquid Hydrogen (LH₂) must be transported and stored at extremely low temperatures. Without expensive active cooling solutions, preventing fuel boil-off over time is impossible. Hence, one must resort to venting systems at the cost of significant energy and fuel mass loss. These losses increase significantly in propellant tanks installed on vehicles, as the presence of external accelerations induces sloshing. Sloshing increases heat and mass transfer rates and leads to significant pressure oscillations, which might further trigger propellant venting. To make LH₂ economically viable, it is essential to minimize these factors by using advanced control techniques. However, these require accurate modelling and a full understanding of the tank's thermodynamics. The present research aims to implement a simple thermodynamic model capable of predicting the state of a cryogenic fuel tank under different operating conditions (i.e., filling, pressurization, fuel extraction, long-term storage, and sloshing). Since this model relies on a set of closure parameters to drive the system's transient response, it must be calibrated using experimental or numerical data. This work focuses on the former approach, wherein the model is calibrated through an experimental campaign carried out on a reduced-scale model of a cryogenic tank. The thermodynamic model of the system is composed of three control volumes: the ullage, the liquid, and the insulating walls. Under this lumped formulation, the governing equations are derived from energy and mass balances in each region, with mass-averaged properties assigned to each of them. The gas-liquid interface is treated as an infinitesimally thin region across which both phases can exchange mass and heat. This results in a coupled system of ordinary differential equations, which must be closed with heat and mass transfer coefficients between each control volume. These parameters are linked to the system evolution via empirical relations derived from different operating regimes of the tank. The derivation of these relations is carried out using an inverse method to find the optimal relations that allow the model to reproduce the available data. This approach extends classic system identification methods beyond linear dynamical systems via a nonlinear optimization step. Thanks to the data-driven assimilation of the closure problem, the resulting model accurately predicts the evolution of the tank's thermodynamics at a negligible computational cost. The lumped model can thus be easily integrated with other submodels to perform complete system simulations in real time. Moreover, by setting the model in a dimensionless form, a scaling analysis allowed us to relate the tested configurations to a representative full-size tank for naval applications. It was thus possible to compare the relative importance of different transport phenomena between the laboratory model and the full-size prototype among the different operating regimes.

Keywords: destratification, hydrogen, modeling, pressure-drop, pressurization, sloshing, thermodynamics

Procedia PDF Downloads 98
4560 Uplift Segmentation Approach for Targeting Customers in a Churn Prediction Model

Authors: Shivahari Revathi Venkateswaran

Abstract:

Segmenting customers plays a significant role in churn prediction. It helps the marketing team with proactive and reactive customer retention. For the reactive retention, the retention team reaches out to customers who already showed intent to disconnect by giving some special offers. When coming to proactive retention, the marketing team uses churn prediction model, which ranks each customer from rank 1 to 100, where 1 being more risk to churn/disconnect (high ranks have high propensity to churn). The churn prediction model is built by using XGBoost model. However, with the churn rank, the marketing team can only reach out to the customers based on their individual ranks. To profile different groups of customers and to frame different marketing strategies for targeted groups of customers are not possible with the churn ranks. For this, the customers must be grouped in different segments based on their profiles, like demographics and other non-controllable attributes. This helps the marketing team to frame different offer groups for the targeted audience and prevent them from disconnecting (proactive retention). For segmentation, machine learning approaches like k-mean clustering will not form unique customer segments that have customers with same attributes. This paper finds an alternate approach to find all the combination of unique segments that can be formed from the user attributes and then finds the segments who have uplift (churn rate higher than the baseline churn rate). For this, search algorithms like fast search and recursive search are used. Further, for each segment, all customers can be targeted using individual churn ranks from the churn prediction model. Finally, a UI (User Interface) is developed for the marketing team to interactively search for the meaningful segments that are formed and target the right set of audience for future marketing campaigns and prevent them from disconnecting.

Keywords: churn prediction modeling, XGBoost model, uplift segments, proactive marketing, search algorithms, retention, k-mean clustering

Procedia PDF Downloads 74
4559 Biosecurity Control Systems in Two Phases for Poultry Farms

Authors: M. Peña Aguilar Juan, E. Nava Galván Claudia, Pastrana Palma Alberto

Abstract:

In this work was developed and implemented a thermal fogging disinfection system to counteract pathogens from poultry feces in agribusiness farms, to reduce mortality rates and increase biosafety in them. The control system consists of two phases for the conditioning of the farm during the sanitary break. In the first phase, viral and bacterial inactivation was performed by treating the stool dry cleaning, along with the development of a specialized product that foster the generation of temperatures above 55 °C in less than 24 hr, for virus inactivation. In the second phase, a process for disinfection by fogging was implemented, along with the development of a specialized disinfectant that guarantee no risk for the operators’ health or birds. As a result of this process, it was possible to minimize the level of mortality of chickens on farms from 12% to 5.49%, representing a reduction of 6.51% in the death rate, through the formula applied to the treatment of poultry litter based on oxidising agents used as antiseptics, hydrogen peroxide solutions, glacial acetic acid and EDTA in order to act on bacteria, viruses, micro bacteria and spores.

Keywords: innovation, triple helix, poultry farms, biosecurity

Procedia PDF Downloads 287
4558 CO2 Mitigation by Promoting Solar Heating in Housing Sector

Authors: F. Sahnoune, M. Madani, M. Zelmat, M. Belhamel

Abstract:

Home heating and generation of domestic hot water are nowadays important items of expenditure and energy consumption. These are also a major source of pollution and emission of greenhouse gases (GHG). Algeria, like other countries of the southern shore of the Mediterranean has an enormous solar potential (more than 3000 hours of sunshine/year). This potential can be exploited in reducing GHG emissions and contribute to climate change adaptation. This work presents the environmental impact of introduction of solar heating in an individual house in Algerian climate conditions. For this purpose, we determined energy needs for heating and domestic hot water taking into account the thermic heat losses of the no isolated house. Based on these needs, sizing of the solar system was carried out. To compare the performances of solar and classic systems, we conducted also an economic evaluation what is very important for countries like Algeria where conventional energy is subsidized. The study clearly show that environmental and economic benefits are in favor of solar heating development in particular in countries where the thermal insulation of the building and energy efficiency are poorly developed.

Keywords: CO2 mitigation, solar energy, solar heating, environmental impact

Procedia PDF Downloads 401
4557 Analysis of NMDA Receptor 2B Subunit Gene (GRIN2B) mRNA Expression in the Peripheral Blood Mononuclear Cells of Alzheimer's Disease Patients

Authors: Ali̇ Bayram, Semih Dalkilic, Remzi Yigiter

Abstract:

N-methyl-D-aspartate (NMDA) receptor is a subtype of glutamate receptor and plays a pivotal role in learning, memory, neuronal plasticity, neurotoxicity and synaptic mechanisms. Animal experiments were suggested that glutamate-induced excitotoxic injuriy and NMDA receptor blockage lead to amnesia and other neurodegenerative diseases including Alzheimer’s disease (AD), Huntington’s disease, amyotrophic lateral sclerosis. Aim of this study is to investigate association between NMDA receptor coding gene GRIN2B expression level and Alzheimer disease. The study was approved by the local ethics committees, and it was conducted according to the principles of the Declaration of Helsinki and guidelines for the Good Clinical Practice. Peripheral blood was collected 50 patients who diagnosed AD and 49 healthy control individuals. Total RNA was isolated with RNeasy midi kit (Qiagen) according to manufacturer’s instructions. After checked RNA quality and quantity with spectrophotometer, GRIN2B expression levels were detected by quantitative real time PCR (QRT-PCR). Statistical analyses were performed, variance between two groups were compared with Mann Whitney U test in GraphpadInstat algorithm with 95 % confidence interval and p < 0.05. After statistical analyses, we have determined that GRIN2B expression levels were down regulated in AD patients group with respect to control group. But expression level of this gene in each group was showed high variability. İn this study, we have determined that NMDA receptor coding gene GRIN2B expression level was down regulated in AD patients when compared with healthy control individuals. According to our results, we have speculated that GRIN2B expression level was associated with AD. But it is necessary to validate these results with bigger sample size.

Keywords: Alzheimer’s disease, N-methyl-d-aspartate receptor, NR2B, GRIN2B, mRNA expression, RT-PCR

Procedia PDF Downloads 395
4556 Structural Behaviour of Concrete Energy Piles in Thermal Loadings

Authors: E. H. N. Gashti, M. Malaska, K. Kujala

Abstract:

The thermo-mechanical behaviour of concrete energy pile foundations with different single and double U-tube shapes incorporated was analysed using the Comsol Multi-physics package. For the analysis, a 3D numerical model in real scale of the concrete pile and surrounding soil was simulated regarding actual operation of ground heat exchangers (GHE) and the surrounding ambient temperature. Based on initial ground temperature profile measured in situ, tube inlet temperature was considered to range from 6°C to 0°C (during the contraction process) over a 30-day period. Extra thermal stresses and deformations were calculated during the simulations and differences arising from the use of two different systems (single-tube and double-tube) were analysed. The results revealed no significant difference for extra thermal stresses at the centre of the pile in either system. However, displacements over the pile length were found to be up to 1.5-fold higher in the double-tube system than the single-tube system.

Keywords: concrete energy piles, stresses, displacements, thermo-mechanical behaviour, soil-structure interactions

Procedia PDF Downloads 218
4555 Exploring the Biocompatibility and Performance of Metals and Ceramics as Biomaterials, A Comprehensive Study for Advanced Medical Applications

Authors: Ala Abobakr Abdulhafidh Al-Dubai

Abstract:

Biomaterials, specifically metals and ceramics, are indispensable components in the realm of medical science, shaping the landscape of implantology and prosthetics. This study delves into the intricate interplay between these materials and biological systems, aiming to scrutinize their suitability, performance, and biocompatibility. Employing a multi-faceted approach, a range of methodologies were meticulously employed to comprehensively characterize these biomaterials. Advanced material characterization techniques were paramount in this research, with scanning electron microscopy providing intricate insights into surface morphology, and X-ray diffraction unraveling the crystalline structures. These analyses were complemented by in vitro assessments, which gauged the biological response of cells to metals and ceramics, shedding light on their potential applications within the human body. A key facet of our investigation involved a comparative study, evaluating the corrosion resistance and osseointegration potential of both metals and ceramics. Through a series of experiments, we sought to understand how these biomaterials interacted with physiological environments, paving the way for informed decisions in medical applications

Keywords: metals, ceramics, biomaterials, biocompatibility, osseointegration

Procedia PDF Downloads 72
4554 Integration of Multi Effect Desalination with Solid Oxide Fuel Cell/Gas Turbine Power Cycle

Authors: Mousa Meratizaman, Sina Monadizadeh, Majid Amidpour

Abstract:

One of the most favorable thermal desalination methods used widely today is Multi Effect Desalination. High energy consumption in this method causes coupling it with high temperature power cycle like gas turbine. This combination leads to higher energy efficiency. One of the high temperature power systems which have cogeneration opportunities is Solid Oxide Fuel Cell / Gas Turbine. Integration of Multi Effect Desalination with Solid Oxide Fuel Cell /Gas Turbine power cycle in a range of 300-1000 kW is considered in this article. The exhausted heat of Solid Oxide Fuel Cell /Gas Turbine power cycle is used in Heat Recovery Steam Generator to produce needed motive steam for Desalination unit. Thermodynamic simulation and parametric studies of proposed system are carried out to investigate the system performance.

Keywords: solid oxide fuel cell, thermodynamic simulation, multi effect desalination, gas turbine hybrid cycle

Procedia PDF Downloads 385
4553 Application of Digital Technologies as Tools for Transformative Agricultural Science Instructional Delivery in Secondary Schools

Authors: Cajethan U. Ugwuoke

Abstract:

Agriculture is taught in secondary schools to develop skills in students which will empower them to contribute to national economic development. Unfortunately, our educational system emphasizes the application of conventional teaching methods in delivering instructions, which fails to produce students competent enough to carry out agricultural production. This study was therefore aimed at examining the application of digital technologies as tools for transformative instructional delivery. Four specific purposes, research questions and hypotheses guided the study. The study adopted a descriptive survey research design where 80 subjects representing 64 teachers of agriculture and 16 principals in the Udenu local government area of Enugu State, Nigeria, participated in the study. A structured questionnaire was used to collect data. The assumption of normality was ascertained by subjecting the data collected to a normality test. Data collected were later subjected to mean, Pearson product-moment correlation, ANOVA and t-test to answer the research questions and test the hypotheses at a 5% significant level. The result shows that the application of digital technologies helps to reduce learners’ boredom (3.52.75), improves learners’ performance (3.63.51), and is used as a visual aid for learners (3.56.61), among others. There was a positive, strong and significant relationship between the application of digital technologies and effective instructional delivery (+.895, p=.001<.05, F=17.73), competency of teachers to the application of digital technologies and effective instructional delivery (+998, p=.001<0.5, F=16263.45), and frequency of the application of digital technologies and effective instructional delivery (+.999, p=.001<.05, F=31436.14). There was no evidence of autocorrelation and multicollinearity in the regression models between the application of digital technologies and effective instructional delivery (2.03, Tolerance=1.00, VIF=1.00), competency of teachers in the application of digital technologies and effective instructional delivery (2.38, Tolerance=1.00, VIF=1.00) and frequency of the application of digital technologies and effective instructional delivery (2.00, Tolerance=1.00, VIF=1.00). Digital technologies should be therefore applied in teaching to facilitate effective instructional delivery in agriculture.

Keywords: agricultural science, digital technologies, instructional delivery, learning

Procedia PDF Downloads 74
4552 Load Management Using Multiple Sequential Load Shaping Techniques

Authors: Amira M. Attia, Karim H. Youssef, Nabil H. Abbasi

Abstract:

Demand Side Management (DSM) is an essential characteristic of current and future smart grid systems. As one of DSM functions, load management aims to control customers’ total electric consumption and utility’s load factor by using various load shaping techniques. However, applying load shaping techniques such as load shifting, peak clipping, or strategic conservation individually does not provide the desired level of improvement for load factor increment and/or customer’s bill reduction. In this paper, two load shaping techniques will be simulated as constrained optimization problems. The purpose is to reflect the application of combined load shifting and strategic conservation model together at the same time, and the application of combined load shifting and peak clipping model as well. The problem will be formulated and solved by using disciplined convex programming (CVX) based MATLAB® R2013b. Simulation results will be evaluated and compared for studying the most impactful multi-techniques model in improving load curve.

Keywords: convex programing, demand side management, load shaping, multiple, building energy optimization

Procedia PDF Downloads 318
4551 Bio-Hub Ecosystems: Expansion of Traditional Life Cycle Analysis Metrics to Include Zero-Waste Circularity Measures

Authors: Kimberly Samaha

Abstract:

In order to attract new types of investors into the emerging Bio-Economy, a new set of metrics and measurement system is needed to better quantify the environmental, social and economic impacts of circular zero-waste design. The Bio-Hub Ecosystem model was developed to address a critical area of concern within the global energy market regarding the use of biomass as a feedstock for power plants. Lack of an economically-viable business model for bioenergy facilities has resulted in the continuation of idled and decommissioned plants. In particular, the forestry-based plants which have been an invaluable outlet for woody biomass surplus, forest health improvement, timber production enhancement, and especially reduction of wildfire risk. This study looked at repurposing existing biomass-energy plants into Circular Zero-Waste Bio-Hub Ecosystems. A Bio-Hub model that first targets a ‘whole-tree’ approach and then looks at the circular economics of co-hosting diverse industries (wood processing, aquaculture, agriculture) in the vicinity of the Biomass Power Plants facilities. It proposes not only models for integration of forestry, aquaculture, and agriculture in cradle-to-cradle linkages of what have typically been linear systems, but the proposal also allows for the early measurement of the circularity and impact of resource use and investment risk mitigation, for these systems. Typically, life cycle analyses measure environmental impacts of different industrial production stages and are not integrated with indicators of material use circularity. This concept paper proposes the further development of a new set of metrics that would illustrate not only the typical life-cycle analysis (LCA), which shows the reduction in greenhouse gas (GHG) emissions, but also the zero-waste circularity measures of mass balance of the full value chain of the raw material and energy content/caloric value. These new measures quantify key impacts in making hyper-efficient use of natural resources and eliminating waste to landfills. The project utilized traditional LCA using the GREET model where the standalone biomass energy plant case was contrasted with the integration of a jet-fuel biorefinery. The methodology was then expanded to include combinations of co-hosts that optimize the life cycle of woody biomass from tree to energy, CO₂, heat and wood ash both from an energy/caloric value and for mass balance to include reuse of waste streams which are typically landfilled. The major findings of both a formal LCA study resulted in the masterplan for the first Bio-Hub to be built in West Enfield, Maine. Bioenergy facilities are currently at a critical juncture where they have an opportunity to be repurposed into efficient, profitable and socially responsible investments, or be idled and scrapped. If proven as a model, the expedited roll-out of these innovative scenarios can set a new standard for circular zero-waste projects that advance the critical transition from the current ‘take-make-dispose’ paradigm inherent in the energy, forestry and food industries to a more sustainable bio-economy paradigm where waste streams become valuable inputs, supporting local and rural communities in simple, sustainable ways.

Keywords: bio-economy, biomass energy, financing, metrics

Procedia PDF Downloads 162
4550 Temperature Control and Thermal Management of Cylindrical Lithium Batteries Using Phase Change Materials (PCMs)

Authors: S. M. Sadrameli, Y. Azizi

Abstract:

Lithium-ion batteries (LIBs) have shown to be one of the most reliable energy storage systems for electric cars in the recent years. Ambient temperature has a significant impact on the performance, lifetime, safety and cost of such batteries. Increasing the temperature degrade the lithium batteries more quickly while working at low-temperature environment results reducing the power and energy capability of the system. A thermal management system has been designed and setup in laboratory scale for controlling the temperature at optimum conditions using PEG-1000 with the melting point in the range of 33-40 oC as a phase change material. Aluminum plates have been installed in the PCM to increase the thermal conductivity and increasing the heat transfer rate. Experimental tests have been run at different discharge rates and ambient temperatures to investigate the effects of temperature on the efficiency of the batteries. The comparison has been made between the system of 6 batteries with and without PCM and the results show that PCM with aluminum plates decrease the surface temperature of the batteries that would result better performance and longer lifetime of the batteries.

Keywords: lithium-ion batteries, phase change materials, thermal management, temperature control

Procedia PDF Downloads 345
4549 An Attentional Bi-Stream Sequence Learner (AttBiSeL) for Credit Card Fraud Detection

Authors: Mohsen Hasirian, Amir Shahab Shahabi

Abstract:

Modern societies, marked by expansive Internet connectivity and the rise of e-commerce, are now integrated with digital platforms at an unprecedented level. The efficiency, speed, and accessibility of e-commerce have garnered a substantial consumer base. Against this backdrop, electronic banking has undergone rapid proliferation within the realm of online activities. However, this growth has inadvertently given rise to an environment conducive to illicit activities, notably electronic payment fraud, posing a formidable challenge to the domain of electronic banking. A pivotal role in upholding the integrity of electronic commerce and business transactions is played by electronic fraud detection, particularly in the context of credit cards which underscores the imperative of comprehensive research in this field. To this end, our study introduces an Attentional Bi-Stream Sequence Learner (AttBiSeL) framework that leverages attention mechanisms and recurrent networks. By incorporating bidirectional recurrent layers, specifically bidirectional Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) layers, the proposed model adeptly extracts past and future transaction sequences while accounting for the temporal flow of information in both directions. Moreover, the integration of an attention mechanism accentuates specific transactions to varying degrees, as manifested in the output of the recurrent networks. The effectiveness of the proposed approach in automatic credit card fraud classification is evaluated on the European Cardholders' Fraud Dataset. Empirical results validate that the hybrid architectural paradigm presented in this study yields enhanced accuracy compared to previous studies.

Keywords: credit card fraud, deep learning, attention mechanism, recurrent neural networks

Procedia PDF Downloads 55
4548 A Game-Based Product Modelling Environment for Non-Engineer

Authors: Guolong Zhong, Venkatesh Chennam Vijay, Ilias Oraifige

Abstract:

In the last 20 years, Knowledge Based Engineering (KBE) has shown its advantages in product development in different engineering areas such as automation, mechanical, civil and aerospace engineering in terms of digital design automation and cost reduction by automating repetitive design tasks through capturing, integrating, utilising and reusing the existing knowledge required in various aspects of the product design. However, in primary design stages, the descriptive information of a product is discrete and unorganized while knowledge is in various forms instead of pure data. Thus, it is crucial to have an integrated product model which can represent the entire product information and its associated knowledge at the beginning of the product design. One of the shortcomings of the existing product models is a lack of required knowledge representation in various aspects of product design and its mapping to an interoperable schema. To overcome the limitation of the existing product model and methodologies, two key factors are considered. First, the product model must have well-defined classes that can represent the entire product information and its associated knowledge. Second, the product model needs to be represented in an interoperable schema to ensure a steady data exchange between different product modelling platforms and CAD software. This paper introduced a method to provide a general product model as a generative representation of a product, which consists of the geometry information and non-geometry information, through a product modelling framework. The proposed method for capturing the knowledge from the designers through a knowledge file provides a simple and efficient way of collecting and transferring knowledge. Further, the knowledge schema provides a clear view and format on the data that needed to be gathered in order to achieve a unified knowledge exchange between different platforms. This study used a game-based platform to make product modelling environment accessible for non-engineers. Further the paper goes on to test use case based on the proposed game-based product modelling environment to validate the effectiveness among non-engineers.

Keywords: game-based learning, knowledge based engineering, product modelling, design automation

Procedia PDF Downloads 158
4547 Comparative Study of Line Voltage Stability Indices for Voltage Collapse Forecasting in Power Transmission System

Authors: H. H. Goh, Q. S. Chua, S. W. Lee, B. C. Kok, K. C. Goh, K. T. K. Teo

Abstract:

At present, the evaluation of voltage stability assessment experiences sizeable anxiety in the safe operation of power systems. This is due to the complications of a strain power system. With the snowballing of power demand by the consumers and also the restricted amount of power sources, therefore, the system has to perform at its maximum proficiency. Consequently, the noteworthy to discover the maximum ability boundary prior to voltage collapse should be undertaken. A preliminary warning can be perceived to evade the interruption of power system’s capacity. The effectiveness of line voltage stability indices (LVSI) is differentiated in this paper. The main purpose of the indices is used to predict the proximity of voltage instability of the electric power system. On the other hand, the indices are also able to decide the weakest load buses which are close to voltage collapse in the power system. The line stability indices are assessed using the IEEE 14 bus test system to validate its practicability. Results demonstrated that the implemented indices are practically relevant in predicting the manifestation of voltage collapse in the system. Therefore, essential actions can be taken to dodge the incident from arising.

Keywords: critical line, line outage, line voltage stability indices (LVSI), maximum loadability, voltage collapse, voltage instability, voltage stability analysis

Procedia PDF Downloads 362
4546 Evolved Bat Algorithm Based Adaptive Fuzzy Sliding Mode Control with LMI Criterion

Authors: P.-W. Tsai, C.-Y. Chen, C.-W. Chen

Abstract:

In this paper, the stability analysis of a GA-Based adaptive fuzzy sliding model controller for a nonlinear system is discussed. First, a nonlinear plant is well-approximated and described with a reference model and a fuzzy model, both involving FLC rules. Then, FLC rules and the consequent parameter are decided on via an Evolved Bat Algorithm (EBA). After this, we guarantee a new tracking performance inequality for the control system. The tracking problem is characterized to solve an eigenvalue problem (EVP). Next, an adaptive fuzzy sliding model controller (AFSMC) is proposed to stabilize the system so as to achieve good control performance. Lyapunov’s direct method can be used to ensure the stability of the nonlinear system. It is shown that the stability analysis can reduce nonlinear systems into a linear matrix inequality (LMI) problem. Finally, a numerical simulation is provided to demonstrate the control methodology.

Keywords: adaptive fuzzy sliding mode control, Lyapunov direct method, swarm intelligence, evolved bat algorithm

Procedia PDF Downloads 447
4545 Comparison of Feedforward Back Propagation and Self-Organizing Map for Prediction of Crop Water Stress Index of Rice

Authors: Aschalew Cherie Workneh, K. S. Hari Prasad, Chandra Shekhar Prasad Ojha

Abstract:

Due to the increase in water scarcity, the crop water stress index (CWSI) is receiving significant attention these days, especially in arid and semiarid regions, for quantifying water stress and effective irrigation scheduling. Nowadays, machine learning techniques such as neural networks are being widely used to determine CWSI. In the present study, the performance of two artificial neural networks, namely, Self-Organizing Maps (SOM) and Feed Forward-Back Propagation Artificial Neural Networks (FF-BP-ANN), are compared while determining the CWSI of rice crop. Irrigation field experiments with varying degrees of irrigation were conducted at the irrigation field laboratory of the Indian Institute of Technology, Roorkee, during the growing season of the rice crop. The CWSI of rice was computed empirically by measuring key meteorological variables (relative humidity, air temperature, wind speed, and canopy temperature) and crop parameters (crop height and root depth). The empirically computed CWSI was compared with SOM and FF-BP-ANN predicted CWSI. The upper and lower CWSI baselines are computed using multiple regression analysis. The regression analysis showed that the lower CWSI baseline for rice is a function of crop height (h), air vapor pressure deficit (AVPD), and wind speed (u), whereas the upper CWSI baseline is a function of crop height (h) and wind speed (u). The performance of SOM and FF-BP-ANN were compared by computing Nash-Sutcliffe efficiency (NSE), index of agreement (d), root mean squared error (RMSE), and coefficient of correlation (R²). It is found that FF-BP-ANN performs better than SOM while predicting the CWSI of rice crops.

Keywords: artificial neural networks; crop water stress index; canopy temperature, prediction capability

Procedia PDF Downloads 122
4544 A Comparison of Alternative Traffic Controls for Interchange Ramp Areas Using Synchro Software

Authors: Mohamed Mesbah, Bruce Janson

Abstract:

An interchange is the most important component of freeway and highway facilities. It is working as a connector between the highway’s elements. The main goal of designing interchanges is to provide an acceptable level of service and delay to make vehicles move smoothly when they are entering and exiting the interchange. There are many factors that can have a significant impact on the level of service; the main factors are traffic volumes, and type of interchange. This paper will discuss interchange with roundabouts under various values of traffic volumes to determine the level of service of the interchanges that will be studied in this paper and replace the system of interchange from roundabout to traffic signal to make a significant compression between these systems. A secondary goal is to propose improvements for scenarios where the level of service is deemed unacceptable. This will be achieved using Synchro traffic simulation software, which facilitates the simulation and optimization of interchanges to enhance operational efficiency and safety.

Keywords: interchange, roundabout, traffic signal, Synchro, delay, level of service, traffic volumes, vehicles, simulation, optimization, adjustment

Procedia PDF Downloads 45
4543 Design, Modeling and Analysis of 2×2 Microstrip Patch Antenna Array System for 5G Applications

Authors: Vinay Kumar K. S., Shravani V., Spoorthi G., Udith K. S., Divya T. M., Venkatesha M.

Abstract:

In this work, the mathematical modeling, design and analysis of a 2×2 microstrip patch antenna array (MSPA) antenna configuration is presented. Array utilizes a tiny strip antenna module with two vertical slots for 5G applications at an operating frequency of 5.3 GHz. The proposed array of antennas where the phased array antenna systems (PAAS) are used ubiquitously everywhere, from defense radar applications to commercial applications like 5G/6G. Microstrip patch antennae with slot arrays for linear polarisation parallel and perpendicular to the axis, respectively, are fed through transverse slots in the side wall of the circular waveguide and fed through longitudinal slots in the small wall of the rectangular waveguide. The microstrip patch antenna is developed using Ansys HFSS (High-Frequency Structure Simulator), this simulation tool. The maximum gain of 6.14 dB is achieved at 5.3 GHz for a single MSPA. For 2×2 array structure, a gain of 7.713 dB at 5.3 GHz is observed. Such antennas find many applications in 5G devices and technology.

Keywords: Ansys HFSS, gain, return loss, slot array, microstrip patch antenna, 5G antenna

Procedia PDF Downloads 115
4542 Empirical Exploration for the Correlation between Class Object-Oriented Connectivity-Based Cohesion and Coupling

Authors: Jehad Al Dallal

Abstract:

Attributes and methods are the basic contents of an object-oriented class. The connectivity among these class members and the relationship between the class and other classes play an important role in determining the quality of an object-oriented system. Class cohesion evaluates the degree of relatedness of class attributes and methods, whereas class coupling refers to the degree to which a class is related to other classes. Researchers have proposed several class cohesion and class coupling measures. However, the correlation between class coupling and class cohesion measures have not been thoroughly studied. In this paper, using classes of three open-source Java systems, we empirically investigate the correlation between several measures of connectivity-based class cohesion and coupling. Four connectivity-based cohesion measures and eight coupling measures are considered in the empirical study. The empirical study results show that class connectivity-based cohesion and coupling internal quality attributes are inversely correlated. The strength of the correlation depends highly on the cohesion and coupling measurement approaches.

Keywords: object-oriented class, software quality, class cohesion measure, class coupling measure

Procedia PDF Downloads 326
4541 D-Wave Quantum Computing Ising Model: A Case Study for Forecasting of Heat Waves

Authors: Dmytro Zubov, Francesco Volponi

Abstract:

In this paper, D-Wave quantum computing Ising model is used for the forecasting of positive extremes of daily mean air temperature. Forecast models are designed with two to five qubits, which represent 2-, 3-, 4-, and 5-day historical data respectively. Ising model’s real-valued weights and dimensionless coefficients are calculated using daily mean air temperatures from 119 places around the world, as well as sea level (Aburatsu, Japan). In comparison with current methods, this approach is better suited to predict heat wave values because it does not require the estimation of a probability distribution from scarce observations. Proposed forecast quantum computing algorithm is simulated based on traditional computer architecture and combinatorial optimization of Ising model parameters for the Ronald Reagan Washington National Airport dataset with 1-day lead-time on learning sample (1975-2010 yr). Analysis of the forecast accuracy (ratio of successful predictions to total number of predictions) on the validation sample (2011-2014 yr) shows that Ising model with three qubits has 100 % accuracy, which is quite significant as compared to other methods. However, number of identified heat waves is small (only one out of nineteen in this case). Other models with 2, 4, and 5 qubits have 20 %, 3.8 %, and 3.8 % accuracy respectively. Presented three-qubit forecast model is applied for prediction of heat waves at other five locations: Aurel Vlaicu, Romania – accuracy is 28.6 %; Bratislava, Slovakia – accuracy is 21.7 %; Brussels, Belgium – accuracy is 33.3 %; Sofia, Bulgaria – accuracy is 50 %; Akhisar, Turkey – accuracy is 21.4 %. These predictions are not ideal, but not zeros. They can be used independently or together with other predictions generated by different method(s). The loss of human life, as well as environmental, economic, and material damage, from extreme air temperatures could be reduced if some of heat waves are predicted. Even a small success rate implies a large socio-economic benefit.

Keywords: heat wave, D-wave, forecast, Ising model, quantum computing

Procedia PDF Downloads 505
4540 A Proposed Inclusive Motor Skill Intervention Programme for Pre-schoolers in Low Resources Areas in Preparation of School Readiness

Authors: J. Van der Walt, N. A. Plastow, M. Unger

Abstract:

Gross and fine motor skill difficulties among children affect their ability to learn and progress in school. Research indicates that children in low socio-economic areas are at a higher risk of motor skill difficulties, while therapy resources are limited. The Hopscotch motor skill programme is a well-researched accessible in-school intervention developed by occupational and physiotherapists through complex intervention development. The development stage of the complex intervention development model firstly included a prevalence study in a low-resourced area in the West Coast of South Africa, indicating a high prevalence with significant motor skill difficulties among pre-school children at 14.5% with fine motor skill difficulties at 24.6%. A scoping review identifies motor skill interventions for pre-school children and a proposed a framework of fundamental concepts to consider when developing a motor skill intervention. a Delphi-study considered the framework and encouraged collaboration between therapists and educators to make the programme accessible, resource and cost effective, specifically geared towards a rural, low resourced area. The results from the Delphi study, together with the proposed framework from the scoping review was used to develop the Hopscotch programme, adopting a task-shifting approach. The eight-week small-group programme is facilitated by teachers with the support of therapists. The programme aims to improve the motor skills of pre-school aged children with motor skill difficulties to promote academic readiness through obstacle courses, ball skill games and fine motor games and crafts. A randomised controlled trial is planned as a next stage to determine the preliminary effect of the programme on the motor and early academic skills of pre-school children.

Keywords: accesible learning, motor skill intervention, school readiness, task shifting

Procedia PDF Downloads 200
4539 Seismic Assessment of Old Existing RC Buildings with Masonry Infill in Madinah as Per ASCE

Authors: Tarek M. Alguhane, Ayman H. Khalil, Nour M. Fayed, Ayman M. Ismail

Abstract:

An existing RC building in Madinah is seismically evaluated with and without infill wall. Four model systems have been considered i. e. model I (no infill), model IIA (strut infill-update from field test), model IIB (strut infill- ASCE/SEI 41) and model IIC (strut infill-Soft storey-ASCE/SEI 41). Three dimensional pushover analyses have been carried out using SAP 2000 software incorporating inelastic material behavior for concrete, steel and infill walls. Infill wall has been modeled as equivalent strut according to suggested equation matching field test measurements and to the ASCE/SEI 41 equation. The effect of building modeling on the performance point as well as capacity and demand spectra due to EQ design spectrum function in Madinah area has been investigated. The response modification factor (R) for the 5 story RC building is evaluated from capacity and demand spectra (ATC-40) for the studied models. The results are summarized and discussed.

Keywords: infill wall, pushover analysis, response modification factor, seismic assessment

Procedia PDF Downloads 394
4538 Real-Time Automated Detection of Violent Content in Animated Cartoons Using YOLOv9

Authors: Omaima Jbara, Mohame Amine Omrani, Mounir Zrigui

Abstract:

The detection of violent content in animated cartoons is anessential step toward safeguarding young audiences and promoting responsible media consumption. This study introduces an automated approach to identify violent scenes in cartoons using advanced object detection models. A custom dataset comprising 1,200 frames was curated from various animated sources, focusing on four key classes: Explosion, Blood, Fight, and Gunshot. Data augmentation techniques, including rotation, scaling, and color adjustments, expanded the dataset to 2,000 frames, enhancing diversity and model generalization. YOLO versions 8, 9, and 10 were trained and evaluated on this dataset. Among these, YOLOv9 achieved the highest performance with a mean Average Precision (mAP) of 94%, demonstrating superior accuracy and robustness. These findings highlight YOLOv9’s potential as a reliable tool for detecting violent content in animated media, contributing to the development of effective content moderation systems.

Keywords: cartoon violence detection, YOLO model, computer Vi sion, Real-time content analysis

Procedia PDF Downloads 13
4537 Psychometric Properties of the Social Skills Rating System: Teacher Version

Authors: Amani Kappi, Ana Maria Linares, Gia Mudd-Martin

Abstract:

Children with Attention Deficit Hyperactivity Disorder (ADHD) are more likely to develop social skills deficits that can lead to academic underachievement, peer rejection, and maladjustment. Surveying teachers about children's social skills with ADHD will become a significant factor in identifying whether the children will be diagnosed with social skills deficits. The teacher-specific version of the Social Skills Rating System scale (SSRS-T) has been used as a screening tool for children's social behaviors. The psychometric properties of the SSRS-T have been evaluated in various populations and settings, such as when used by teachers to assess social skills for children with learning disabilities. However, few studies have been conducted to examine the psychometric properties of the SSRS-T when used to assess children with ADHD. The purpose of this study was to examine the psychometric properties of the SSRS-T and two SSRS-T subscales, Social Skills and Problem Behaviors. This was a secondary analysis of longitudinal data from the Fragile Families and Child Well-Being Study. This study included a sample of 194 teachers who used the SSRS-T to assess the social skills of children aged 8 to 10 years with ADHD. Exploratory principal components factor analysis was used to assess the construct validity of the SSRS-T scale. Cronbach’s alpha value was used to assess the internal consistency reliability of the total SSRS-T scale and the subscales. Item analyses included item-item intercorrelations, item-to-subscale correlations, and Cronbach’s alpha value changes with item deletion. The results of internal consistency reliability for both the total scale and subscales were acceptable. The results of the exploratory factor analysis supported the five factors of SSRS-T (Cooperation, Self-control, Assertion, Internalize behaviors, and Externalize behaviors) reported in the original version. Findings indicated that SSRS-T is a reliable and valid tool for assessing the social behaviors of children with ADHD.

Keywords: ADHD, children, social skills, SSRS-T, psychometric properties

Procedia PDF Downloads 136
4536 Equality in Higher Education: A Library and Learning Collaborative Project to Support Teachers

Authors: Ika Jorum

Abstract:

The aim of this collaborative project was to develop library support that contributes in a long-term way to a technical university’s work on increased equality in education. The background was an assessment made by the Higher Education Authority that showed the need for improvement regarding equality in several programs at the university. The university’s Vice President for equality and Vice President for sustainability announced funds for projects that supported the improvement of equality in education. The library was granted funding for a one-year project that aimed both to support teachers in order to embed equality in education and to support the library staff and improve the organization’s own work. The part of the project that was directed to teachers was performed as activities in different areas and forms, such as acquisition and collections, teaching, exhibitions and book discussions. Besides the activities and support that was offered to teachers, the education team had journal clubs in order to develop and embed equality in their own teaching. The part that was directed to library staff and management was performed as workshops in collaboration with Equality Office in order to identify areas where the library could make improvements on work with equality and inclusion. The expectation was that the activities would be well attended since the project team had got indications that the content would be relevant. The outcome of this project was that some activities turned out to be more attended than others and what is expected to be found relevant, for example, a workshop on information searching from a gender and equality perspective for teachers, might still not attract participants. On the other hand, Ph.D. students and students participated in the book discussions and wanted them to continue after the project had ended. Results will be shared both on what was successful and what was challenging. Some reflections will be given on what can be done to attract participants to activities in the area of gender equality that is most likely relevant for the expected attendants and how results from a project on gender equality can be integrated into an organization’s daily work.

Keywords: equality, higher education, critical information literacy, collaboration

Procedia PDF Downloads 77
4535 Vulnerable Paths Assessment for Distributed Denial of Service Attacks in a Cloud Computing Environment

Authors: Manas Tripathi, Arunabha Mukhopadhyay

Abstract:

In Cloud computing environment, cloud servers, sometimes may crash after receiving huge amount of request and cloud services may stop which can create huge loss to users of that cloud services. This situation is called Denial of Service (DoS) attack. In Distributed Denial of Service (DDoS) attack, an attacker targets multiple network paths by compromising various vulnerable systems (zombies) and floods the victim with huge amount of request through these zombies. There are many solutions to mitigate this challenge but most of the methods allows the attack traffic to arrive at Cloud Service Provider (CSP) and then only takes actions against mitigation. Here in this paper we are rather focusing on preventive mechanism to deal with these attacks. We analyze network topology and find most vulnerable paths beforehand without waiting for the traffic to arrive at CSP. We have used Dijkstra's and Yen’s algorithm. Finally, risk assessment of these paths can be done by multiplying the probabilities of attack for these paths with the potential loss.

Keywords: cloud computing, DDoS, Dijkstra, Yen’s k-shortest path, network security

Procedia PDF Downloads 280
4534 Development and Metrological Validation of a Control Strategy in Embedded Island Grids Using Battery-Hybrid-Systems

Authors: L. Wilkening, G. Ackermann, T. T. Do

Abstract:

This article presents an approach for stand-alone and grid-connected mode of a German low-voltage grid with high share of photovoltaic. For this purpose, suitable dynamic system models have been developed. This allows the simulation of dynamic events in very small time ranges and the operation management over longer periods of time. Using these simulations, suitable control parameters could be identified, and their effects on the grid can be analyzed. In order to validate the simulation results, a LV-grid test bench has been implemented at the University of Technology Hamburg. The developed control strategies are to be validated using real inverters, generators and different realistic loads. It is shown that a battery hybrid system installed next to a voltage transformer makes it possible to operate the LV-grid in stand-alone mode without using additional information and communication technology and without intervention in the existing grid units. By simulating critical days of the year, suitable control parameters for stable stand-alone operations are determined and set point specifications for different control strategies are defined.

Keywords: battery, e-mobility, photovoltaic, smart grid

Procedia PDF Downloads 147
4533 An Enhanced AODV Routing Protocol for Wireless Sensor and Actuator Networks

Authors: Apidet Booranawong, Wiklom Teerapabkajorndet

Abstract:

An enhanced ad-hoc on-demand distance vector routing (E-AODV) protocol for control system applications in wireless sensor and actuator networks (WSANs) is proposed. Our routing algorithm is designed by considering both wireless network communication and the control system aspects. Control system error and network delay are the main selection criteria in our routing protocol. The control and communication performance is evaluated on multi-hop IEEE 802.15.4 networks for building-temperature control systems. The Gilbert-Elliott error model is employed to simulate packet loss in wireless networks. The simulation results demonstrate that the E-AODV routing approach can significantly improve the communication performance better than an original AODV routing under various packet loss rates. However, the control performance result by our approach is not much improved compared with the AODV routing solution.

Keywords: WSANs, building temperature control, AODV routing protocol, control system error, settling time, delay, delivery ratio

Procedia PDF Downloads 344
4532 Semantic Based Analysis in Complaint Management System with Analytics

Authors: Francis Alterado, Jennifer Enriquez

Abstract:

Semantic Based Analysis in Complaint Management System with Analytics is an enhanced tool of providing complaints by the clients as well as a mechanism for Palawan Polytechnic College to gather, process, and monitor status of these complaints. The study has a mobile application that serves as a remote facility of communication between the students and the school management on the issues encountered by the student and the solution of every complaint received. In processing the complaints, text mining and clustering algorithms were utilized. Every module of the systems was tested and based on the results; these are 100% free from error before integration was done. A system testing was also done by checking the expected functionality of the system which was 100% functional. The system was tested by 10 students by forwarding complaints to 10 departments. Based on results, the students were able to submit complaints, the system was able to process accordingly by identifying to which department the complaints are intended, and the concerned department was able to give feedback on the complaint received to the student. With this, the system gained 4.7 rating which means Excellent.

Keywords: technology adoption, emerging technology, issues challenges, algorithm, text mining, mobile technology

Procedia PDF Downloads 203