Search results for: cost of energy (COE)
1984 Effect of Iron Oxide Addition on the Solid-State Synthesis of Ye’Elimite
Authors: F. Z. Abir, M. Mesnaoui, Y. Abouliatim, L. Nibou, Y. El Hafiane, A. Smith
Abstract:
The cement industry has been taking significant steps for years to reduce its carbon footprint by opting for an eco-friendly alternative such as Calcium Sulfoaluminate Cements (CSA). These binders, compared to Ordinary Portland Cements (OPC), have two advantages: reduction of the CO2 emissions and energy-saving because the sintering temperature of CSA cements is between 1250 and 1350 °C, which means 100 to 200 °C less than OPC. The aim of this work is to study the impurities effect, such as iron oxide, on the formation of the ye'elimite phase, which represents the main phase of Calcium Sulfoaluminate Cements and the consequence on its hydration. Several elaborations and characterization techniques were used to study the structure and microstructure of ye'elimite, such as X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), thermal analysis, specific surface area measurement, and electrical conductivity of diluted solutions. This study details the protocol for the solid-state synthesis of ye'elimite containing increasing amounts of iron (general formula: Ca4Al(6-2x)Fe2xSO16 with x = 0.00 to 1.13). Ye'elimite is formed by solid-state reactions between Al2O3, CaO and CaSO4 and the maximum ye'elimite content is reached at a sintering temperature of 1300 °C. The presence of iron promotes the formation of cubic ye'elimite at the expense of the orthorhombic phase. The total incorporation of iron in ye'elimite structure is possible when x < 0.12. Beyond this content, the ferritic phase (CaO)2(Al2O3,Fe2O3) appears as a minor phase and develops two different morphologies during cooling: dendritic crystals and melt morphology. The formation of the ferrous liquid phase affects the evolution of grain size of the ye’elimite and calcium aluminates.Keywords: calcium sulfoaluminate cement, ferritic phase, sintering, solid-state synthesis, ye’elimite
Procedia PDF Downloads 1891983 Design of Robust and Intelligent Controller for Active Removal of Space Debris
Authors: Shabadini Sampath, Jinglang Feng
Abstract:
With huge kinetic energy, space debris poses a major threat to astronauts’ space activities and spacecraft in orbit if a collision happens. The active removal of space debris is required in order to avoid frequent collisions that would occur. In addition, the amount of space debris will increase uncontrollably, posing a threat to the safety of the entire space system. But the safe and reliable removal of large-scale space debris has been a huge challenge to date. While capturing and deorbiting space debris, the space manipulator has to achieve high control precision. However, due to uncertainties and unknown disturbances, there is difficulty in coordinating the control of the space manipulator. To address this challenge, this paper focuses on developing a robust and intelligent control algorithm that controls joint movement and restricts it on the sliding manifold by reducing uncertainties. A neural network adaptive sliding mode controller (NNASMC) is applied with the objective of finding the control law such that the joint motions of the space manipulator follow the given trajectory. A computed torque control (CTC) is an effective motion control strategy that is used in this paper for computing space manipulator arm torque to generate the required motion. Based on the Lyapunov stability theorem, the proposed intelligent controller NNASMC and CTC guarantees the robustness and global asymptotic stability of the closed-loop control system. Finally, the controllers used in the paper are modeled and simulated using MATLAB Simulink. The results are presented to prove the effectiveness of the proposed controller approach.Keywords: GNC, active removal of space debris, AI controllers, MatLabSimulink
Procedia PDF Downloads 1321982 Functional Impairment in South African Children with ADHD: Design, Implementation and Evaluation of a Targeted Intervention
Authors: Mareli Fischer, Kevin G. F. Thomas
Abstract:
Although Attention-Deficit/Hyperactivity Disorder (ADHD) is one of the most prevalent childhood neurobehavioural disorders, little empirical research has been published on its clinical presentation in Africa, and, globally, few studies evaluate ADHD intervention programs that emphasize parent training. Hence, Stage 1 of this research programme aimed to describe the functional impairment of South African children with ADHD, and also sought to investigate the influence of sociodemographic variables (e.g., sex, age, socioeconomic status, family environment) and clinical variables (e.g., ADHD subtype and comorbidity) on the degree of that impairment. We used the Mini International Neuropsychiatric Interview for Children and Adolescents as a diagnostic tool, and the Child Behavior Checklist, the Strengths and Difficulties Questionnaire, and the Impairment Rating Scale as measures of functional impairment. Results from this stage of the research indicated that South African children and adolescents who meet diagnostic criteria for ADHD experience most functional impairment in the school domain, as well as in the area of social functioning. None of the measured sociodemographic variables had a significant detrimental or protective effect on how ADHD symptoms impacted on functioning. In terms of comorbidity, the presence of Major Depressive Disorder, Conduct Disorder, and Oppositional Defiant Disorder were all associated with significantly impaired overall functioning. Stage 2 of the research programme aimed to design, implement, and evaluate a child-specific intervention that targeted the primary areas of impairment identified in Stage 1. Existing literature suggests that a positive parent-training programme, in the group format, is one of the best options for cost-effective and successful ADHD intervention. Hence, the intervention took that form. Parents were taught basic behaviour analysis concepts within a supportive group context. Evaluation of the intervention’s efficacy used many of the same measures as in Stage 1, but also featured semi-structured interviews with participants and naturalistic observation of parent-child interaction. We will discuss preliminary results of that evaluation. Studying functional impairment and designing intervention plans in this way will pave the way for evidence-based treatment plans for children and adolescents diagnosed with ADHD.Keywords: attention deficit/hyperactivity disorder, children, intervention, parenting groups
Procedia PDF Downloads 4311981 Thermodynamics of Water Condensation on an Aqueous Organic-Coated Aerosol Aging via Chemical Mechanism
Authors: Yuri S. Djikaev
Abstract:
A large subset of aqueous aerosols can be initially (immediately upon formation) coated with various organic amphiphilic compounds whereof the hydrophilic moieties are attached to the aqueous aerosol core while the hydrophobic moieties are exposed to the air thus forming a hydrophobic coating thereupon. We study the thermodynamics of water condensation on such an aerosol whereof the hydrophobic organic coating is being concomitantly processed by chemical reactions with atmospheric reactive species. Such processing (chemical aging) enables the initially inert aerosol to serve as a nucleating center for water condensation. The most probable pathway of such aging involves atmospheric hydroxyl radicals that abstract hydrogen atoms from hydrophobic moieties of surface organics (first step), the resulting radicals being quickly oxidized by ubiquitous atmospheric oxygen molecules to produce surface-bound peroxyl radicals (second step). Taking these two reactions into account, we derive an expression for the free energy of formation of an aqueous droplet on an organic-coated aerosol. The model is illustrated by numerical calculations. The results suggest that the formation of aqueous cloud droplets on such aerosols is most likely to occur via Kohler activation rather than via nucleation. The model allows one to determine the threshold parameters necessary for their Kohler activation. Numerical results also corroborate previous suggestions that one can neglect some details of aerosol chemical composition in investigating aerosol effects on climate.Keywords: aqueous aerosols, organic coating, chemical aging, cloud condensation nuclei, Kohler activation, cloud droplets
Procedia PDF Downloads 3951980 Relation between Biochemical Parameters and Bone Density in Postmenopausal Women with Osteoporosis
Authors: Shokouh Momeni, Mohammad Reza Salamat, Ali Asghar Rastegari
Abstract:
Background: Osteoporosis is the most prevalent metabolic bone disease in postmenopausal women associated with reduced bone mass and increased bone fracture. Measuring bone density in the lumbar spine and hip is a reliable measure of bone mass and can therefore specify the risk of fracture. Dual-energy X-ray absorptiometry(DXA) is an accurate non-invasive system measuring the bone density, with low margin of error and no complications. The present study aimed to investigate the relationship between biochemical parameters with bone density in postmenopausal women. Materials and methods: This cross-sectional study was conducted on 87 postmenopausal women referred to osteoporosis centers in Isfahan. Bone density was measured in the spine and hip area using DXA system. Serum levels of calcium, phosphorus, alkaline phosphatase and magnesium were measured by autoanalyzer and serum levels of vitamin D were measured by high-performance liquid chromatography(HPLC). Results: The mean parameters of calcium, phosphorus, alkaline phosphatase, vitamin D and magnesium did not show a significant difference between the two groups(P-value>0.05). In the control group, the relationship between alkaline phosphatase and BMC and BA in the spine was significant with a correlation coefficient of -0.402 and 0.258, respectively(P-value<0.05) and BMD and T-score in the femoral neck area showed a direct and significant relationship with phosphorus(Correlation=0.368; P-value=0.038). There was a significant relationship between the Z-score with calcium(Correlation=0.358; P-value=0.044). Conclusion: There was no significant relationship between the values of calcium, phosphorus, alkaline phosphatase, vitamin D and magnesium parameters and bone density (spine and hip) in postmenopausKeywords: osteoporosis, menopause, bone mineral density, vitamin d, calcium, magnesium, alkaline phosphatase, phosphorus
Procedia PDF Downloads 1761979 A Comparative Study of the Effects of Vibratory Stress Relief and Thermal Aging on the Residual Stress of Explosives Materials
Authors: Xuemei Yang, Xin Sun, Cheng Fu, Qiong Lan, Chao Han
Abstract:
Residual stresses, which can be produced during the manufacturing process of plastic bonded explosive (PBX), play an important role in weapon system security and reliability. Residual stresses can and do change in service. This paper mainly studies the influence of vibratory stress relief (VSR) and thermal aging on residual stress of explosives. Firstly, the residual stress relaxation of PBX via different physical condition of VSR, such as vibration time, amplitude and dynamic strain, were studied by drill-hole technique. The result indicated that the vibratory amplitude, time and dynamic strain had a significant influence on the residual stress relief of PBX. The rate of residual stress relief of PBX increases first and then decreases with the increase of dynamic strain, amplitude and time, because the activation energy is too small to make the PBX yield plastic deformation at first. Then the dynamic strain, time and amplitude exceed a certain threshold, the residual stress changes show the same rule and decrease sharply, this sharply drop of residual stress relief rate may have been caused by over vibration. Meanwhile, the comparison between VSR and thermal aging was also studied. The conclusion is that the reduction ratio of residual stress after VSR process with applicable vibratory parameters could be equivalent to 73% of thermal aging with 7 days. In addition, the density attenuation rate, mechanical property, and dimensional stability with 3 months after VSR process was almost the same compared with thermal aging. However, compared with traditional thermal aging, VSR only takes a very short time, which greatly improves the efficiency of aging treatment for explosive materials. Therefore, the VSR could be a potential alternative technique in the industry of residual stress relaxation of PBX explosives.Keywords: explosives, residual stresses, thermal aging, vibratory stress relief, VSR
Procedia PDF Downloads 1601978 Properties of Triadic Concrete Containing Rice Husk Ash and Wood Waste Ash as Partial Cement Replacement
Authors: Abdul Rahman Mohd. Sam, Olukotun Nathaniel, Dunu Williams
Abstract:
Concrete is one of the most popular materials used in construction industry. However, one of the setbacks is that concrete can degrade with time upon exposure to an aggressive environment that leads to decrease in strength. Thus, research works and innovative ways are needed to enhance the strength and durability of concrete. This work tries to look into the potential use of rice husk ash (RHA) and wood waste ash (WWA) as cement replacement material. These are waste materials that may not only enhance the properties of concrete but also can serves as a viable method of disposal of waste for sustainability. In addition, a substantial replacement of Ordinary Portland Cement (OPC) with these pozzolans will mean reduction in CO₂ emissions and high energy requirement associated with the production of OPC. This study is aimed at assessing the properties of triadic concrete produced using RHA and WWA as a partial replacement of cement. The effects of partial replacement of OPC with 10% RHA and 5% WWA on compressive and tensile strength of concrete among other properties were investigated. Concrete was produced with nominal mix of 1:2:4 and 0.55 water-cement ratio, prepared, cured and subjected to compressive and tensile strength test at 3, 7, 14, 28 and 90days. The experimental data demonstrate that concrete containing RHA and WWA produced lighter weight in comparison with OPC sample. Results also show that combination of RHA and WWA help to prolong the initial and final setting time by about 10-30% compared to the control sample. Furthermore, compressive strength was increased by 15-30% with 10% RHA and 5% WWA replacement, respectively above the control, RHA and WWA samples. Tensile strength test at the ages of 3, 7, 14, 28 and 90 days reveals that a replacement of 15% RHA and 5% WWA produced samples with the highest tensile capacity compared to the control samples. Thus, it can be concluded that RHA and WWA can be used as partial cement replacement materials in concrete.Keywords: concrete, rice husk ash, wood waste ash, ordinary Portland cement, compressive strength, tensile strength
Procedia PDF Downloads 2591977 Enhancing of Flame Retardancy and Hydrophobicity of Cotton by Coating a Phosphorous, Silica, Nitrogen Containing Bio-Flame Retardant Liquid for Upholstery Application
Authors: Li Maksym, Prabhakar M. N., Jung-Il Song
Abstract:
In this study, a flame retardant and hydrophobic cotton textile were prepared by utilizing a renewable halogen-free bio-based solution based on chitosan, urea, and phytic acid, named bio-flame retardant liquid (BFL), through facile dip-coating technology. Deposition of BFL on the surface of the cotton was confirmed by Fourier-transform infrared spectroscopy and scanning electron microscope coupled with energy-dispersive X-ray spectrometer. Thermal and flame retardant properties of the cottons were studied with thermogravimetric analysis, differential scanning calorimetry, vertical flame test, cone calorimeter test. Only with 8.8% of dry weight gain treaded cotton showed self-extinguish properties during fire test. Cone calorimeter test revealed a reduction of peak heat release rate from 203.2 to 21 kW/m2 and total heat release from 20.1 to 2.8 MJ/m2. Incidentally, BFL remarkably improved the thermal stability of flame retardant cotton from expressed in an enhanced amount of char at 700 °C (6.7 vs. 33.5%). BFL initiates the formation of phosphorous and silica contain char layer whichrestrains the propagation of heat and oxygen to unburned materialstrengthen by the liberation of non-combustible gases, which reduce the concentration of flammable volatiles and oxygen hence reducing the flammability of cotton. In addition, hydrophobicity and specific ignition test for upholstery application were performed. In conjunction, the proposed flame retardant cotton is potentially translatable to be utilized as upholstery materials in public transport.Keywords: cotton farbic, flame retardancy, surface coating, intumescent mechanism
Procedia PDF Downloads 921976 Data Compression in Ultrasonic Network Communication via Sparse Signal Processing
Authors: Beata Zima, Octavio A. Márquez Reyes, Masoud Mohammadgholiha, Jochen Moll, Luca de Marchi
Abstract:
This document presents the approach of using compressed sensing in signal encoding and information transferring within a guided wave sensor network, comprised of specially designed frequency steerable acoustic transducers (FSATs). Wave propagation in a damaged plate was simulated using commercial FEM-based software COMSOL. Guided waves were excited by means of FSATs, characterized by the special shape of its electrodes, and modeled using PIC255 piezoelectric material. The special shape of the FSAT, allows for focusing wave energy in a certain direction, accordingly to the frequency components of its actuation signal, which makes available a larger monitored area. The process begins when a FSAT detects and records reflection from damage in the structure, this signal is then encoded and prepared for transmission, using a combined approach, based on Compressed Sensing Matching Pursuit and Quadrature Amplitude Modulation (QAM). After codification of the signal is in binary chars the information is transmitted between the nodes in the network. The message reaches the last node, where it is finally decoded and processed, to be used for damage detection and localization purposes. The main aim of the investigation is to determine the location of detected damage using reconstructed signals. The study demonstrates that the special steerable capabilities of FSATs, not only facilitate the detection of damage but also permit transmitting the damage information to a chosen area in a specific direction of the investigated structure.Keywords: data compression, ultrasonic communication, guided waves, FEM analysis
Procedia PDF Downloads 1241975 Development of a Smart System for Measuring Strain Levels of Natural Gas and Petroleum Pipelines on Earthquake Fault Lines in Turkiye
Authors: Ahmet Yetik, Seyit Ali Kara, Cevat Özarpa
Abstract:
Load changes occur on natural gas and oil pipelines due to natural disasters. The displacement of the soil around the natural gas and oil pipes due to situations that may cause erosion, such as earthquakes, landslides, and floods, is the source of this load change. The exposure of natural gas and oil pipes to variable loads causes deformation, cracks, and breaks in these pipes. Cracks and breaks on the pipes cause damage to people and the environment due to reasons such as explosions. Especially with the examinations made after natural disasters, it can be easily understood which of the pipes has more damage in the regions followed. It has been determined that the earthquakes in Turkey caused permanent damage to the pipelines. This project was designed and realized because it was determined that there were cracks and gas leaks in the insulation gaskets placed in the pipelines, especially at the junction points. In this study, A new SCADA (Supervisory Control and Data Acquisition) application has been developed to monitor load changes caused by natural disasters. The newly developed SCADA application monitors the changes in the x, y, and z axes of the stresses occurring in the pipes with the help of strain gauge sensors placed on the pipes. For the developed SCADA system, test setups in accordance with the standards were created during the fieldwork. The test setups created were integrated into the SCADA system, and the system was followed up. Thanks to the SCADA system developed with the field application, the load changes that will occur on the natural gas and oil pipes are instantly monitored, and the accumulations that may create a load on the pipes and their surroundings are immediately intervened, and new risks that may arise are prevented. It has contributed to energy supply security, asset management, pipeline holistic management, and sustainability.Keywords: earthquake, natural gas pipes, oil pipes, strain measurement, stress measurement, landslide
Procedia PDF Downloads 701974 Ethical Implications of Gaps in the Implementation Process of the Circular Economy: Special Focus on Underdeveloped Countries
Authors: Sujith Gunawardhana
Abstract:
The circular economy is a system in which resources and energy are derived from renewable sources, utilized efficiently, recycled, and reused to reduce waste, reduce nonrenewable resource consumption, and mitigate negative environmental impacts. However, it poses moral questions about sustainability, the environment, and societal issues. Many societies face challenges when implementing the circular economy, as the concept is still young. The equitable distribution of the advantages and costs of circularity should be ensured during implementation, as some communities, particularly disadvantaged or marginalized ones, may suffer unfairly disproportionately from the harmful effects of production and recycling facilities. Prioritizing the health and safety of workers, communities, and the environment is essential, and strict rules must be implemented to guard against harm. However, most underdeveloped countries need a legal safeguard for this situation. The ultimate objective of the circular economy is to improve social, environmental, and economic performance, but its implementation also requires consideration of the ethics of care and non-epistemic values. Those are often hindered in underdeveloped countries, as the availability of infrastructure and technology, affordability, and legislative framework are poor. To achieve long-term success in the circular economy, evaluating implementation steps and considering health, safety, environmental, and social risks is crucial. To implement the circular economy, respect ethics of care and non-epistemic values. Adopt Kantian Ethics and control technology design to ensure equal benefits for all involved. Ethical gaps may lead underdeveloped countries to generate social pressure against the circular economy.Keywords: circular economy, ethics, values, sustainability
Procedia PDF Downloads 1091973 Synthesis of Uio-66 Metal Organic Framework Impregnated Thin-Film Nanocomposite Membrane for the Desalination via Pressure Assisted Osmosis
Authors: Rajesha Kumar Alambi, Mansour Ahmed, Garudachari Bhadrachari, Safiyah Al-Muqahwi, Mansour Al-Rughaib, Jibu P. Thomas
Abstract:
Membrane-based pressure assisted osmosis (PAO) for seawater desalination has the potential to overcome the challenges of forward osmosis technology. PAO technology is gaining interest among the research community to ensure the sustainability of freshwater with a significant reduction in energy. The requirements of PAO membranes differ from the FO membrane; as it needs a slightly higher porous with sufficient mechanical strength to overcome the applied hydraulic pressure. The porous metal-organic framework (MOF) as a filler for the membrane synthesis has demonstrated a great potential to generate new channels for water transport, high selectivity, and reduced fouling propensity. Accordingly, this study is aimed at fabricating the UiO-66 MOF-based thin film nanocomposite membranes with specific characteristics for water desalination by PAO. A PAO test unit manufactured by Trevi System, USA, was used to determine the performance of the synthesized membranes. Further, the synthesized membranes were characterized in terms of morphological features, hydrophilicity, surface roughness, and mechanical properties. The 0.05 UiO-66 loaded membrane produced highest flux of 38L/m2h and with low reverse salt leakage of 2.1g/m²h for the DI water as feed solution and 2.0 M NaCl as draw solutions at the inlet feed pressure of 0.6 MPa. The new membranes showed a good tolerance toward the applied hydraulic pressure attributed to the fabric support used during the membrane synthesis.Keywords: metal organic framework, composite membrane, desalination, salt rejection, flux
Procedia PDF Downloads 1351972 Correlation Between Diastolic Function and Lower GLS in Hypertensive Patients
Authors: A. Kherraf, S. Ouarrak, L. Azzouzi, R. Habbal
Abstract:
Introduction: Preserved LVEF heart failure is an important cause of mortality and morbidity in hypertensive patients. A strong correlation between impaired diastolic function and longitudinal systolic dysfunction. could have several explanations, first, the diastole is an energy dependent process, especially during its first phase, it also includes active systolic components during the phase of iso volumetric relaxation, in addition, the impairment of the intrinsic myocytic function is part of hypertensive pathology as evidenced by recent studies. METHODS AND MATERIALS: This work consists of performing in a series of 333 hypertensive patients (aged 25 to 75 years) a complete echocardiographic study, including LVEF by Simpson biplane method, the calculation of the indexed left ventricular mass, the analysis of the diastolic function, and finally, the study of the longitudinal deformation of the LV by the technique of speckletracking (calculation of the GLS). Patients with secondary hypertension, leaky or stenosing valve disease, arrhythmia, and a history of coronary insufficiency were excluded from this study. RESULTS: Of the 333 hypertensive patients, 225 patients (67.5%) had impaired diastolic function, of which 60 patients (18%) had high filling pressures. 49.39% had echocardigraphic HVG, Almost all of these patients (60 patients) had low GLS. There is a statistically very significant relationship between lower GLS and increased left ventricular filling pressures in hypertensive patients. These results suggest that increased filling pressures are closely associated with atrioventricular interaction in patients with hypertension, with a strong correlation with impairment of longitudinal systolic function and diastolic function CONCLUSION: Overall, a linear relationship is established between increased left ventricular mass, diastolic dysfunction, and longitudinal LV systolic dysfunctionKeywords: hypertension, diastolic function, left ventricle, heart failure
Procedia PDF Downloads 1261971 Evaluation of Goji By-Product as a Value-Added Ingredient for the Functional Food Industry
Authors: Sanaa Ragaee, Paragyani Bora, Wee Teng Tan, Xin Hu
Abstract:
Goji berry (Lycium barbarum) is a member of the family Solanaceae which is grown widely in China, Tibet, and other parts of Asia. Its fruits are 1–2 cm-long, bright orange-red ellipsoid berries and it has a long tradition as a food and medicinal plant. Goji berries are believed to boost immune system properties. The berries are considered an excellent source of macronutrients, micronutrients, vitamins, minerals and several bioactive components. Studies have shown effects of goji fruit on aging, neuroprotection, general well-being, fatigue/endurance, metabolism/energy expenditure, glucose control in diabetics and glaucoma, antioxidant properties, immunomodulation and anti-tumor activity. Goji berries are being used to prepare Goji beverage, and the remaining solid material is considered as by-product. The by-product is currently unused and disposed as waste despite its potential as a value-added food ingredient. Therefore, this study is intended to evaluate nutritional properties of Goji by-product and its potential applications in the baking industry. The Goji by-product was freeze dried and ground to pass through 1 mm screen prior to evaluation and food use. The Goji by-product was found to be a rich source of fiber (54%) and free phenolic components (1,307 µg/g), protein (13.6%), ash (3.3%) and fat (10%). Incorporation of the Goji by-product in muffins and cookies at various levels (10-40%) significantly improved the nutritional quality of the baked products. The baked products were generally accepted and highly rated by panelists at 20% replacement level. The results indicate the potential of Goji by-product as a value-added ingredient in particular as a source of dietary fiber and protein.Keywords: Goji, by-product, phenolics, fibers, baked products
Procedia PDF Downloads 3021970 Deformation Characteristics of Fire Damaged and Rehabilitated Normal Strength Concrete Beams
Authors: Yeo Kyeong Lee, Hae Won Min, Ji Yeon Kang, Hee Sun Kim, Yeong Soo Shin
Abstract:
Fire incidents have been steadily increased over the last year according to national emergency management agency of South Korea. Even though most of the fire incidents with property damage have been occurred in building, rehabilitation has not been properly done with consideration of structure safety. Therefore, this study aims at evaluating rehabilitation effects on fire damaged normal strength concrete beams through experiments and finite element analyses. For the experiments, reinforced concrete beams were fabricated having designed concrete strength of 21 MPa. Two different cover thicknesses were used as 40 mm and 50 mm. After cured, the fabricated beams were heated for 1hour or 2hours according to ISO-834 standard time-temperature curve. Rehabilitation was done by removing the damaged part of cover thickness and filling polymeric mortar into the removed part. Both fire damaged beams and rehabilitated beams were tested with four point loading system to observe structural behaviors and the rehabilitation effect. To verify the experiment, finite element (FE) models for structural analysis were generated using commercial software ABAQUS 6.10-3. For the rehabilitated beam models, integrated temperature-structural analyses were performed in advance to obtain geometries of the fire damaged beams. In addition to the fire damaged beam models, rehabilitated part was added with material properties of polymeric mortar. Three dimensional continuum brick elements were used for both temperature and structural analyses. The same loading and boundary conditions as experiments were implemented to the rehabilitated beam models and non-linear geometrical analyses were performed. Test results showed that maximum loads of the rehabilitated beams were 8~10% higher than those of the non-rehabilitated beams and even 1~6 % higher than those of the non-fire damaged beam. Stiffness of the rehabilitated beams were also larger than that of non-rehabilitated beams but smaller than that of the non-fire damaged beams. In addition, predicted structural behaviors from the analyses also showed good rehabilitation effect and the predicted load-deflection curves were similar to the experimental results. From this study, both experiments and analytical results demonstrated good rehabilitation effect on the fire damaged normal strength concrete beams. For the further, the proposed analytical method can be used to predict structural behaviors of rehabilitated and fire damaged concrete beams accurately without suffering from time and cost consuming experimental process.Keywords: fire, normal strength concrete, rehabilitation, reinforced concrete beam
Procedia PDF Downloads 5081969 Data Collection in Protected Agriculture for Subsequent Big Data Analysis: Methodological Evaluation in Venezuela
Authors: Maria Antonieta Erna Castillo Holly
Abstract:
During the last decade, data analysis, strategic decision making, and the use of artificial intelligence (AI) tools in Latin American agriculture have been a challenge. In some countries, the availability, quality, and reliability of historical data, in addition to the current data recording methodology in the field, makes it difficult to use information systems, complete data analysis, and their support for making the right strategic decisions. This is something essential in Agriculture 4.0. where the increase in the global demand for fresh agricultural products of tropical origin, during all the seasons of the year requires a change in the production model and greater agility in the responses to the consumer market demands of quality, quantity, traceability, and sustainability –that means extensive data-. Having quality information available and updated in real-time on what, how much, how, when, where, at what cost, and the compliance with production quality standards represents the greatest challenge for sustainable and profitable agriculture in the region. The objective of this work is to present a methodological proposal for the collection of georeferenced data from the protected agriculture sector, specifically in production units (UP) with tall structures (Greenhouses), initially for Venezuela, taking the state of Mérida as the geographical framework, and horticultural products as target crops. The document presents some background information and explains the methodology and tools used in the 3 phases of the work: diagnosis, data collection, and analysis. As a result, an evaluation of the process is carried out, relevant data and dashboards are displayed, and the first satellite maps integrated with layers of information in a geographic information system are presented. Finally, some improvement proposals and tentatively recommended applications are added to the process, understanding that their objective is to provide better qualified and traceable georeferenced data for subsequent analysis of the information and more agile and accurate strategic decision making. One of the main points of this study is the lack of quality data treatment in the Latin America area and especially in the Caribbean basin, being one of the most important points how to manage the lack of complete official data. The methodology has been tested with horticultural products, but it can be extended to other tropical crops.Keywords: greenhouses, protected agriculture, data analysis, geographic information systems, Venezuela
Procedia PDF Downloads 1311968 Synthesis and Characterization of Pure and Doped Li7La3Zr2O12 Li-Ion Conducting Solid Electrolyte for Lithium Batteries
Authors: Shari Ann S. Botin, Ruziel Larmae T. Gimpaya, Rembrant Rockwell Gamboa, Rinlee Butch M. Cervera
Abstract:
In recent years, demand for the use of solid electrolytes as alternatives to liquid electrolytes has increased due to recurring battery safety and stability issues, in addition to an increase in energy density requirement which can be made possible by using solid electrolytes. Among the solid electrolyte systems, Li7La3Zr2O12 (LLZ) is one of the most promising as it exhibits good chemical stability against Li metal and has a relatively high ionic conductivity. In this study, pure and doped LLZ were synthesized via conventional solid state reaction. The precursor chemicals (such as LiOH, La2O3, Ga2O3 and ZrO2) were ground and then calcined at 900 °C, pressed into pellets and finally sintered at 1000 °C to 1200 °C. The microstructure and ionic conductivity of the obtained samples have been investigated. Results show that for pure LLZ, sintering at lower temperature (1000 °C) produced tetragonal LLZ while sintering at higher temperatures (≥ 1150 °C) produced cubic LLZ based from the XRD results. However, doping with Ga produces an easier formation of LLZ with cubic structure at lower sintering duration. On the other hand, the lithium conductivity of the samples was investigated using electrochemical impedance spectroscopy at room temperature. Among the obtained samples, Ga-doped LLZ sintered at 1150 °C obtained the highest ionic conductivity reaching to about 1x10⁻⁴ S/cm at room temperature. In addition, fabrication and initial investigation of an all-solid state Lithium Battery using the synthesized LLZ sample with the use of commercial cathode materials have been investigated.Keywords: doped LLZ, lithium-ion battery, pure LLZ, solid electrolytes
Procedia PDF Downloads 2631967 Development of Coir Reinforced Composite for Automotive Parts Application
Authors: Okpala Charles Chikwendu, Ezeanyim Okechukwu Chiedu, Onukwuli Somto Kenneth
Abstract:
The demand for lightweight and fuel-efficient automobiles has led to the use of fiber-reinforced polymer composites in place of traditional metal parts. Coir, a natural fiber, offers qualities such as low cost, good tensile strength, and biodegradability, making it a potential filler material for automotive components. However, poor interfacial adhesion between coir and polymeric matrices has been a challenge. To address poor interfacial adhesion with polymeric matrices due to their moisture content and method of preparation, the extracted coir was chemically treated using NaOH. To develop a side view mirror encasement by investigating the mechanical effect of fiber percentage composition, fiber length and percentage composition of Epoxy in a coir fiber reinforced composite, polyester was adopted as the resin for the mold, while that of the product is Epoxy. Coir served as the filler material for the product. Specimens with varied compositions of fiber loading (15, 30 and 45) %, length (10, 15, 20, 30 and 45) mm, and (55, 70, 85) % weight of epoxy resin were fabricated using hand lay-up technique, while those specimens were later subjected to mechanical tests (Tensile, Flexural and Impact test). The results of the mechanical test showed that the optimal solution for the input factors is coir at 45%, epoxy at 54.543%, and 45mm coir length, which was used for the development of a vehicle’s side view mirror encasement. The optimal solutions for the response parameters are 49.333 Mpa for tensile strength, flexural for 57.118 Mpa, impact strength for 34.787 KJ/M2, young modulus for 4.788 GPa, stress for 4.534 KN, and 20.483 mm for strain. The models that were developed using Design Expert software revealed that the input factors can achieve the response parameters in the system with 94% desirability. The study showed that coir is quite durable for filler material in an epoxy composite for automobile applications and that fiber loading and length have a significant effect on the mechanical behavior of coir fiber-reinforced epoxy composites. The coir's low density, considerable tensile strength, and bio-degradability contribute to its eco-friendliness and potential for reducing the environmental hazards of synthetic automotive components.Keywords: coir, composite, coir fiber, coconut husk, polymer, automobile, mechanical test
Procedia PDF Downloads 641966 Integrated Two Stage Processing of Biomass Conversion to Hydroxymethylfurfural Esters Using Ionic Liquid as Green Solvent and Catalyst: Synthesis of Mono Esters
Authors: Komal Kumar, Sreedevi Upadhyayula
Abstract:
In this study, a two-stage process was established for the synthesis of HMF esters using ionic liquid acid catalyst. Ionic liquid catalyst with different strength of the Bronsted acidity was prepared in the laboratory and characterized using 1H NMR, FT-IR, and 13C NMR spectroscopy. Solid acid catalyst from the ionic liquid catalyst was prepared using the immobilization method. The acidity of the synthesized acid catalyst was measured using Hammett function and titration method. Catalytic performance was evaluated for the biomass conversion to 5-hydroxymethylfurfural (5-HMF) and levulinic acid (LA) in methyl isobutyl ketone (MIBK)-water biphasic system. A good yield of 5-HMF and LA was found at the different composition of MIBK: Water. In the case of MIBK: Water ratio 10:1, good yield of 5-HMF was observed at ambient temperature 150˚C. Upgrading of 5-HMF into monoesters from the reaction of 5-HMF and reactants using biomass-derived monoacid were performed. Ionic liquid catalyst with -SO₃H functional group was found to be best efficient in comparative of a solid acid catalyst for the esterification reaction and biomass conversion. A good yield of 5-HMF esters with high 5-HMF conversion was found to be at 105˚C using the best active catalyst. In this process, process A was the hydrothermal conversion of cellulose and monomer into 5-HMF and LA using acid catalyst. And the process B was the esterification followed by using similar acid catalyst. All monoesters of 5-HMF synthesized here can be used in chemical, cross linker for adhesive or coatings and pharmaceutical industry. A theoretical density functional theory (DFT) study for the optimization of the ionic liquid structure was performed using the Gaussian 09 program to find out the minimum energy configuration of ionic liquid catalyst.Keywords: biomass conversion, 5-HMF, Ionic liquid, HMF ester
Procedia PDF Downloads 2511965 Farmers’ Perception, Willingness and Capacity in Utilization of Household Sewage Sludge as Organic Resources for Peri-Urban Agriculture around Jos Nigeria
Authors: C. C. Alamanjo, A. O. Adepoju, H. Martin, R. N. Baines
Abstract:
Peri-urban agriculture in Jos Nigeria serves as a major means of livelihood for both urban and peri-urban poor, and constitutes huge commercial inclination with a target market that has spanned beyond Plateau State. Yet, the sustainability of this sector is threatened by intensive application of urban refuse ash contaminated with heavy metals, as a result of the highly heterogeneous materials used in ash production. Hence, this research aimed to understand the current fertilizer employed by farmers, their perception and acceptability in utilization of household sewage sludge for agricultural purposes and their capacity in mitigating risks associated with such practice. Mixed methods approach was adopted, and data collection tools used include survey questionnaire, focus group discussion with farmers, participants and field observation. The study identified that farmers maintain a complex mixture of organic and chemical fertilizers, with mixture composition that is dependent on fertilizer availability and affordability. Also, farmers have decreased the rate of utilization of urban refuse ash due to labor and increased logistic cost and are keen to utilize household sewage sludge for soil fertility improvement but are mainly constrained by accessibility of this waste product. Nevertheless, farmers near to sewage disposal points have commenced utilization of household sewage sludge for improving soil fertility. Farmers were knowledgeable on composting but find their strategic method of dewatering and sun drying more convenient. Irrigation farmers were not enthusiastic for treatment, as they desired both water and sludge. Secondly, household sewage sludge observed in the field is heterogeneous due to nearness between its disposal point and that of urban refuse, which raises concern for possible cross-contamination of pollutants and also portrays lack of extension guidance as regards to treatment and management of household sewage sludge for agricultural purposes. Hence, farmers concerns need to be addressed, particularly in providing extension advice and establishment of decentralized household sewage sludge collection centers, for continuous availability of liquid and concentrated sludge. Urgent need is also required for the Federal Government of Nigeria to increase commitment towards empowering her subsidiaries for efficient discharge of corporate responsibilities.Keywords: ash, farmers, household, peri-urban, refuse, sewage, sludge, urban
Procedia PDF Downloads 1351964 Planktivorous Fish Schooling Responses to Current at Natural and Artificial Reefs
Authors: Matthew Holland, Jason Everett, Martin Cox, Iain Suthers
Abstract:
High spatial-resolution distribution of planktivorous reef fish can reveal behavioural adaptations to optimise the balance between feeding success and predator avoidance. We used a multi-beam echosounder to record bathymetry and the three-dimensional distribution of fish schools associated with natural and artificial reefs. We utilised generalised linear models to assess the distribution, orientation, and aggregation of fish schools relative to the structure, vertical relief, and currents. At artificial reefs, fish schooled more closely to the structure and demonstrated a preference for the windward side, particularly when exposed to strong currents. Similarly, at natural reefs fish demonstrated a preference for windward aspects of bathymetry, particularly when associated with high vertical relief. Our findings suggest that under conditions with stronger current velocity, fish can exercise their preference to remain close to structure for predator avoidance, while still receiving an adequate supply of zooplankton delivered by the current. Similarly, when current velocity is low, fish tend to disperse for better access to zooplankton. As artificial reefs are generally deployed with the goal of creating productivity rather than simply attracting fish from elsewhere, we advise that future artificial reefs be designed as semi-linear arrays perpendicular to the prevailing current, with multiple tall towers. This will facilitate the conversion of dispersed zooplankton into energy for higher trophic levels, enhancing reef productivity and fisheries.Keywords: artificial reef, current, forage fish, multi-beam, planktivorous fish, reef fish, schooling
Procedia PDF Downloads 1581963 The Influence of Caregivers’ Preparedness and Role Burden on Quality of Life among Stroke Patients
Authors: Yeaji Seok, Myung Kyung Lee
Abstract:
Background: Even if patients survive after a stroke, stroke patients may experience disability in mobility, sensation, cognition, and speech and language. Stroke patients require rehabilitation for functional recovery and daily life for a considerable time. During rehabilitation, the role of caregivers is important. However, the stroke patients’ quality of life may deteriorate due to family caregivers’ non-preparedness and increased role burden. Purpose: To investigate the prediction of caregivers' preparedness and role burden on stroke patients’ quality of life. Methods: The target population was stroke patients who were hospitalized for rehabilitation and their family care providers. A total of 153 patient-family caregiver dyads were recruited from June to August 2021. Data were collected from self-reported questionnaires and analyzed using descriptive statistics, t-tests, chi-squared test, one-way analysis of variance, Pearson’s correlation coefficients, and multiple regression with SPSS statistics 28 programs. Results: Family caregivers’ preparedness affected stroke patients’ mobility (β = .20, p < 0.05) and character (β = -.084, p < 0.05) and production activities (β = -.197, p < 0.05) in quality of life. The role burden of family caregivers affected language skills (β = .310, p<0.05), visual functions (β=-.357, p < 0.05), thinking skills (β = 0.443, p = 0.05), mood conditions (β = 0.565, p < 0.001), family roles (β = -0.361, p < 0.001), and social roles (β = -0.304, p < 0.001), while the caregivers’ burden of performing self-protection negatively affected patients’ social roles (β = .180, p=.048). In addition, caregivers’ role burden of personal life sacrifice affected patients’ mobility (β = .311, p < 0.05), self-care (β =.232, p < 0.05) and energy (β = .239, p < 0.05). Conclusion: This study indicated that family caregivers' preparedness and role burden affected stroke patients’ quality of life. The results of this study suggested that intervention to improve family caregivers’ preparedness and to reduce role burden should be required for quality of life in stroke patients.Keywords: quality of life, preparedness, role burden, caregivers, stroke
Procedia PDF Downloads 2101962 Study of Ladle Furnace Slag as Mineral Filler in Asphalt Concrete with Electric Arc Furnace Slag
Authors: W. J. Wang, D. F. Lin, L. Y. Chen, K. Y. Liu
Abstract:
In this study, the ladle furnace slag was used as a mineral filler in asphalt concrete with electric arc furnace slag (EAF asphalt concrete) to investigate the effect on the engineering and thermal properties of asphalt cement mastics and EAF asphalt concrete, the lime was used as a comparison for mineral filler, and the usage percentage of mineral filler was set at 2%, 4%, 6%, and 8%. First of all, the engineering properties of the ladle furnace slag and lime were compared, and then the mineral filler was mixed with bitumen to form the asphalt cement mastics in order to analyze the influence of the ladle furnace slag on the properties of asphalt cement mastics, and lastly, the mineral filler was used in the EAF asphalt concrete to analyze its feasibility of using ladle furnace slag as a mineral filler. The study result shows that the ladle furnace slag and the lime have no obvious difference in their physical properties, and from the energy dispersive spectrometer (EDS) test results, we know that the lime and the ladle furnace slag have similar elemental composition, but the Ca found in the ladle furnace slag belongs to CaO, and the lime belongs to CaCO3, therefore the ladle furnace slag has the property of expansion. According to the test results, the viscosity of asphalt cement mastics will increase with the increase in the use of mineral filler. Since the ladle furnace slag has more CaO content, the viscosity of the asphalt cement mastics with ladle furnace slag will increase more than using lime as mineral filler in the asphalt cement mastics, and the use of ladle furnace slag only needs to be 2% in order to achieve the effect of anti-peeling which is 6% for lime. From the related test results of EAF asphalt concrete, it is known that the maximum stability value can be obtained when the use of mineral filler is about 5%. When the ladle furnace slag is used as the mineral filler, it can improve the stiffness, indirect tension strength, spalling resistance, and thermal insulation of EAF asphalt concrete, which also indicates that using the ladle furnace slag as the mineral filler of bitumen can help to improve the durability of the asphalt pavement.Keywords: ladle furnace slag, mineral filler, asphalt cement mastics, EAF asphalt concrete
Procedia PDF Downloads 851961 Using Optimal Cultivation Strategies for Enhanced Biomass and Lipid Production of an Indigenous Thraustochytrium sp. BM2
Authors: Hsin-Yueh Chang, Pin-Chen Liao, Jo-Shu Chang, Chun-Yen Chen
Abstract:
Biofuel has drawn much attention as a potential substitute to fossil fuels. However, biodiesel from waste oil, oil crops or other oil sources can only satisfy partial existing demands for transportation. Due to the feature of being clean, green and viable for mass production, using microalgae as a feedstock for biodiesel is regarded as a possible solution for a low-carbon and sustainable society. In particular, Thraustochytrium sp. BM2, an indigenous heterotrophic microalga, possesses the potential for metabolizing glycerol to produce lipids. Hence, it is being considered as a promising microalgae-based oil source for biodiesel production and other applications. This study was to optimize the culture pH, scale up, assess the feasibility of producing microalgal lipid from crude glycerol and apply operation strategies following optimal results from shake flask system in a 5L stirred-tank fermenter for further enhancing lipid productivities. Cultivation of Thraustochytrium sp. BM2 without pH control resulted in the highest lipid production of 3944 mg/L and biomass production of 4.85 g/L. Next, when initial glycerol and corn steep liquor (CSL) concentration increased five times (50 g and 62.5 g, respectively), the overall lipid productivity could reach 124 mg/L/h. However, when using crude glycerol as a sole carbon source, direct addition of crude glycerol could inhibit culture growth. Therefore, acid and metal salt pretreatment methods were utilized to purify the crude glycerol. Crude glycerol pretreated with acid and CaCl₂ had the greatest overall lipid productivity 131 mg/L/h when used as a carbon source and proved to be a better substitute for pure glycerol as carbon source in Thraustochytrium sp. BM2 cultivation medium. Engineering operation strategies such as fed-batch and semi-batch operation were applied in the cultivation of Thraustochytrium sp. BM2 for the improvement of lipid production. In cultivation of fed-batch operation strategy, harvested biomass 132.60 g and lipid 69.15 g were obtained. Also, lipid yield 0.20 g/g glycerol was same as in batch cultivation, although with poor overall lipid productivity 107 mg/L/h. In cultivation of semi-batch operation strategy, overall lipid productivity could reach 158 mg/L/h due to the shorter cultivation time. Harvested biomass and lipid achieved 232.62 g and 126.61 g respectively. Lipid yield was improved from 0.20 to 0.24 g/g glycerol. Besides, product costs of three kinds of operation strategies were also calculated. The lowest product cost 12.42 $NTD/g lipid was obtained while employing semi-batch operation strategy and reduced 33% in comparison with batch operation strategy.Keywords: heterotrophic microalga Thrasutochytrium sp. BM2, microalgal lipid, crude glycerol, fermentation strategy, biodiesel
Procedia PDF Downloads 1481960 Flood Mapping Using Height above the Nearest Drainage Model: A Case Study in Fredericton, NB, Canada
Authors: Morteza Esfandiari, Shabnam Jabari, Heather MacGrath, David Coleman
Abstract:
Flood is a severe issue in different places in the world as well as the city of Fredericton, New Brunswick, Canada. The downtown area of Fredericton is close to the Saint John River, which is susceptible to flood around May every year. Recently, the frequency of flooding seems to be increased, especially after the fact that the downtown area and surrounding urban/agricultural lands got flooded in two consecutive years in 2018 and 2019. In order to have an explicit vision of flood span and damage to affected areas, it is necessary to use either flood inundation modelling or satellite data. Due to contingent availability and weather dependency of optical satellites, and limited existing data for the high cost of hydrodynamic models, it is not always feasible to rely on these sources of data to generate quality flood maps after or during the catastrophe. Height Above the Nearest Drainage (HAND), a state-of-the-art topo-hydrological index, normalizes the height of a basin based on the relative elevation along with the stream network and specifies the gravitational or the relative drainage potential of an area. HAND is a relative height difference between the stream network and each cell on a Digital Terrain Model (DTM). The stream layer is provided through a multi-step, time-consuming process which does not always result in an optimal representation of the river centerline depending on the topographic complexity of that region. HAND is used in numerous case studies with quite acceptable and sometimes unexpected results because of natural and human-made features on the surface of the earth. Some of these features might cause a disturbance in the generated model, and consequently, the model might not be able to predict the flow simulation accurately. We propose to include a previously existing stream layer generated by the province of New Brunswick and benefit from culvert maps to improve the water flow simulation and accordingly the accuracy of HAND model. By considering these parameters in our processing, we were able to increase the accuracy of the model from nearly 74% to almost 92%. The improved model can be used for generating highly accurate flood maps, which is necessary for future urban planning and flood damage estimation without any need for satellite imagery or hydrodynamic computations.Keywords: HAND, DTM, rapid floodplain, simplified conceptual models
Procedia PDF Downloads 1511959 Combustion Improvements by C4/C5 Bio-Alcohol Isomer Blended Fuels Combined with Supercharging and EGR in a Diesel Engine
Authors: Yasufumi Yoshimoto, Enkhjargal Tserenochir, Eiji Kinoshita, Takeshi Otaka
Abstract:
Next generation bio-alcohols produced from non-food based sources like cellulosic biomass are promising renewable energy sources. The present study investigates engine performance, combustion characteristics, and emissions of a small single cylinder direct injection diesel engine fueled by four kinds of next generation bio-alcohol isomer and diesel fuel blends with a constant blending ratio of 3:7 (mass). The tested bio-alcohol isomers here are n-butanol and iso-butanol (C4 alcohol), and n-pentanol and iso-pentanol (C5 alcohol). To obtain simultaneous reductions in NOx and smoke emissions, the experiments employed supercharging combined with EGR (Exhaust Gas Recirculation). The boost pressures were fixed at two conditions, 100 kPa (naturally aspirated operation) and 120 kPa (supercharged operation) provided with a roots blower type supercharger. The EGR rates were varied from 0 to 25% using a cooled EGR technique. The results showed that both with and without supercharging, all the bio-alcohol blended diesel fuels improved the trade-off relation between NOx and smoke emissions at all EGR rates while maintaining good engine performance, when compared with diesel fuel operation. It was also found that regardless of boost pressure and EGR rate, the ignition delays of the tested bio-alcohol isomer blends are in the order of iso-butanol > n-butanol > iso-pentanol > n-pentanol. Overall, it was concluded that, except for the changes in the ignition delays the influence of bio-alcohol isomer blends on the engine performance, combustion characteristics, and emissions are relatively small.Keywords: alternative fuel, butanol, diesel engine, EGR (Exhaust Gas Recirculation), next generation bio-alcohol isomer blended fuel, pentanol, supercharging
Procedia PDF Downloads 1691958 Carbon Based Wearable Patch Devices for Real-Time Electrocardiography Monitoring
Authors: Hachul Jung, Ahee Kim, Sanghoon Lee, Dahye Kwon, Songwoo Yoon, Jinhee Moon
Abstract:
We fabricated a wearable patch device including novel patch type flexible dry electrode based on carbon nanofibers (CNFs) and silicone-based elastomer (MED 6215) for real-time ECG monitoring. There are many methods to make flexible conductive polymer by mixing metal or carbon-based nanoparticles. In this study, CNFs are selected for conductive nanoparticles because carbon nanotubes (CNTs) are difficult to disperse uniformly in elastomer compare with CNFs and silver nanowires are relatively high cost and easily oxidized in the air. Wearable patch is composed of 2 parts that dry electrode parts for recording bio signal and sticky patch parts for mounting on the skin. Dry electrode parts were made by vortexer and baking in prepared mold. To optimize electrical performance and diffusion degree of uniformity, we developed unique mixing and baking process. Secondly, sticky patch parts were made by patterning and detaching from smooth surface substrate after spin-coating soft skin adhesive. In this process, attachable and detachable strengths of sticky patch are measured and optimized for them, using a monitoring system. Assembled patch is flexible, stretchable, easily skin mountable and connectable directly with the system. To evaluate the performance of electrical characteristics and ECG (Electrocardiography) recording, wearable patch was tested by changing concentrations of CNFs and thickness of the dry electrode. In these results, the CNF concentration and thickness of dry electrodes were important variables to obtain high-quality ECG signals without incidental distractions. Cytotoxicity test is conducted to prove biocompatibility, and long-term wearing test showed no skin reactions such as itching or erythema. To minimize noises from motion artifacts and line noise, we make the customized wireless, light-weight data acquisition system. Measured ECG Signals from this system are stable and successfully monitored simultaneously. To sum up, we could fully utilize fabricated wearable patch devices for real-time ECG monitoring easily.Keywords: carbon nanofibers, ECG monitoring, flexible dry electrode, wearable patch
Procedia PDF Downloads 1851957 Earthquake Resistant Sustainable Steel Green Building
Authors: Arup Saha Chaudhuri
Abstract:
Structural steel is a very ductile material with high strength carrying capacity, thus it is very useful to make earthquake resistant buildings. It is a homogeneous material also. The member section and the structural system can be made very efficient for economical design. As the steel is recyclable and reused, it is a green material. The embodied energy for the efficiently designed steel structure is less than the RC structure. For sustainable green building steel is the best material nowadays. Moreover, pre-engineered and pre-fabricated faster construction methodologies help the development work to complete within the stipulated time. In this paper, the usefulness of Eccentric Bracing Frame (EBF) in steel structure over Moment Resisting Frame (MRF) and Concentric Bracing Frame (CBF) is shown. Stability of the steel structures against horizontal forces especially in seismic condition is efficiently possible by Eccentric bracing systems with economic connection details. The EBF is pin–ended, but the beam-column joints are designed for pin ended or for full connectivity. The EBF has several desirable features for seismic resistance. In comparison with CBF system, EBF system can be designed for appropriate stiffness and drift control. The link beam is supposed to yield in shear or flexure before initiation of yielding or buckling of the bracing member in tension or compression. The behavior of a 2-D steel frame is observed under seismic loading condition in the present paper. Ductility and brittleness of the frames are compared with respect to time period of vibration and dynamic base shear. It is observed that the EBF system is better than MRF system comparing the time period of vibration and base shear participation.Keywords: steel building, green and sustainable, earthquake resistant, EBF system
Procedia PDF Downloads 3491956 Preparation and CO2 Permeation Properties of Carbonate-Ceramic Dual-Phase Membranes
Authors: H. Ishii, S. Araki, H. Yamamoto
Abstract:
In recent years, the carbon dioxide (CO2) separation technology is required in terms of the reduction of emission of global warming gases and the efficient use of fossil fuels. Since the emission amount of CO2 gas occupies the large part of greenhouse effect gases, it is considered that CO2 have the most influence on global warming. Therefore, we need to establish the CO2 separation technologies with high efficiency at low cost. In this study, we focused on the membrane separation compared with conventional separation technique such as distillation or cryogenic separation. In this study, we prepared carbonate-ceramic dual-phase membranes to separate CO2 at high temperature. As porous ceramic substrate, the (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+σ, La0.6Sr0.4Ti0.3 Fe0.7O3 and Ca0.8Sr0.2Ti0.7Fe0.3O3-α (PLNCG, LSTF and CSTF) were examined. PLNCG, LSTF and CSTF have the perovskite structure. The perovskite structure has high stability and shows ion-conducting doped by another metal ion. PLNCG, LSTF and CSTF have perovskite structure and has high stability and high oxygen ion diffusivity. PLNCG, LSTF and CSTF powders were prepared by a solid-phase process using the appropriate carbonates or oxides. To prepare porous substrates, these powders mixed with carbon black (20 wt%) and a few drops of polyvinyl alcohol (5 wt%) aqueous solution. The powder mixture were packed into stainless steel mold (13 mm) and uniaxially pressed into disk shape under a pressure of 20 MPa for 1 minute. PLNCG, LSTF and CSTF disks were calcined in air for 6 h at 1473, 1573 and 1473 K, respectively. The carbonate mixture (Li2CO3/Na2CO3/K2CO3: 42.5/32.5/25 in mole percent ratio) was placed inside a crucible and heated to 793 K. Porous substrates were infiltrated with the molten carbonate mixture at 793 K. Crystalline structures of the fresh membranes and after the infiltration with the molten carbonate mixtures were determined by X-ray diffraction (XRD) measurement. We confirmed the crystal structure of PLNCG and CSTF slightly changed after infiltration with the molten carbonate mixture. CO2 permeation experiments with PLNCG-carbonate, LSTF-carbonate and CSTF-carbonate membranes were carried out at 773-1173 K. The gas mixture of CO2 (20 mol%) and He was introduced at the flow rate of 50 ml/min to one side of membrane. The permeated CO2 was swept by N2 (50 ml/min). We confirmed the effect of ceramic materials and temperature on the CO2 permeation at high temperature.Keywords: membrane, perovskite structure, dual-phase, carbonate
Procedia PDF Downloads 3671955 Short-Term Forecast of Wind Turbine Production with Machine Learning Methods: Direct Approach and Indirect Approach
Authors: Mamadou Dione, Eric Matzner-lober, Philippe Alexandre
Abstract:
The Energy Transition Act defined by the French State has precise implications on Renewable Energies, in particular on its remuneration mechanism. Until then, a purchase obligation contract permitted the sale of wind-generated electricity at a fixed rate. Tomorrow, it will be necessary to sell this electricity on the Market (at variable rates) before obtaining additional compensation intended to reduce the risk. This sale on the market requires to announce in advance (about 48 hours before) the production that will be delivered on the network, so to be able to predict (in the short term) this production. The fundamental problem remains the variability of the Wind accentuated by the geographical situation. The objective of the project is to provide, every day, short-term forecasts (48-hour horizon) of wind production using weather data. The predictions of the GFS model and those of the ECMWF model are used as explanatory variables. The variable to be predicted is the production of a wind farm. We do two approaches: a direct approach that predicts wind generation directly from weather data, and an integrated approach that estimâtes wind from weather data and converts it into wind power by power curves. We used machine learning techniques to predict this production. The models tested are random forests, CART + Bagging, CART + Boosting, SVM (Support Vector Machine). The application is made on a wind farm of 22MW (11 wind turbines) of the Compagnie du Vent (that became Engie Green France). Our results are very conclusive compared to the literature.Keywords: forecast aggregation, machine learning, spatio-temporal dynamics modeling, wind power forcast
Procedia PDF Downloads 217