Search results for: wind turbine placing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1688

Search results for: wind turbine placing

608 Effect of Dust on Performances of Single Crystal Photovoltaic Solar Module

Authors: A. Benatiallah, D. Benatiallah, A. Harrouz, F. Abaidi, S. Mansouri

Abstract:

Photovoltaic system is established as a reliable and economical source of electricity in rural and Sahara areas, especially in developing countries where the population is dispersed, has low consumption of energy and the grid power is not extended to these areas due to viability and financial problems. The production of energy by the photovoltaic system fluctuates and depend on meteorological conditions. Wind is a very important and often neglected parameter in the behavior of the solar module. The electric performances of a solar module to the silicon are very appreciable to the blows; in the present work, we have studied the behavior of multi-crystal solar module according to the density of dust, and the principals electric feature of the solar module. An evaluation permits to affirm that a solar module under the effect of sand will collect a lower flux to the normal conditions.

Keywords: solar modulen pv, dust effect, experimental, performances

Procedia PDF Downloads 483
607 Study of Magnetic Properties on the Corrosion Behavior and Influence of Temperature in Permanent Magnet (Nd-Fe-B) Used in PMSM

Authors: N. Yogal, C. Lehrmann

Abstract:

The use of Permanent magnet (PM) is increasing in the Permanent magnet synchronous machines (PMSM) to fulfill the requirement of high efficiency machines in modern industry. PMSM is widely used in industrial application, wind power plant and automotive industry. Since the PMSM are used in different environment condition, the long-term effect of NdFeB-based magnets at high temperatures and corrosion behavior has to be studied due to irreversible loss of magnetic properties. In this paper, the effect of magnetic properties due to corrosion and increasing temperature in the climatic chamber has been presented. The magnetic moment and magnetic field of the magnet were studied experimentally.

Keywords: permanent magnet (PM), NdFeB, corrosion behavior, temperature effect, Permanent magnet synchronous machine (PMSM)

Procedia PDF Downloads 383
606 Strategic Shear Wall Arrangement in Buildings under Seismic Loads

Authors: Akram Khelaifia, Salah Guettala, Nesreddine Djafar Henni, Rachid Chebili

Abstract:

Reinforced concrete shear walls are pivotal in protecting buildings from seismic forces by providing strength and stiffness. This study highlights the importance of strategically placing shear walls and optimizing the shear wall-to-floor area ratio in building design. Nonlinear analyses were conducted on an eight-story building situated in a high seismic zone, exploring various scenarios of shear wall positioning and ratios to floor area. Employing the performance-based seismic design (PBSD) approach, the study aims to meet acceptance criteria such as inter-story drift ratio and damage levels. The results indicate that concentrating shear walls in the middle of the structure during the design phase yields superior performance compared to peripheral distributions. Utilizing shear walls that fully infill the frame and adopting compound shapes (e.g., Box, U, and L) enhances reliability in terms of inter-story drift. Conversely, the absence of complete shear walls within the frame leads to decreased stiffness and degradation of shorter beams. Increasing the shear wall-to-floor area ratio in building design enhances structural rigidity and reliability regarding inter-story drift, facilitating the attainment of desired performance levels. The study suggests that a shear wall ratio of 1.0% is necessary to meet validation criteria for inter-story drift and structural damage, as exceeding this percentage leads to excessive performance levels, proving uneconomical as structural elements operate near the elastic range.

Keywords: nonlinear analyses, pushover analysis, shear wall, plastic hinge, performance level

Procedia PDF Downloads 34
605 Optimization of a Hybrid PV-Diesel Mini grid System: A Case Study of Vimtim-Mubi, Nigeria

Authors: Julius Agaka Yusufu

Abstract:

This study undertakes the development of an optimal PV-diesel hybrid power system tailored to the specific energy landscape of Vimtim Mubi, Nigeria, utilizing real-world wind speed, solar radiation, and diesel cost data. Employing HOMER simulation, the research meticulously assesses the technical and financial viability of this hybrid configuration. Additionally, a rigorous performance comparison is conducted between the PV-diesel system and the conventional grid-connected alternative, offering crucial insights into the potential advantages and economic feasibility of adopting hybrid renewable energy solutions in regions grappling with energy access and reliability challenges, with implications for sustainable electrification efforts in similar communities worldwide.

Keywords: Vimtim-Nigeria, homer, renewable energy, PV-diesel hybrid system.

Procedia PDF Downloads 48
604 Savinglife®: An Educational Technology for Basic and Advanced Cardiovascular Life Support

Authors: Naz Najma, Grace T. M. Dal Sasso, Maria de Lourdes de Souza

Abstract:

The development of information and communication technologies and the accessibility of mobile devices has increased the possibilities of the teaching and learning process anywhere and anytime. Mobile and web application allows the production of constructive teaching and learning models in various educational settings, showing the potential for active learning in nursing. The objective of this study was to present the development of an educational technology (Savinglife®, an app) for learning cardiopulmonary resuscitation and advanced cardiovascular life support training. Savinglife® is a technological production, based on the concept of virtual learning and problem-based learning approach. The study was developed from January 2016 to November 2016, using five phases (analyze, design, develop, implement, evaluate) of the instructional systems development process. The technology presented 10 scenarios and 12 simulations, covering different aspects of basic and advanced cardiac life support. The contents can be accessed in a non-linear way leaving the students free to build their knowledge based on their previous experience. Each scenario is presented through interactive tools such as scenario description, assessment, diagnose, intervention and reevaluation. Animated ECG rhythms, text documents, images and videos are provided to support procedural and active learning considering real life situation. Accessible equally on small to large devices with or without an internet connection, Savinglife® offers a dynamic, interactive and flexible tool, placing students at the center of the learning process. Savinglife® can contribute to the student’s learning in the assessment and management of basic and advanced cardiac life support in a safe and ethical way.

Keywords: problem-based learning, cardiopulmonary resuscitation, nursing education, advanced cardiac life support, educational technology

Procedia PDF Downloads 293
603 Control of Pipeline Gas Quality to Extend Gas Turbine Life

Authors: Peter J. H. Carnell, Panayiotis Theophanous

Abstract:

Natural gas due to its cleaner combustion characteristics is expected to be the most widely used fuel in the move towards less polluting and renewable energy sources. Thus, the developed world is supplied by a complex network of gas pipelines and natural gas is becoming a major source of fuel. Natural gas delivered directly from the well will differ in composition from gas derived from LNG or produced by anaerobic digestion processes. Each will also have specific contaminants and properties although gas from all sources is likely to enter the distribution system and be blended to provide the desired characteristics such as Higher Heating Value and Wobbe No. The absence of a standard gas composition poses problems when the gas is used as a chemical feedstock, in specialised furnaces or on gas turbines. The chemical industry has suffered in the past as a result of variable gas composition. Transition metal catalysts used in ammonia, methanol and hydrogen plants were easily poisoned by sulphur, chlorides and mercury reducing both activity and catalyst expected lives from years to months. These plants now concentrate on purification and conditioning of the natural gas feed using fixed bed technologies, allowing them to run for several years and having transformed their operations. Similar technologies can be applied to the power industry reducing maintenance requirements and extending the operating life of gas turbines.

Keywords: gas composition, gas conditioning, gas turbines, power generation, purification

Procedia PDF Downloads 273
602 Comparison of Various Response Spectrum of Nuclear Power Plant at Chashma Site

Authors: J. Iqbal, A. Shah, M. Zeeshan

Abstract:

UBC-97, USNRC, chines origin code GB50011-2011 and site response spectrum was used to make comparison between them for Chashma site and most conservative one was selected and the USNRC was the most conservative one. The dynamic analysis of CHASNUPP-2 containment building was performed using SAP-2000 for dead load, live load (crane), pre stressed loads, wind load, temperature load, accidental pressure during LOCA, earthquake loads and the conservative response spectrum. After applying selected response spectrum on model, detail comparison was made against area of steal calculated from the analysis and the actually provided. Then prepared curve of area of steal vs. g value which shows that if the particular site was design on that spectrum that much steel needed for structural integrity.

Keywords: response spectrum, USNRC, LOCA, area of steel, structure integrity

Procedia PDF Downloads 668
601 Thermo-Oxidative Degradation of Esterified Starch (with Lauric Acid) -Plastic Composite Assembled with Pro-Oxidants and Elastomers

Authors: R. M. S. Sachini Amararathne

Abstract:

This research is striving to develop a thermo degradable starch plastic compound/ masterbatch for industrial packaging applications. A native corn starch-modified with an esterification reaction of lauric acid is melt blent with an unsaturated elastomer (styrene-butadiene-rubber/styrene-butadiene-styrene). A trace amount of metal salt is added into the internal mixer to study the effect of pro-oxidants in a thermo oxidative environment. Then the granulated polymer composite which is consisted with 80-86% of polyolefin (LLDP/LDPE/PP) as the pivotal agent; is extruded with processing aids, antioxidants and some other additives in a co-rotating twin-screw extruder. The pelletized composite is subjected to compression molding/ Injection molding or blown film extrusion processes to acquire the samples/specimen for tests. The degradation process is explicated by analyzing the results of fourier transform infrared spectroscopy (FTIR) measurements, thermo oxidative aging studies (placing the dumb-bell specimen in an air oven at 70 °C for four weeks of exposure.) governed by tensile and impact strength test reports. Furthermore, the samples were elicited into manifold outdoors to inspect the degradation process. This industrial process is implemented to reduce the volume of fossil-based garbage by achieving the biodegradability and compostability in the natural cycle. Hence the research leads to manufacturing a degradable plastic packaging compound which is now available in the Sri Lankan market.

Keywords: blown film extrusion, compression moulding, polyolefin, pro-oxidant, styrene-butadine-rubber, styrene-butadiene-styrene, thermo oxidative aging, unsaturated elastomer

Procedia PDF Downloads 87
600 An Unified Model for Longshore Sediment Transport Rate Estimation

Authors: Aleksandra Dudkowska, Gabriela Gic-Grusza

Abstract:

Wind wave-induced sediment transport is an important multidimensional and multiscale dynamic process affecting coastal seabed changes and coastline evolution. The knowledge about sediment transport rate is important to solve many environmental and geotechnical issues. There are many types of sediment transport models but none of them is widely accepted. It is bacause the process is not fully defined. Another problem is a lack of sufficient measurment data to verify proposed hypothesis. There are different types of models for longshore sediment transport (LST, which is discussed in this work) and cross-shore transport which is related to different time and space scales of the processes. There are models describing bed-load transport (discussed in this work), suspended and total sediment transport. LST models use among the others the information about (i) the flow velocity near the bottom, which in case of wave-currents interaction in coastal zone is a separate problem (ii) critical bed shear stress that strongly depends on the type of sediment and complicates in the case of heterogeneous sediment. Moreover, LST rate is strongly dependant on the local environmental conditions. To organize existing knowledge a series of sediment transport models intercomparisons was carried out as a part of the project “Development of a predictive model of morphodynamic changes in the coastal zone”. Four classical one-grid-point models were studied and intercompared over wide range of bottom shear stress conditions, corresponding with wind-waves conditions appropriate for coastal zone in polish marine areas. The set of models comprises classical theories that assume simplified influence of turbulence on the sediment transport (Du Boys, Meyer-Peter & Muller, Ribberink, Engelund & Hansen). It turned out that the values of estimated longshore instantaneous mass sediment transport are in general in agreement with earlier studies and measurements conducted in the area of interest. However, none of the formulas really stands out from the rest as being particularly suitable for the test location over the whole analyzed flow velocity range. Therefore, based on the models discussed a new unified formula for longshore sediment transport rate estimation is introduced, which constitutes the main original result of this study. Sediment transport rate is calculated based on the bed shear stress and critical bed shear stress. The dependence of environmental conditions is expressed by one coefficient (in a form of constant or function) thus the model presented can be quite easily adjusted to the local conditions. The discussion of the importance of each model parameter for specific velocity ranges is carried out. Moreover, it is shown that the value of near-bottom flow velocity is the main determinant of longshore bed-load in storm conditions. Thus, the accuracy of the results depends less on the sediment transport model itself and more on the appropriate modeling of the near-bottom velocities.

Keywords: bedload transport, longshore sediment transport, sediment transport models, coastal zone

Procedia PDF Downloads 378
599 Thermodynamic Modeling of Three Pressure Level Reheat HRSG, Parametric Analysis and Optimization Using PSO

Authors: Mahmoud Nadir, Adel Ghenaiet

Abstract:

The main purpose of this study is the thermodynamic modeling, the parametric analysis, and the optimization of three pressure level reheat HRSG (Heat Recovery Steam Generator) using PSO method (Particle Swarm Optimization). In this paper, a parametric analysis followed by a thermodynamic optimization is presented. The chosen objective function is the specific work of the steam cycle that may be, in the case of combined cycle (CC), a good criterion of thermodynamic performance analysis, contrary to the conventional steam turbines in which the thermal efficiency could be also an important criterion. The technologic constraints such as maximal steam cycle temperature, minimal steam fraction at steam turbine outlet, maximal steam pressure, minimal stack temperature, minimal pinch point, and maximal superheater effectiveness are also considered. The parametric analyses permitted to understand the effect of design parameters and the constraints on steam cycle specific work variation. PSO algorithm was used successfully in HRSG optimization, knowing that the achieved results are in accordance with those of the previous studies in which genetic algorithms were used. Moreover, this method is easy to implement comparing with the other methods.

Keywords: combined cycle, HRSG thermodynamic modeling, optimization, PSO, steam cycle specific work

Procedia PDF Downloads 370
598 Validity of a Timing System in the Alpine Ski Field: A Magnet-Based Timing System Using the Magnetometer Built into an Inertial Measurement Units

Authors: Carla Pérez-Chirinos Buxadé, Bruno Fernández-Valdés, Mónica Morral-Yepes, Sílvia Tuyà Viñas, Josep Maria Padullés Riu, Gerard Moras Feliu

Abstract:

There is a long way to explore all the possible applications inertial measurement units (IMUs) have in the sports field. The aim of this study was to evaluate the validity of a new application on the use of these wearable sensors, specifically it was to evaluate a magnet-based timing system (M-BTS) for timing gate-to-gate in an alpine ski slalom using the magnetometer embedded in an IMU. This was a validation study. The criterion validity of time measured by the M-BTS was assessed using the 95% error range against actual time obtained from photocells. The experiment was carried out with first-and second-year junior skiers performing a ski slalom on a ski training slope. Eight alpine skiers (17.4 ± 0.8 years, 176.4 ± 4.9 cm, 67.7 ± 2.0 kg, 128.8 ± 26.6 slalom FIS-Points) participated in the study. An IMU device was attached to the skier’s lower back. Skiers performed a 40-gate slalom from which four gates were assessed. The M-BTS consisted of placing four bar magnets buried into the snow surface on the inner side of each gate’s turning pole; the magnetometer built into the IMU detected the peak-shaped magnetic field when passing near the magnets at a certain speed. Four magnetic peaks were detected. The time compressed between peaks was calculated. Three inter-gate times were obtained for each system: photocells and M-BTS. The total time was defined as the time sum of the inter-gate times. The 95% error interval for the total time was 0.050 s for the ski slalom. The M-BTS is valid for timing gate-to-gate in an alpine ski slalom. Inter-gate times can provide additional data for analyzing a skier’s performance, such as asymmetries between left and right foot.

Keywords: gate crossing time, inertial measurement unit, timing system, wearable sensor

Procedia PDF Downloads 172
597 The Vulnerability of Farmers in Valencia Negros Oriental to Climate Change: El Niño Phenomenon and Malnutrition

Authors: J. K. Pis-An

Abstract:

Objective: The purpose of the study was to examine the vulnerability of farmers to the effects of climate change, specifically the El Niño phenomenon was felt in the Philippines in 2009-2010. Methods: KAP Survey determines behavioral response to vulnerability to the effects of El Niño. Body Mass Index: Dietary Assessment using 24-hour food recall. Results: 75% of the respondents claimed that crop significantly decreased during drought. Indications that households of farmers are large where 51.6% are composed of 6-10 family members with 68% annual incomes below Php 100,00. Anthropometric assessment showed that the prevalence of Chronic Energy Deficiency Grade 1 among females 17% and 28.57% for low normal. While male body mass index result for chronic energy deficiency grade 1 10%, low normal 18.33% and and obese grade 1, 31.67%. Dietary assessment of macronutrient intake of carbohydrates, protein, and fat 31.6 % among respondents are below recommended amounts. Micronutrient deficiency of calcium, iron, vit. A, thiamine, riboflavin, niacin, and Vit. C. Conclusion: Majority of the rural populations are engaged into farming livelihood that makes up the backbone of their economic growth. Placing the current nutritional status of the farmers in the context of food security, there are reasons to believe that the status will go for worse if the extreme climatic conditions will once again prevail in the region. Farmers rely primarily on home grown crops for their food supply, a reduction in farm production during drought is expected to adversely affect dietary intake. The local government therefore institute programs to increase food resiliency and to prioritize health of the population as the moving force for productivity and development.

Keywords: world health organization, united nation framework convention on climate change, anthropometric, macronutrient, micronutrient

Procedia PDF Downloads 433
596 Energy Efficiency Analysis of Discharge Modes of an Adiabatic Compressed Air Energy Storage System

Authors: Shane D. Inder, Mehrdad Khamooshi

Abstract:

Efficient energy storage is a crucial factor in facilitating the uptake of renewable energy resources. Among the many options available for energy storage systems required to balance imbalanced supply and demand cycles, compressed air energy storage (CAES) is a proven technology in grid-scale applications. This paper reviews the current state of micro scale CAES technology and describes a micro-scale advanced adiabatic CAES (A-CAES) system, where heat generated during compression is stored for use in the discharge phase. It will also describe a thermodynamic model, developed in EES (Engineering Equation Solver) to evaluate the performance and critical parameters of the discharge phase of the proposed system. Three configurations are explained including: single turbine without preheater, two turbines with preheaters, and three turbines with preheaters. It is shown that the micro-scale A-CAES is highly dependent upon key parameters including; regulator pressure, air pressure and volume, thermal energy storage temperature and flow rate and the number of turbines. It was found that a micro-scale AA-CAES, when optimized with an appropriate configuration, could deliver energy input to output efficiency of up to 70%.

Keywords: CAES, adiabatic compressed air energy storage, expansion phase, micro generation, thermodynamic

Procedia PDF Downloads 300
595 Retrofitting of Asymmetric Steel Structure Equipped with Tuned Liquid Column Dampers by Nonlinear Finite Element Modeling

Authors: A. Akbarpour, M. R. Adib Ramezani, M. Zhian, N. Ghorbani Amirabad

Abstract:

One way to improve the performance of structures against of earthquake is passive control which requires no external power source. In this research, tuned liquid column dampers which are among of systems with the capability to transfer energy between various modes of vibration, are used. For the first time, a liquid column damper for vibration control structure is presented. After modeling this structure in design building software and performing the static and dynamic analysis and obtaining the necessary parameters for the design of tuned liquid column damper, the whole structure will be analyzed in finite elements software. The tuned liquid column dampers are installed on the structure and nonlinear time-history analysis is done in two cases of structures; with and without dampers. Finally the seismic behavior of building in the two cases will be examined. In this study the nonlinear time-history analysis on a twelve-story steel structure equipped with damper subject to records of earthquake including Loma Prieta, Northridge, Imperiall Valley, Pertrolia and Landers was performed. The results of comparing between two cases show that these dampers have reduced lateral displacement and acceleration of levels on average of 10%. Roof displacement and acceleration also reduced respectively 5% and 12%. Due to structural asymmetric in the plan, the maximum displacements of surrounding structures as well as twisting were studied. The results show that the dampers lead to a 10% reduction in the maximum response of structure stories surrounding points. At the same time, placing the dampers, caused to reduce twisting on the floor plan of the structure, Base shear of structure in the different earthquakes also has been reduced on the average of 6%.

Keywords: retrofitting, passive control, tuned liquid column damper, finite element analysis

Procedia PDF Downloads 399
594 Energy Efficient Autonomous Lower Limb Exoskeleton for Human Motion Enhancement

Authors: Nazim Mir-Nasiri, Hudyjaya Siswoyo Jo

Abstract:

The paper describes conceptual design, control strategies, and partial simulation for a new fully autonomous lower limb wearable exoskeleton system for human motion enhancement that can support its weight and increase strength and endurance. Various problems still remain to be solved where the most important is the creation of a power and cost efficient system that will allow an exoskeleton to operate for extended period without batteries being frequently recharged. The designed exoskeleton is enabling to decouple the weight/mass carrying function of the system from the forward motion function which reduces the power and size of propulsion motors and thus the overall weight, cost of the system. The decoupling takes place by blocking the motion at knee joint by placing passive air cylinder across the joint. The cylinder is actuated when the knee angle has reached the minimum allowed value to bend. The value of the minimum bending angle depends on usual walk style of the subject. The mechanism of the exoskeleton features a seat to rest the subject’s body weight at the moment of blocking the knee joint motion. The mechanical structure of each leg has six degrees of freedom: four at the hip, one at the knee, and one at the ankle. Exoskeleton legs are attached to subject legs by using flexible cuffs. The operation of all actuators depends on the amount of pressure felt by the feet pressure sensors and knee angle sensor. The sensor readings depend on actual posture of the subject and can be classified in three distinct cases: subject stands on one leg, subject stands still on both legs and subject stands on both legs but transit its weight from one leg to other. This exoskeleton is power efficient because electrical motors are smaller in size and did not participate in supporting the weight like in all other existing exoskeleton designs.

Keywords: energy efficient system, exoskeleton, motion enhancement, robotics

Procedia PDF Downloads 359
593 Optimization of a Hybrid PV-Diesel Minigrid System: A Case Study of Vimtim-Mubi, Nigeria

Authors: Julius Agaka Yusufu, Tsutomu Dei, Hanif Ibrahim Awal

Abstract:

This study undertakes the development of an optimal PV-diesel hybrid power system tailored to the specific energy landscape of Vimtim Mubi, Nigeria, utilizing real-world wind speed, solar radiation, and diesel cost data. Employing HOMER simulation, the research meticulously assesses the technical and financial viability of this hybrid configuration. Additionally, a rigorous performance comparison is conducted between the PV-diesel system and the conventional grid-connected alternative, offering crucial insights into the potential advantages and economic feasibility of adopting hybrid renewable energy solutions in regions grappling with energy access and reliability challenges, with implications for sustainable electrification efforts in similar communities worldwide.

Keywords: Vimtim-Nigeria, Homer, renewable energy, PV-diesel hybrid system

Procedia PDF Downloads 69
592 Lyapunov Exponents in the Restricted Three Body Problem under the Influence of Perturbations

Authors: Ram Kishor

Abstract:

The Lyapunov characteristic exponent (LCE) is an important tool to describe behavior of a dynamical system, which measures the average rate of divergence (or convergence) of a trajectory emanating in the vicinity of initial point. To analyze the behavior of nearby trajectory emanating in the neighborhood of an equilibrium point in the restricted three-body problem under the influence of perturbations in the form of radiation pressure and oblateness, we compute LCEs of first order with the help of slandered method which is based on variational equation of the system. It is observed that trajectories are chaotic in nature due positive LCEs. Also, we analyze the effect of radiation pressure and oblateness on the LCEs. Results are applicable to study the behavior of more generalized RTBP in the presence of perturbations such as PR drag, solar wind drag etc.

Keywords: Lyapunov characteristic exponent, RTBP, radiation pressure, oblateness

Procedia PDF Downloads 428
591 Algorithm for Recognizing Trees along Power Grid Using Multispectral Imagery

Authors: C. Hamamura, V. Gialluca

Abstract:

Much of the Eclectricity Distributors has about 70% of its electricity interruptions arising from cause "trees", alone or associated with wind and rain and with or without falling branch and / or trees. This contributes inexorably and significantly to outages, resulting in high costs as compensation in addition to the operation and maintenance costs. On the other hand, there is little data structure and solutions to better organize the trees pruning plan effectively, minimizing costs and environmentally friendly. This work describes the development of an algorithm to provide data of trees associated to power grid. The method is accomplished on several steps using satellite imagery and geographically vectorized grid. A sliding window like approach is performed to seek the area around the grid. The proposed method counted 764 trees on a patch of the grid, which was very close to the 738 trees counted manually. The trees data was used as a part of a larger project that implements a system to optimize tree pruning plan.

Keywords: image pattern recognition, trees pruning, trees recognition, neural network

Procedia PDF Downloads 489
590 Evaluation of Progressive Collapse of Transmission Tower

Authors: Jeong-Hwan Choi, Hyo-Sang Park, Tae-Hyung Lee

Abstract:

The transmission tower is one of the crucial lifeline structures in a modern society, and it needs to be protected against extreme loading conditions. However, the transmission tower is a very complex structure and, therefore, it is very difficult to simulate the actual damage and the collapse behavior of the tower structure. In this study, the actual collapse behavior of the transmission tower due to lateral loading conditions such as wind load is evaluated through the computational simulation. For that, a progressive collapse procedure is applied to the simulation. In this procedure, after running the simulation, if a member of the tower structure fails, the failed member is removed and the simulation run again. The 154kV transmission tower is selected for this study. The simulation is performed by nonlinear static analysis procedure, namely pushover analysis, using OpenSEES, an earthquake simulation platform. Three-dimensional finite element models of those towers are developed.

Keywords: transmission tower, OpenSEES, pushover, progressive collapse

Procedia PDF Downloads 343
589 Internet Based Teleoperation of the Quad Rotor with Force Feedback Using Smith Predictor

Authors: K. Senthil Kumar, A. Vasumalaikannan

Abstract:

In this paper, teleoperation of the quadrotor using Internet with Force feedback is addressed. Teleoperation with Force feedback is the ability to remotely control a robot, where contact (obstacle) or environment (wind gust etc) information (force feedback) is communicated from the quadrotor to the master joystick and thus giving the operator a sense of telepresence. The stability and performance of such a teleoperator is highly dependent on the amount of time delay present in the control loop. This problem is further complicated given the fact that for network based communication the time delay is itself time varying and highly non deterministic. In this paper, a novel method using Neural based Smith Predictor at the master side the stability is achieved. The performance of the system even during worst case scenario is within acceptable.

Keywords: teleoperation, quadrotor, neural smith predictor, time delay

Procedia PDF Downloads 602
588 Numerical Investigation of Divergence and Rib Orientation Effects on Thermal Performance in a Divergent Duct, as an Application of Inner Cooling of Turbine Blades

Authors: Heidar Jafarizadeh, Hossein Keshtkar, Ahmad Sohankar

Abstract:

Heat transfer and turbulent flow structure have been studied in a divergent ribbed duct with a varying duct geometry with Reynolds numbers of 7000 to 90000 using numerical methods. In this study, we confirmed our numerical results of a ribbed duct with an Initial slope of zero to 3 degree by comparing them to experimental data we had and investigated the impact of the ducts divergence on heat transfer and flow pattern in the 2-dimensional flow. Then we investigated the effect of tilting the ribs, on heat transfer and flow behavior. We achieved this by changing the ribs angles from a range of 40 to 75 degrees in a divergent duct and simulated the flow in 3-dimensions. Our results show that with an increase in duct divergence, heat transfer increases linearly and the coefficient of friction increases exponentially. As the results show, a duct with a divergence angle of 1.5 degree presents better thermal performance in comparison with all the angle range’s we studied. Besides, a ribbed duct with 40 degree rib orientation had the best thermal performance considering the simultaneous effects of pressure drop and heat transfer which were imposed on it.

Keywords: divergent ribbed duct, heat transfer, thermal performance, turbulent flow structure

Procedia PDF Downloads 291
587 Experimental Field for the Study of Soil-Atmosphere Interaction in Soft Soils

Authors: Andres Mejia-Ortiz, Catalina Lozada, German R. Santos, Rafael Angulo-Jaramillo, Bernardo Caicedo

Abstract:

The interaction between atmospheric variables and soil properties is a determining factor when evaluating the flow of water through the soil. This interaction situation directly determines the behavior of the soil and greatly influences the changes that occur in it. The atmospheric variations such as changes in the relative humidity, air temperature, wind velocity and precipitation, are the external variables that reflect a greater incidence in the changes that are generated in the subsoil, as a consequence of the water flow in descending and ascending conditions. These environmental variations have a major importance in the study of the soil because the conditions of humidity and temperature in the soil surface depend on them. In addition, these variations control the thickness of the unsaturated zone and the position of the water table with respect to the surface. However, understanding the relationship between the atmosphere and the soil is a somewhat complex aspect. This is mainly due to the difficulty involved in estimating the changes that occur in the soil from climate changes; since this is a coupled process where act processes of mass transfer and heat. In this research, an experimental field was implemented to study in-situ the interaction between the atmosphere and the soft soils of the city of Bogota, Colombia. The soil under study consists of a 60 cm layer composed of two silts of similar characteristics at the surface and a deep soft clay deposit located under the silky material. It should be noted that the vegetal layer and organic matter were removed to avoid the evapotranspiration phenomenon. Instrumentation was carried on in situ through a field disposal of many measuring devices such as soil moisture sensors, thermocouples, relative humidity sensors, wind velocity sensor, among others; which allow registering the variations of both the atmospheric variables and the properties of the soil. With the information collected through field monitoring, the water balances were made using the Hydrus-1D software to determine the flow conditions that developed in the soil during the study. Also, the moisture profile for different periods and time intervals was determined by the balance supplied by Hydrus 1D; this profile was validated by experimental measurements. As a boundary condition, the actual evaporation rate was included using the semi-empirical equations proposed by different authors. In this study, it was obtained for the rainy periods a descending flow that was governed by the infiltration capacity of the soil. On the other hand, during dry periods. An increase in the actual evaporation of the soil induces an upward flow of water, increasing suction due to the decrease in moisture content. Also, cracks were developed accelerating the evaporation process. This work concerns to the study of soil-atmosphere interaction through the experimental field and it is a very useful tool since it allows considering all the factors and parameters of the soil in its natural state and real values of the different environmental conditions.

Keywords: field monitoring, soil-atmosphere, soft soils, soil-water balance

Procedia PDF Downloads 126
586 The Experimental House: A Case Study to Assess the Long-Term Performance of Waste Tires Used as Replacement for Natural Material in Backfill Applications for Basement Walls in Manitoba

Authors: M. Shokry Rashwan

Abstract:

This study follows a number of experiments conducted at Red River College (RRC) to investigate the short term properties of tire derived aggregate (TDA) produced from shredding off-the-road (OTR) wasted tires in a proposed new application. The application targets replacing natural material used under concrete slabs and as backfills for residential homes’ basement slabs and walls, respectively, with TDA. The experimental work included determining: compressibility, gradation distribution, unit weight, hydraulic conductivity and lateral pressure. Based on the results of those short term properties; it was decided to move forward to study the long-term performance of this otherwise waste material through on-site demonstration. A full-scale basement replicating a typical Manitoba home was therefore built at RRC where both TDA and Natural Materials (NM) were used side-by-side. A large number of sensing and measuring systems are used to compare between the performances of each material when exposed to the typical ground and weather conditions. Parameters monitored and measured include heat losses, moisture migration, drainage ability, lateral pressure, relative movements of slabs and walls, an integrity of ground water and radon emissions. Up-to-date results have confirmed part of the conclusions reached from the earlier laboratory experiments. However, other results have shown that construction practices; such as placing and compaction, may need some adjustments to achieve more desirable outcomes. This presentation provides a review of both short-term tests as well as up-to-date analysis of the on-site demonstration.

Keywords: tire derived aggregate (TDA), basement construction, TDA material properties, lateral pressure of TDA, hydraulic conductivity of TDA

Procedia PDF Downloads 203
585 Fast Short-Term Electrical Load Forecasting under High Meteorological Variability with a Multiple Equation Time Series Approach

Authors: Charline David, Alexandre Blondin Massé, Arnaud Zinflou

Abstract:

In 2016, Clements, Hurn, and Li proposed a multiple equation time series approach for the short-term load forecasting, reporting an average mean absolute percentage error (MAPE) of 1.36% on an 11-years dataset for the Queensland region in Australia. We present an adaptation of their model to the electrical power load consumption for the whole Quebec province in Canada. More precisely, we take into account two additional meteorological variables — cloudiness and wind speed — on top of temperature, as well as the use of multiple meteorological measurements taken at different locations on the territory. We also consider other minor improvements. Our final model shows an average MAPE score of 1:79% over an 8-years dataset.

Keywords: short-term load forecasting, special days, time series, multiple equations, parallelization, clustering

Procedia PDF Downloads 91
584 Experimental Study of Sahara Climat Effect in Photovoltaic Solar Module

Authors: A. Benatiallah, A. Hadjadj, D. Benatiallah, F. Abaidi, A. Harrouz

Abstract:

Photovoltaic system is established as a reliable and economical source of electricity in rural and Sahara areas, especially in developing countries where the population is dispersed, has low consumption of energy and the grid power is not extended to these areas due to viability and financial problems. The production of energy by the photovoltaic system is very fluctuates and depend of meteorological conditions. Wind is a very important and often neglected parameter in the behavior of the solar module. The electric performances of a solar module to the silicon are very appreciable to the blows; in the present work we have studies the behavior of multi-crystal solar module according to the density of dust, and the principals electric feature of the solar module. An evaluation permits to affirm that a solar module under the effect of sand will collect a lower flux to the normal conditions.

Keywords: photovoltaic, multi-crystal module, experimental, effect of dust, performances

Procedia PDF Downloads 296
583 Community, Identity, and Resistance in Minority Literature: Arab American Poets - Samuel Hazo, Nathalie Handal, and Naomi Shihab Nye

Authors: Reem Saad Alqahtani

Abstract:

Drawing on minority literature, this research highlights the role of three contemporary Arab American writers, considering the significance of the historical and cultural contexts of the brutal attacks of 9/11. The focus of the research is to draw attention to the poetry of Samuel Hazo, Nathalie Handal, and Naomi Shihab Nye as representatives of the identity crisis, whose experiences left them feeling marginalized and alienated in both societies, and reflected as one of the ethnic American minority groups, as demonstrated in their poetry, with a special focus on hybridity, resistance, identity, and empowerment. The study explores the writers’ post-9/11 experience, affected by the United States’ long history of marginalization and discrimination against people of colour, placing Arab American literature with that of other ethnic American groups who share the same experience and contribute to composing literature characterized by the aesthetics of cultural hybridity, cultural complexity, and the politics of minorities to promote solidarity and coalition building. Indeed, the three selected Arab American writers have found a link between their narration and the identity of the exiled by establishing an identity that is a kind of synthesis of diverse identities of Western reality and Eastern nostalgia. The approaches applied in this study will include historical/biographical, postcolonial, and discourse analysis. The first will be used to emphasize the influence of the biographical aspects related to the community, identity, and resistance of the three poets on their poetry. The second is used to investigate the effects of postcolonialism on the poets and their responses to it, while the third understand the sociocultural, political, and historical dimensions of the texts, establishing these poets as representative of the Arab American experience. This study is significant because it will help shed light on the importance of the Arabic hybrid identity in creating resistance to minority communities within American society.

Keywords: Arab American, identity, hybridity, post-9/11

Procedia PDF Downloads 157
582 Response of Solar Updraft Power Plants Incorporating Material Nonlinearity

Authors: Areeg Shermaddo

Abstract:

Solar updraft power plants (SUPP) provide a great potential for green and environmentally friendly renewable power generation. An up to 1000 m high chimney represents one of the major parts of each SUPP, which consist of the main shell structure and the stiffening rings. Including the nonlinear material behavior in a simulation of the chimney is computationally a demanding task. However, allowing the formation of cracking in concrete leads to a more economical design of the structure. In this work, an FE model of a SUPP is presented incorporating the nonlinear material behavior. The effect of wind loading intensity on the structural response is explored. Furthermore, the influence of the stiffness of the ring beams on the global behavior is as well investigated. The obtained results indicate that the minimum reinforcement is capable of carrying the tensile stresses provided that the ring beams are rather stiff.

Keywords: ABAQUS, nonlinear analysis, ring beams, SUPP

Procedia PDF Downloads 209
581 A Dynamic Equation for Downscaling Surface Air Temperature

Authors: Ch. Surawut, D. Sukawat

Abstract:

In order to utilize results from global climate models, dynamical and statistical downscaling techniques have been developed. For dynamical downscaling, usually a limited area numerical model is used, with associated high computational cost. This research proposes dynamic equation for specific space-time regional climate downscaling from the Educational Global Climate Model (EdGCM) for Southeast Asia. The equation is for surface air temperature. These equations provide downscaling values of surface air temperature at any specific location and time without running a regional climate model. In the proposed equations, surface air temperature is approximated from ground temperature, sensible heat flux and 2m wind speed. Results from the application of the equation show that the errors from the proposed equations are less than the errors for direct interpolation from EdGCM.

Keywords: dynamic equation, downscaling, inverse distance, weight interpolation

Procedia PDF Downloads 290
580 Smart Grid Simulator

Authors: Ursachi Andrei

Abstract:

The Smart Grid Simulator is a computer software based on advanced algorithms which has as the main purpose to lower the energy bill in the most optimized price efficient way as possible for private households, companies or energy providers. It combines the energy provided by a number of solar modules and wind turbines with the consumption of one household or a cluster of nearby households and information regarding weather conditions and energy prices in order to predict the amount of energy that can be produced by renewable energy sources and the amount of energy that will be bought from the distributor for the following day. The user of the system will not only be able to minimize his expenditures on energy fractures, but also he will be informed about his hourly consumption, electricity prices fluctuation and money spent for energy bought as well as how much money he saved each day and since he installed the system. The paper outlines the algorithm that supports the Smart Grid Simulator idea and presents preliminary test results that support the discussion and implementation of the system.

Keywords: smart grid, sustainable energy, applied science, renewable energy sources

Procedia PDF Downloads 334
579 Re-Conceptualizing the Indigenous Learning Space for Children in Bangladesh Placing Built Environment as Third Teacher

Authors: Md. Mahamud Hassan, Shantanu Biswas Linkon, Nur Mohammad Khan

Abstract:

Over the last three decades, the primary education system in Bangladesh has experienced significant improvement, but it has failed to cope with different social and cultural aspects, which present many challenges for children, families, and the public school system. Neglecting our own contextual learning environment, it is a matter of sorrow that much attention has been paid to the more physical outcome-focused model, which is nothing but mere infrastructural development, and less subtle to the environment that suits the child's psychology and improves their social, emotional, physical, and moral competency. In South Asia, the symbol of education was never the little red house of colonial architecture but “A Guru sitting under a tree", whereas a responsive and inclusive design approach could help to create more innovative learning environments. Such an approach incorporates how the built, natural, and cultural environment shapes the learner; in turn, learners shape the learning. This research will be conducted to, i) identify the major issues and drawbacks of government policy for primary education development programs; ii) explore and evaluate the morphology of the conventional model of school, and iii) propose an alternative model in a collaborative design process with the stakeholders for maximizing the relationship between the physical learning environments and learners by treating “the built environment” as “the third teacher.” Based on observation, this research will try to find out to what extent built, and natural environments can be utilized as a teaching tool for a more optimal learning environment. It should also be evident that there is a significant gap in the state policy, predetermined educational specifications, and implementation process in response to stakeholders’ involvement. The outcome of this research will contribute to a people-place sensitive design approach through a more thoughtful and responsive architectural process.

Keywords: built environment, conventional planning, indigenous learning space, responsive design

Procedia PDF Downloads 90