Search results for: unusual uses task
1245 Epidemiological Investigation of Abortion in Ewes in Algeria
Authors: Laatra Zemmouri, Said Boukhechem, Samia Haffaf, Mohamed Lafri
Abstract:
A study was conducted in order to determine the prevalence and risk factors associated with abortion in ewes in the region of M’sila, located in central-eastern Algeria. A questionnaire was carried out to obtain information about the occurrence of abortion, sheep housing conditions, vaccination, feeding and management practices, and whether the farmers kept other livestock. This cross-sectional study was conducted for 36 months (between 2016 and 2019). A total of 71 sheep flocks were visited. Among 8168 ewes, we recorded 734 (8.99%) abortions and 3861 lambings. The risk factor analysis using multivariable logistic regression showed an association between abortion and vaccination against brucellosis (CI 95%= 2,76-1,35; p<0,001). Abortion decreased when dogs are owned (CI 95%= 0,36-0,84; p= 0.006), however, abortion increased with the presence of cats in farms (CI 95%= 1,24-2,8; p=0.003). There was a significant association between abortion and keeping goats (CI 95%= 1,18-2,40; p= 0.004), bovins (CI 95%= 0,3-0,68; p<0,001) and poultry CI 95%= 0,39-0,77; p= 0.001) in farms. Through this study, it is noticed that a strong association between the occurrence of abortion and estrus synchronization, stillbirth occurrence, and feed supplementation (p<0.05). Identification of the causes of abortion is an important task to reduce foetal losses and to improve livestock productivity.Keywords: abortion, ewes, questionnaire, risk factors
Procedia PDF Downloads 2271244 Children’s Concept of Forgiveness
Authors: Lida Landicho, Analiza R. Adarlo, Janine Mae V. Corpuz, Joan C. Villanueva
Abstract:
Testing the idea that the process of forgiveness is intrinsically different across diverse relationships, this study examined whether forgiveness can already be facilitated by children ages 4-6. Two different intervention sessions which consists of 40 children (half heard stories about unfair blame and half heard stories about a double standard (between subjects variable) was completed. Investigators performed experimental analyses to examine the role of forgiveness in social and familial context. Results indicated that forgiveness can already be facilitated by children. Children see scenarios on double standard to be more unfair than normal scenarios (Scenario 2 (double standard) (M=7.54) Scenario 1 (unfair blame) (M=4.50), Scenario 4 (double standard) (M=7.) Scenario 3 (getting blamed for something the friend did) (M=6.80)p <.05.The findings confirmed that children were generally willing to grant forgiveness to a mother even though she was unfair, but less so to a friend. Correlations between sex, age and forgiveness were analyzed. Significant relationships was found on scenarios presented and caring task scores (rxy= -.314).Their tendency to forgive was related to dispositional and situational factors.Keywords: forgiveness, situational and dispositional factors, familial context, social context
Procedia PDF Downloads 4261243 Seed Associated Microbial Communities of Holoparasitic Cistanche Species from Armenia and Portugal
Authors: K. Petrosyan, R. Piwowarczyk, K. Ruraż, S. Thijs, J. Vangronsveld, W. Kaca
Abstract:
Holoparasitic plants are flowering heterotrophic angiosperms which with the help of an absorbing organ - haustorium, attach to another plant, the so-called the host. Due to the different hosts, unusual lifestyle, lack of roots, chlorophylls and photosynthesis, these plants are interesting and unique study objects for global biodiversity. The seeds germination of the parasitic plants also is unique: they germinate only in response to germination stimulants, namely strigolactones produced by the root of an appropriate host. Resistance of the seeds on different environmental conditions allow them to stay viable in the soil for more than 20 years. Among the wide range of plant protection mechanisms the endophytic communities have a specific role. In this way, they have the potential to mitigate the impacts of adverse conditions such as soil salinization. The major objective of our study was to compare the bacterial endo-microbiomes from seeds of two holoparasitic plants from Orobanchaceae family, Cistanche – C. armena (Armenia) and C. phelypaea (Portugal) – from saline habitats different in soil water status. The research aimed to perform how environmental conditions influence on the diversity of the bacterial communities of C. armena and C. phelypaea seeds. This was achieved by comparison of the endophytic microbiomes of two species and isolation of culturable bacteria. A combination of culture-dependent and molecular techniques was employed for the identification of the seed endomicrobiome (culturable and unculturable). Using the V3-V4 hypervariable region of the 16S rRNA gene, four main taxa were identified: Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes, but the relative proportion of the taxa was different in each type of seed. Generally, sixteen phyla, 323 genera and 710 bacterial species were identified, mainly Gram negative, halotolerant bacteria with an environmental origin. However, also some unclassified and unexplored taxonomic groups were found in the seeds of both plants. 16S rRNA gene sequencing analysis from both species identified the gram positive, endospore forming, halotolerant and alkaliphile Bacillus spp. which suggests that the endophytic bacteria of examined seeds possess traits that are correlated with the natural habitat of their hosts. The cultivable seed endophytes from C. armena and C. phelypaea were rather similar, notwithstanding the big distances between their growth habitats - Armenia and Portugal. Although the seed endophytic microbiomes of C. armena and C. phelypaea contain a high number of common bacterial taxa, also remarkable differences exist. We demonstrated that the environmental conditions or abiotic stresses influence on diversity of the bacterial communities of holoparasiotic seeds. To the best of our knowledge the research is the first report of endophytes from seeds of holoparasitic Cistanche armena and C. phelypaea plants.Keywords: microbiome, parasitic plant, salinity, seeds
Procedia PDF Downloads 721242 Urban Runoff Modeling of Ungauged Volcanic Catchment in Madinah, Western Saudi Arabia
Authors: Fahad Alahmadi, Norhan Abd Rahman, Mohammad Abdulrazzak, Zulikifli Yusop
Abstract:
Runoff prediction of ungauged catchment is still a challenging task especially in arid regions with a unique land cover such as volcanic basalt rocks where geological weathering and fractures are highly significant. In this study, Bathan catchment in Madinah western Saudi Arabia was selected for analysis. The aim of this paper is to evaluate different rainfall loss methods; soil conservation Services curve number (SCS-CN), green-ampt and initial-constant rate. Different direct runoff methods were evaluated: soil conservation services dimensionless unit hydrograph (SCS-UH), Snyder unit hydrograph and Clark unit hydrograph. The study showed the superiority of SCS-CN loss method and Clark unit hydrograph method for ungauged catchment where there is no observed runoff data.Keywords: urban runoff modelling, arid regions, ungauged catchments, volcanic rocks, Madinah, Saudi Arabia
Procedia PDF Downloads 4051241 Nonlinear Optics of Dirac Fermion Systems
Authors: Vipin Kumar, Girish S. Setlur
Abstract:
Graphene has been recognized as a promising 2D material with many new properties. However, pristine graphene is gapless which hinders its direct application towards graphene-based semiconducting devices. Graphene is a zero-gapp and linearly dispersing semiconductor. Massless charge carriers (quasi-particles) in graphene obey the relativistic Dirac equation. These Dirac fermions show very unusual physical properties such as electronic, optical and transport. Graphene is analogous to two-level atomic systems and conventional semiconductors. We may expect that graphene-based systems will also exhibit phenomena that are well-known in two-level atomic systems and in conventional semiconductors. Rabi oscillation is a nonlinear optical phenomenon well-known in the context of two-level atomic systems and also in conventional semiconductors. It is the periodic exchange of energy between the system of interest and the electromagnetic field. The present work describes the phenomenon of Rabi oscillations in graphene based systems. Rabi oscillations have already been described theoretically and experimentally in the extensive literature available on this topic. To describe Rabi oscillations they use an approximation known as rotating wave approximation (RWA) well-known in studies of two-level systems. RWA is valid only near conventional resonance (small detuning)- when the frequency of the external field is nearly equal to the particle-hole excitation frequency. The Rabi frequency goes through a minimum close to conventional resonance as a function of detuning. Far from conventional resonance, the RWA becomes rather less useful and we need some other technique to describe the phenomenon of Rabi oscillation. In conventional systems, there is no second minimum - the only minimum is at conventional resonance. But in graphene we find anomalous Rabi oscillations far from conventional resonance where the Rabi frequency goes through a minimum that is much smaller than the conventional Rabi frequency. This is known as anomalous Rabi frequency and is unique to graphene systems. We have shown that this is attributable to the pseudo-spin degree of freedom in graphene systems. A new technique, which is an alternative to RWA called asymptotic RWA (ARWA), has been invoked by our group to discuss the phenomenon of Rabi oscillation. Experimentally accessible current density shows different types of threshold behaviour in frequency domain close to the anomalous Rabi frequency depending on the system chosen. For single layer graphene, the exponent at threshold is equal to 1/2 while in case of bilayer graphene, it is computed to be equal to 1. Bilayer graphene shows harmonic (anomalous) resonances absent in single layer graphene. The effect of asymmetry and trigonal warping (a weak direct inter-layer hopping in bilayer graphene) on these oscillations is also studied in graphene systems. Asymmetry has a remarkable effect only on anomalous Rabi oscillations whereas the Rabi frequency near conventional resonance is not significantly affected by the asymmetry parameter. In presence of asymmetry, these graphene systems show Rabi-like oscillations (offset oscillations) even for vanishingly small applied field strengths (less than the gap parameter). The frequency of offset oscillations may be identified with the asymmetry parameter.Keywords: graphene, Bilayer graphene, Rabi oscillations, Dirac fermion systems
Procedia PDF Downloads 2981240 A Novel Combined Finger Counting and Finite State Machine Technique for ASL Translation Using Kinect
Authors: Rania Ahmed Kadry Abdel Gawad Birry, Mohamed El-Habrouk
Abstract:
This paper presents a brief survey of the techniques used for sign language recognition along with the types of sensors used to perform the task. It presents a modified method for identification of an isolated sign language gesture using Microsoft Kinect with the OpenNI framework. It presents the way of extracting robust features from the depth image provided by Microsoft Kinect and the OpenNI interface and to use them in creating a robust and accurate gesture recognition system, for the purpose of ASL translation. The Prime Sense’s Natural Interaction Technology for End-user - NITE™ - was also used in the C++ implementation of the system. The algorithm presents a simple finger counting algorithm for static signs as well as directional Finite State Machine (FSM) description of the hand motion in order to help in translating a sign language gesture. This includes both letters and numbers performed by a user, which in-turn may be used as an input for voice pronunciation systems.Keywords: American sign language, finger counting, hand tracking, Microsoft Kinect
Procedia PDF Downloads 2961239 Scaling Siamese Neural Network for Cross-Domain Few Shot Learning in Medical Imaging
Authors: Jinan Fiaidhi, Sabah Mohammed
Abstract:
Cross-domain learning in the medical field is a research challenge as many conditions, like in oncology imaging, use different imaging modalities. Moreover, in most of the medical learning applications, the sample training size is relatively small. Although few-shot learning (FSL) through the use of a Siamese neural network was able to be trained on a small sample with remarkable accuracy, FSL fails to be effective for use in multiple domains as their convolution weights are set for task-specific applications. In this paper, we are addressing this problem by enabling FSL to possess the ability to shift across domains by designing a two-layer FSL network that can learn individually from each domain and produce a shared features map with extra modulation to be used at the second layer that can recognize important targets from mix domains. Our initial experimentations based on mixed medical datasets like the Medical-MNIST reveal promising results. We aim to continue this research to perform full-scale analytics for testing our cross-domain FSL learning.Keywords: Siamese neural network, few-shot learning, meta-learning, metric-based learning, thick data transformation and analytics
Procedia PDF Downloads 561238 Classroom Management Whereas Teaching ESL to Saudi Students
Authors: Mohammad Akram
Abstract:
The aim of this study is to improve classroom management while teaching especially ESL/EFL. At the same time, it has been discussed about the standard of the students through some surveys held in Jazan University in the month of February and March, 2013. The present research is a classroom action-oriented study. The subject of the study is mainly the students whose first language is not English at all. The study is prepared in one cycle that has planning, action, and reaction as well. Teachers of English as a second language/foreign language generally face numerous of unexpected problems while dealing with their students. To make the classes practical, meaningful, and easy like fun for the students is really a cumbersome task. It's a very practical move towards classroom ESL/EFL teaching if we want to apply anything new, I mean new policies, tactics, recent/smart teaching methodologies, we must peep into the hole of past because it will give us the best solution for the present strategies. We need to academically study the past of our students to make their present fruitful. Here, author wants to present a few important problematic issues like classroom management in the area of ESL/EFL while teaching ESL students. Impact these are suggestions to combat drawbacks of 'Classroom Teaching'. “Classroom management is to put into practice and a process through teaching and learning process”.Keywords: global, teachers, perceptions, classroom, management, integrated, segregated, comprehension, productive
Procedia PDF Downloads 6681237 Sentiment Analysis: An Enhancement of Ontological-Based Features Extraction Techniques and Word Equations
Authors: Mohd Ridzwan Yaakub, Muhammad Iqbal Abu Latiffi
Abstract:
Online business has become popular recently due to the massive amount of information and medium available on the Internet. This has resulted in the huge number of reviews where the consumers share their opinion, criticisms, and satisfaction on the products they have purchased on the websites or the social media such as Facebook and Twitter. However, to analyze customer’s behavior has become very important for organizations to find new market trends and insights. The reviews from the websites or the social media are in structured and unstructured data that need a sentiment analysis approach in analyzing customer’s review. In this article, techniques used in will be defined. Definition of the ontology and description of its possible usage in sentiment analysis will be defined. It will lead to empirical research that related to mobile phones used in research and the ontology used in the experiment. The researcher also will explore the role of preprocessing data and feature selection methodology. As the result, ontology-based approach in sentiment analysis can help in achieving high accuracy for the classification task.Keywords: feature selection, ontology, opinion, preprocessing data, sentiment analysis
Procedia PDF Downloads 2001236 Leveraging Sentiment Analysis for Quality Improvement in Digital Healthcare Services
Authors: Naman Jain, Shaun Fernandes
Abstract:
With the increasing prevalence of online healthcare services, selecting the most suitable doctor has become a complex task, requiring careful consideration of both public sentiment and personal preferences. This paper proposes a sentiment analysis-driven method that integrates public reviews with user-specific criteria and correlated attributes to recommend online doctors. By leveraging Natural Language Processing (NLP) techniques, public sentiment is extracted from online reviews, which is then combined with user-defined preferences such as specialty, years of experience, location, and consultation fees. Additionally, correlated attributes like education and certifications are incorporated to enhance the recommendation accuracy. Experimental results demonstrate that the proposed system significantly improves user satisfaction by providing personalized doctor recommendations that align with both public opinion and individual needs.Keywords: sentiment analysis, online doctors, personal preferences, correlated attributes, recommendation system, healthcare, natural language processing
Procedia PDF Downloads 51235 Mutiple Medical Landmark Detection on X-Ray Scan Using Reinforcement Learning
Authors: Vijaya Yuvaram Singh V M, Kameshwar Rao J V
Abstract:
The challenge with development of neural network based methods for medical is the availability of data. Anatomical landmark detection in the medical domain is a process to find points on the x-ray scan report of the patient. Most of the time this task is done manually by trained professionals as it requires precision and domain knowledge. Traditionally object detection based methods are used for landmark detection. Here, we utilize reinforcement learning and query based method to train a single agent capable of detecting multiple landmarks. A deep Q network agent is trained to detect single and multiple landmarks present on hip and shoulder from x-ray scan of a patient. Here a single agent is trained to find multiple landmark making it superior to having individual agents per landmark. For the initial study, five images of different patients are used as the environment and tested the agents performance on two unseen images.Keywords: reinforcement learning, medical landmark detection, multi target detection, deep neural network
Procedia PDF Downloads 1421234 Initial Dip: An Early Indicator of Neural Activity in Functional Near Infrared Spectroscopy Waveform
Authors: Mannan Malik Muhammad Naeem, Jeong Myung Yung
Abstract:
Functional near infrared spectroscopy (fNIRS) has a favorable position in non-invasive brain imaging techniques. The concentration change of oxygenated hemoglobin and de-oxygenated hemoglobin during particular cognitive activity is the basis for this neuro-imaging modality. Two wavelengths of near-infrared light can be used with modified Beer-Lambert law to explain the indirect status of neuronal activity inside brain. The temporal resolution of fNIRS is very good for real-time brain computer-interface applications. The portability, low cost and an acceptable temporal resolution of fNIRS put it on a better position in neuro-imaging modalities. In this study, an optimization model for impulse response function has been used to estimate/predict initial dip using fNIRS data. In addition, the activity strength parameter related to motor based cognitive task has been analyzed. We found an initial dip that remains around 200-300 millisecond and better localize neural activity.Keywords: fNIRS, brain-computer interface, optimization algorithm, adaptive signal processing
Procedia PDF Downloads 2261233 Relative Clause Attachment Ambiguity Resolution in L2: the Role of Semantics
Authors: Hamideh Marefat, Eskandar Samadi
Abstract:
This study examined the effect of semantics on processing ambiguous sentences containing Relative Clauses (RCs) preceded by a complex Determiner Phrase (DP) by Persian-speaking learners of L2 English with different proficiency and Working Memory Capacities (WMCs). The semantic relationship studied was one between the subject of the main clause and one of the DPs in the complex DP to see if, as predicted by Spreading Activation Model, priming one of the DPs through this semantic manipulation affects the L2ers’ preference. The results of a task using Rapid Serial Visual Processing (time-controlled paradigm) showed that manipulation of the relationship between the subject of the main clause and one of the DPs in the complex DP preceding RC has no effect on the choice of the antecedent; rather, the L2ers' processing is guided by the phrase structure information. Moreover, while proficiency did not have any effect on the participants’ preferences, WMC brought about a difference in their preferences, with a DP1 preference by those with a low WMC. This finding supports the chunking hypothesis and the predicate proximity principle, which is the strategy also used by monolingual Persian speakers.Keywords: semantics, relative clause processing, ambiguity resolution, proficiency, working memory capacity
Procedia PDF Downloads 6231232 Self-Supervised Pretraining on Sequences of Functional Magnetic Resonance Imaging Data for Transfer Learning to Brain Decoding Tasks
Authors: Sean Paulsen, Michael Casey
Abstract:
In this work we present a self-supervised pretraining framework for transformers on functional Magnetic Resonance Imaging (fMRI) data. First, we pretrain our architecture on two self-supervised tasks simultaneously to teach the model a general understanding of the temporal and spatial dynamics of human auditory cortex during music listening. Our pretraining results are the first to suggest a synergistic effect of multitask training on fMRI data. Second, we finetune the pretrained models and train additional fresh models on a supervised fMRI classification task. We observe significantly improved accuracy on held-out runs with the finetuned models, which demonstrates the ability of our pretraining tasks to facilitate transfer learning. This work contributes to the growing body of literature on transformer architectures for pretraining and transfer learning with fMRI data, and serves as a proof of concept for our pretraining tasks and multitask pretraining on fMRI data.Keywords: transfer learning, fMRI, self-supervised, brain decoding, transformer, multitask training
Procedia PDF Downloads 901231 Development of Risk-Based Dam Safety Framework in Climate Change Condition for Batu Dam, Malaysia
Authors: Wan Noorul Hafilah Binti Wan Ariffin
Abstract:
Dam safety management is the crucial infrastructure as dam failure has a catastrophic effect on the community. Dam safety management is the effective framework of key actions and activities for the dam owner to manage the safety of the dam for its entire life cycle. However, maintaining dam safety is a challenging task as there are changes in current dam states. These changes introduce new risks to the dam's safety, which had not been considered when the dam was designed. A new framework has to be developed to adapt to the changes in the dam risk and make the dams resilient. This study proposes a risk-based decision-making adaptation framework for dam safety management. The research focuses on climate change's impact on hydrological situations as it causes floods and damages the dam structure. The risk analysis framework is adopted to improve the dam management strategies. The proposed study encompasses four phases. To start with, measuring the effect by assessing the impact of climate change on embankment dam, the second phase is to analyze the potential embankment dam failures. The third is analyzing the different components of risks related to the dam and, finally, developing a robust decision-making framework.Keywords: climate change, embankment dam, failure, risk-informed decision making
Procedia PDF Downloads 1661230 Medical Knowledge Management since the Integration of Heterogeneous Data until the Knowledge Exploitation in a Decision-Making System
Authors: Nadjat Zerf Boudjettou, Fahima Nader, Rachid Chalal
Abstract:
Knowledge management is to acquire and represent knowledge relevant to a domain, a task or a specific organization in order to facilitate access, reuse and evolution. This usually means building, maintaining and evolving an explicit representation of knowledge. The next step is to provide access to that knowledge, that is to say, the spread in order to enable effective use. Knowledge management in the medical field aims to improve the performance of the medical organization by allowing individuals in the care facility (doctors, nurses, paramedics, etc.) to capture, share and apply collective knowledge in order to make optimal decisions in real time. In this paper, we propose a knowledge management approach based on integration technique of heterogeneous data in the medical field by creating a data warehouse, a technique of extracting knowledge from medical data by choosing a technique of data mining, and finally an exploitation technique of that knowledge in a case-based reasoning system.Keywords: data warehouse, data mining, knowledge discovery in database, KDD, medical knowledge management, Bayesian networks
Procedia PDF Downloads 3951229 General Awareness of Teenagers in Information Security
Authors: Magdaléna Náplavová, Tomáš Ludík, Petr Hrůza, František Božek
Abstract:
The use of IT equipment has become a part of every day. However, each device that is part of cyberspace should be secured against unauthorized use. It is very important to know the basics of these security devices, but also the basics of safe conduct their owners. This information should be part of every curriculum computer science education in primary and secondary schools. Therefore, the work focuses on the education of pupils in primary and secondary schools on the Internet. Analysis of the current state describes approaches to the education of pupils in security issues on the Internet. The paper presents a questionnaire-based survey which was carried out in the Czech Republic, whose task was to ascertain the level of opinion pupils in primary and secondary schools on the issue of communication in social networks. The research showed that awareness of socio-pathological phenomena on the Internet environment is very low. Based on the results it was proposed appropriate ways of teaching to this issue and its inclusion a proposal of curriculum for primary and secondary schools.Keywords: information security, cyber space, general awareness, questionnaire, socio-pathological phenomena, educational system
Procedia PDF Downloads 3901228 Feature-Based Summarizing and Ranking from Customer Reviews
Authors: Dim En Nyaung, Thin Lai Lai Thein
Abstract:
Due to the rapid increase of Internet, web opinion sources dynamically emerge which is useful for both potential customers and product manufacturers for prediction and decision purposes. These are the user generated contents written in natural languages and are unstructured-free-texts scheme. Therefore, opinion mining techniques become popular to automatically process customer reviews for extracting product features and user opinions expressed over them. Since customer reviews may contain both opinionated and factual sentences, a supervised machine learning technique applies for subjectivity classification to improve the mining performance. In this paper, we dedicate our work is the task of opinion summarization. Therefore, product feature and opinion extraction is critical to opinion summarization, because its effectiveness significantly affects the identification of semantic relationships. The polarity and numeric score of all the features are determined by Senti-WordNet Lexicon. The problem of opinion summarization refers how to relate the opinion words with respect to a certain feature. Probabilistic based model of supervised learning will improve the result that is more flexible and effective.Keywords: opinion mining, opinion summarization, sentiment analysis, text mining
Procedia PDF Downloads 3321227 Empowering Learners: From Augmented Reality to Shared Leadership
Authors: Vilma Zydziunaite, Monika Kelpsiene
Abstract:
In early childhood and preschool education, play has an important role in learning and cognitive processes. In the context of a changing world, personal autonomy and the use of technology are becoming increasingly important for the development of a wide range of learner competencies. By integrating technology into learning environments, the educational reality is changed, promoting unusual learning experiences for children through play-based activities. Alongside this, teachers are challenged to develop encouragement and motivation strategies that empower children to act independently. The aim of the study was to reveal the changes in the roles and experiences of teachers in the application of AR technology for the enrichment of the learning process. A quantitative research approach was used to conduct the study. The data was collected through an electronic questionnaire. Participants: 319 teachers of 5-6-year-old children using AR technology tools in their educational process. Methods of data analysis: Cronbach alpha, descriptive statistical analysis, normal distribution analysis, correlation analysis, regression analysis (SPSS software). Results. The results of the study show a significant relationship between children's learning and the educational process modeled by the teacher. The strongest predictor of child learning was found to be related to the role of the educator. Other predictors, such as pedagogical strategies, the concept of AR technology, and areas of children's education, have no significant relationship with child learning. The role of the educator was found to be a strong determinant of the child's learning process. Conclusions. The greatest potential for integrating AR technology into the teaching-learning process is revealed in collaborative learning. Teachers identified that when integrating AR technology into the educational process, they encourage children to learn from each other, develop problem-solving skills, and create inclusive learning contexts. A significant relationship has emerged - how the changing role of the teacher relates to the child's learning style and the aspiration for personal leadership and responsibility for their learning. Teachers identified the following key roles: observer of the learning process, proactive moderator, and creator of the educational context. All these roles enable the learner to become an autonomous and active participant in the learning process. This provides a better understanding and explanation of why it becomes crucial to empower the learner to experiment, explore, discover, actively create, and foster collaborative learning in the design and implementation of the educational content, also for teachers to integrate AR technologies and the application of the principles of shared leadership. No statistically significant relationship was found between the understanding of the definition of AR technology and the teacher’s choice of role in the learning process. However, teachers reported that their understanding of the definition of AR technology influences their choice of role, which has an impact on children's learning.Keywords: teacher, learner, augmented reality, collaboration, shared leadership, preschool education
Procedia PDF Downloads 401226 Global Processes and Georgian Economic Policy
Authors: Anzor Abralava, Ketevan Kokrashvili, Rusudan Kutateladze, Nino Pailodze, Ketevan Kutateladze, Giorgi Sulashvili
Abstract:
Nowadays when the integration of states is growing fast, it is urgent to study the rules of behavior which they resort to in case of conflicts and disagreements. The reason of disagreement in many ways is the Foreign policy carried out by separate countries, as the market participants define production and export capacity and structure as well as level of international division of labor due to the competition among them. We can say over and over again that outbreak of conflicts in Georgia displays the serious controversy between political and economic powerhouses. However, to tell the truth existence of the unsolved conflicts in Georgia is the result of weakness and inadequacy of Georgian politics. Today the main task of political quarters in Georgia should be a direction to Caucasus, as to the region burdened with the most complicated problems which blockade the settlement of conflicts and farther development of our country (or vice versa). In this situation rehabilitation of our authority, leading role and hegemony; expansion and consolidation of peacekeeping and other missions are considered as the exact activities for accomplishing all Georgian economic and political goals.Keywords: Awara Group, political centers, administrative services, dynamic process
Procedia PDF Downloads 2771225 Fast and Accurate Model to Detect Ictal Waveforms in Electroencephalogram Signals
Authors: Piyush Swami, Bijaya Ketan Panigrahi, Sneh Anand, Manvir Bhatia, Tapan Gandhi
Abstract:
Visual inspection of electroencephalogram (EEG) signals to detect epileptic signals is very challenging and time-consuming task even for any expert neurophysiologist. This problem is most challenging in under-developed and developing countries due to shortage of skilled neurophysiologists. In the past, notable research efforts have gone in trying to automate the seizure detection process. However, due to high false alarm detections and complexity of the models developed so far, have vastly delimited their practical implementation. In this paper, we present a novel scheme for epileptic seizure detection using empirical mode decomposition technique. The intrinsic mode functions obtained were then used to calculate the standard deviations. This was followed by probability density based classifier to discriminate between non-ictal and ictal patterns in EEG signals. The model presented here demonstrated very high classification rates ( > 97%) without compromising the statistical performance. The computation timings for each testing phase were also very low ( < 0.029 s) which makes this model ideal for practical applications.Keywords: electroencephalogram (EEG), epilepsy, ictal patterns, empirical mode decomposition
Procedia PDF Downloads 4061224 Commercialization of Technologies, Productivity and Problems of Technological Audit in the Russian Economy
Authors: E. A. Tkachenko, E. M. Rogova, A. S. Osipenko
Abstract:
The problems of technological development for the Russian Federation take on special significance in the context of modernization of the production base. The complexity of the position of the Russian economy is that it cannot be attributed fully to developing ones. Russia is a strong industrial power that has gone through the processes of destructive de-industrialization in the conditions of changing its economic and political structure. The need to find ways for re-industrialization is not a unique task for the economies of industrially developed countries. Under the influence of production outsourcing for 20 years, the industrial potential of leading economies of the world was regressed against the backdrop of the ascent of China, a new industrial giant. Therefore, methods, tools, and techniques utilized for industrial renaissance in EU may be used to achieve a technological leap in the Russian Federation, especially since the temporary gap of 5-7 years makes it possible to analyze best practices and use those technological transfer tools that have shown the greatest efficiency. In this article, methods of technological transfer are analyzed, the role of technological audit is justified, and factors are analyzed that influence the successful process of commercialization of technologies.Keywords: technological transfer, productivity, technological audit, commercialization of technologies
Procedia PDF Downloads 2141223 Study and Solving Partial Differential Equation of Danel Equation in the Vibration Shells
Authors: Hesamoddin Abdollahpour, Roghayeh Abdollahpour, Elham Rahgozar
Abstract:
This paper we deal with an analysis of the free vibrations of the governing partial differential equation that it is Danel equation in the shells. The problem considered represents the governing equation of the nonlinear, large amplitude free vibrations of the hinged shell. A new implementation of the new method is presented to obtain natural frequency and corresponding displacement on the shell. Our purpose is to enhance the ability to solve the mentioned complicated partial differential equation (PDE) with a simple and innovative approach. The results reveal that this new method to solve Danel equation is very effective and simple, and can be applied to other nonlinear partial differential equations. It is necessary to mention that there are some valuable advantages in this way of solving nonlinear differential equations and also most of the sets of partial differential equations can be answered in this manner which in the other methods they have not had acceptable solutions up to now. We can solve equation(s), and consequently, there is no need to utilize similarity solutions which make the solution procedure a time-consuming task.Keywords: large amplitude, free vibrations, analytical solution, Danell Equation, diagram of phase plane
Procedia PDF Downloads 3201222 Dual-Channel Reliable Breast Ultrasound Image Classification Based on Explainable Attribution and Uncertainty Quantification
Authors: Haonan Hu, Shuge Lei, Dasheng Sun, Huabin Zhang, Kehong Yuan, Jian Dai, Jijun Tang
Abstract:
This paper focuses on the classification task of breast ultrasound images and conducts research on the reliability measurement of classification results. A dual-channel evaluation framework was developed based on the proposed inference reliability and predictive reliability scores. For the inference reliability evaluation, human-aligned and doctor-agreed inference rationals based on the improved feature attribution algorithm SP-RISA are gracefully applied. Uncertainty quantification is used to evaluate the predictive reliability via the test time enhancement. The effectiveness of this reliability evaluation framework has been verified on the breast ultrasound clinical dataset YBUS, and its robustness is verified on the public dataset BUSI. The expected calibration errors on both datasets are significantly lower than traditional evaluation methods, which proves the effectiveness of the proposed reliability measurement.Keywords: medical imaging, ultrasound imaging, XAI, uncertainty measurement, trustworthy AI
Procedia PDF Downloads 1011221 The Neuropsychology of Obsessive Compulsion Disorder
Authors: Mia Bahar, Özlem Bozkurt
Abstract:
Obsessive-compulsive disorder (OCD) is a typical, persistent, and long-lasting mental health condition in which a person experiences uncontrollable, recurrent thoughts (or "obsessions") and/or activities (or "compulsions") that they feel compelled to engage in repeatedly. Obsessive-compulsive disorder is both underdiagnosed and undertreated. It frequently manifests in a variety of medical settings and is persistent, expensive, and burdensome. Obsessive-compulsive neurosis was long believed to be a condition that offered valuable insight into the inner workings of the unconscious mind. Obsessive-compulsive disorder is now recognized as a prime example of a neuropsychiatric condition susceptible to particular pharmacotherapeutic and psychotherapy therapies and mediated by pathology in particular neural circuits. An obsessive-compulsive disorder which is called OCD, usually has two components, one cognitive and the other behavioral, although either can occur alone. Obsessions are often repetitive and intrusive thoughts that invade consciousness. These obsessions are incredibly hard to control or dismiss. People who have OCD often engage in rituals to reduce anxiety associated with intrusive thoughts. Once the ritual is formed, the person may feel extreme relief and be free from anxiety until the thoughts of contamination intrude once again. These thoughts are strengthened through a manifestation of negative reinforcement because they allow the person to avoid anxiety and obscurity. These thoughts are described as autogenous, meaning they most likely come from nowhere. These unwelcome thoughts are related to actions which we can describe as Thought Action Fusion. The thought becomes equated with an action, such as if they refuse to perform the ritual, something bad might happen, and so people perform the ritual to escape the intrusive thought. In almost all cases of OCD, the person's life gets extremely disturbed by compulsions and obsessions. Studies show OCD is an estimated 1.1% prevalence, making it a challenging issue with high co-morbidities with other issues like depressive episodes, panic disorders, and specific phobias. The first to reveal brain anomalies in OCD were numerous CT investigations, although the results were inconsistent. A few studies have focused on the orbitofrontal cortex (OFC), anterior cingulate gyrus (AC), and thalamus, structures also implicated in the pathophysiology of OCD by functional neuroimaging studies, but few have found consistent results. However, some studies have found abnormalities in the basal ganglion. There have also been some discussions that OCD might be genetic. OCD has been linked to families in studies of family aggregation, and findings from twin studies show that this relationship is somewhat influenced by genetic variables. Some Research has shown that OCD is a heritable, polygenic condition that can result from de novo harmful mutations as well as common and unusual variants. Numerous studies have also presented solid evidence in favor of a significant additive genetic component to OCD risk, with distinct OCD symptom dimensions showing both common and individual genetic risks.Keywords: compulsions, obsessions, neuropsychiatric, genetic
Procedia PDF Downloads 641220 A Study of Flipped Classroom’s Influence on Classroom Environment of College English Reading, Writing and Translating
Authors: Xian Xie, Qinghua Fang
Abstract:
This study used quantitative and qualitative methods to explore the characteristics of flipped classroom’s influence on classroom environment of college English reading, writing, and translating, and to summarize and reflect on the teaching characteristics of college English Reading, writing, and translating. The results of the study indicated that after the flipped classroom applied to reading, writing, and translating, students’ performance was improved to a certain extent, the classroom environment was improved to some extent, students of the flipped classroom are generally satisfied with the classroom environment; students showed a certain degree of individual differences to the degree of cooperation, participation, self-responsibility, task-orientation, and the teacher leadership and innovation. The study indicated that the implementation of flipped classroom teaching mode can optimize College English reading, writing, and translating classroom environment and realize target-learner as the center in foreign language teaching and learning, but bring a greater challenge to teachers.Keywords: classroom environment, college English reading, writing and translating, individual differences, flipped classroom
Procedia PDF Downloads 2651219 Energy Consumption Forecast Procedure for an Industrial Facility
Authors: Tatyana Aleksandrovna Barbasova, Lev Sergeevich Kazarinov, Olga Valerevna Kolesnikova, Aleksandra Aleksandrovna Filimonova
Abstract:
We regard forecasting of energy consumption by private production areas of a large industrial facility as well as by the facility itself. As for production areas the forecast is made based on empirical dependencies of the specific energy consumption and the production output. As for the facility itself implementation of the task to minimize the energy consumption forecasting error is based on adjustment of the facility’s actual energy consumption values evaluated with the metering device and the total design energy consumption of separate production areas of the facility. The suggested procedure of optimal energy consumption was tested based on the actual data of core product output and energy consumption by a group of workshops and power plants of the large iron and steel facility. Test results show that implementation of this procedure gives the mean accuracy of energy consumption forecasting for winter 2014 of 0.11% for the group of workshops and 0.137% for the power plants.Keywords: energy consumption, energy consumption forecasting error, energy efficiency, forecasting accuracy, forecasting
Procedia PDF Downloads 4461218 A Study to Connect the Objective Interface Design Characters To Ergonomic Safety
Authors: Gaoguang Yang, Shan Fu
Abstract:
Human-machine interface (HMI) intermediate system information to human operators to facilitate human ability to manage and control the system. Well-designed HMI would enhance human ability. An evaluation must be performed to confirm that the designed HMI would enhance but not degrade human ability. However, the prevalent HMI evaluation techniques have difficulties in more thoroughly and accurately evaluating the suitability and fitness of a given HMI for the wide variety of uncertainty contained in both the existing HMI evaluation techniques and the large number of task scenarios. The first limitation should be attributed to the subjective and qualitative analysis characteristics of these evaluation methods, and the second one should be attributed to the cost balance. This study aims to explore the connection between objective HMI characters and ergonomic safety and step forward toward solving these limitations with objective, characterized HMI parameters. A simulation experiment was performed with the time needed for human operators to recognize the HMI information as characterized HMI parameter, and the result showed a strong correlation between the parameter and ergonomic safety level.Keywords: Human-Machine Interface (HMI), evaluation, objective, characterization, simulation
Procedia PDF Downloads 661217 Enhancement of Visual Comfort Using Parametric Double Skin Façade
Authors: Ahmed A. Khamis, Sherif A. Ibrahim, Mahmoud El Khatieb, Mohamed A. Barakat
Abstract:
Parametric design is an icon of the modern architectural that facilitate taking complex design decisions counting on altering various design parameters. Double skin facades are one of the parametric applications for using parametric designs. This paper opts to enhance different daylight parameters of a selected case study office building in Cairo using parametric double skin facade. First, the design and optimization process executed utilizing Grasshopper parametric design software which is a plugin in rhino. The daylighting performance of the base case building model was compared with the one used the double façade showing an enhancement in daylighting performance indicators like glare and task illuminance in the modified model, execution drawings are made for the optimized design to be executed through Revit, followed by computerized digital fabrication stages of the designed model with various scales to reach the final design decisions using Simplify 3D for mock-up digital fabricationKeywords: parametric design, double skin facades, digital fabrication, grasshopper, simplify 3D
Procedia PDF Downloads 1181216 Super-ellipsoidal Potential Function for Autonomous Collision Avoidance of a Teleoperated UAV
Authors: Mohammed Qasim, Kyoung-Dae Kim
Abstract:
In this paper, we present the design of the super-ellipsoidal potential function (SEPF), that can be used for autonomous collision avoidance of an unmanned aerial vehicle (UAV) in a 3-dimensional space. In the design of SEPF, we have the full control over the shape and size of the potential function. In particular, we can adjust the length, width, height, and the amount of flattening at the tips of the potential function so that the collision avoidance motion vector generated from the potential function can be adjusted accordingly. Based on the idea of the SEPF, we also propose an approach for the local autonomy of a UAV for its collision avoidance when the UAV is teleoperated by a human operator. In our proposed approach, a teleoperated UAV can not only avoid collision autonomously with other surrounding objects but also track the operator’s control input as closely as possible. As a result, an operator can always be in control of the UAV for his/her high-level guidance and navigation task without worrying too much about the UAVs collision avoidance while it is being teleoperated. The effectiveness of the proposed approach is demonstrated through a human-in-the-loop simulation of quadrotor UAV teleoperation using virtual robot experimentation platform (v-rep) and Matlab programs.Keywords: artificial potential function, autonomous collision avoidance, teleoperation, quadrotor
Procedia PDF Downloads 399