Search results for: transient ischemic attack
143 Proposing Smart Clothing for Addressing Criminal Acts Against Women in South Africa
Authors: Anne Mastamet-Mason
Abstract:
Crimes against women is a global concern, and South Africa, in particular, is in a dilemma of dealing with constant criminal acts that face the country. Debates on violence against women in South Africa cannot be overemphasised any longer as crimes continue to rise year by year. The recent death of a university student at the University of Cape Town, as well as many other cases, continues to strengthen the need to find solutions from all the spheres of South African society. The advanced textiles market contains a high number and variety of technologies, many of which have protected status and constitute a relatively small portion of the textiles used for the consumer market. Examples of advanced textiles include nanomaterials, such as silver, titanium dioxide and zinc oxide, designed to create an anti-microbial and self-cleaning layer on top of the fibers, thereby reducing body smell and soiling. Smart textiles propose materials and fabrics versatile and adaptive to different situations and functions. Integrating textiles and computing technologies offer an opportunity to come up with differentiated characteristics and functionality. This paper presents a proposal to design a smart camisole/Yoga sports brazier and a smart Yoga sports pant garment to be worn by women while alone and while in purported danger zones. The smart garments are to be worn under normal clothing and cannot be detected or seen, or suspected by perpetrators. The garments are imbued with devices to sense any physical aggression and any abnormal or accelerated heartbeat that may be exhibited by the victim of violence. The signals created during the attack can be transmitted to the police and family members who own a mobile application system that accepts signals emitted. The signals direct the receiver to the exact location of the offence, and the victim can be rescued before major violations are committed. The design of the Yoga sports garments will be done by Professor Mason, who is a fashion designer by profession, while the mobile phone application system will be developed by Mr. Amos Yegon, who is an independent software developer.Keywords: smart clothing, wearable technology, south africa, 4th industrial revolution
Procedia PDF Downloads 203142 The Aspect of Animal Welfare in Garut Ram’s Event (Seni Ketangkasan Domba Garut) in Indonesia
Authors: Aliyatul Widyan, Denie Heriyadi, An An Nurmeidiansyah
Abstract:
Garut Sheep is a commodity of sheep originally from West Java Indonesia, specifically it has combination rumpung ears less than 4 cm or ngadaun hiris (4-8cm) with ngabuntut bagong, or ngabuntut beurit. West Java culture diversity one of those is the Garut Ram’s Art and Fighting Contest. Garut Ram’s Art and Fighting Contest is an activity of competitive fighting between sheep which comes from Garut. The method used is a survey method in which watching and directly interviewing the farmers who competed in the event. This activity had some aspects of animal welfare in the context of the assessment of the fighting sheep, which are health 10%, performance and body conformation called adeg-adeg 25%, courage 10%, technical field 30% called with teknik pamidangan, technical crash 25%, the health assessment is the assessment conducted during registration by showing a letter issued by related agency declaring that the sheep is eligible to compete in the event, and then when the fighting time the health also will be assessed. Adeg-adeg assessed an aspect of conformity assessment of body posture Garut ram from the physical performance is assessed on the body posture, horn, and the face. Technical of pamidangan assessed by the harmony of music and the movement of sheep to carry out the attack. Courage is assessed based on a mental condition and stamina when the fighting time, in addition to the assessments the activity has some other the component of culture and arts, such as, the audience called bobotoh, the clothes worn called pangsi, tarumpah or sandals, belts, and totopong, hats called laken, instructor of the match, and nayaga or group of people who play traditional Sundanese music to accompany this activity. Art aspect of animal welfare of this activity included the percentage of stroke technique is only around 25%, it makes the beauty of this art is not only measured by the Technical crash but also health, courage, and technique in the field has the highest mark in the assessment with 75 %, the event is certainly very different from sports such as boxing, taekwondo, karate or other martial sports which 100% only based on stroke or crash technique. Local culture value of Garut Ram’s Art and Fighting Contest results in the art of the local animal welfare.Keywords: Garut sheep, Indonesia, the art of Garut Ram’s Art and Fighting Contest , animal welfare
Procedia PDF Downloads 307141 Localized and Time-Resolved Velocity Measurements of Pulsatile Flow in a Rectangular Channel
Authors: R. Blythman, N. Jeffers, T. Persoons, D. B. Murray
Abstract:
The exploitation of flow pulsation in micro- and mini-channels is a potentially useful technique for enhancing cooling of high-end photonics and electronics systems. It is thought that pulsation alters the thickness of the hydrodynamic and thermal boundary layers, and hence affects the overall thermal resistance of the heat sink. Although the fluid mechanics and heat transfer are inextricably linked, it can be useful to decouple the parameters to better understand the mechanisms underlying any heat transfer enhancement. Using two-dimensional, two-component particle image velocimetry, the current work intends to characterize the heat transfer mechanisms in pulsating flow with a mean Reynolds number of 48 by experimentally quantifying the hydrodynamics of a generic liquid-cooled channel geometry. Flows circulated through the test section by a gear pump are modulated using a controller to achieve sinusoidal flow pulsations with Womersley numbers of 7.45 and 2.36 and an amplitude ratio of 0.75. It is found that the transient characteristics of the measured velocity profiles are dependent on the speed of oscillation, in accordance with the analytical solution for flow in a rectangular channel. A large velocity overshoot is observed close to the wall at high frequencies, resulting from the interaction of near-wall viscous stresses and inertial effects of the main fluid body. The steep velocity gradients at the wall are indicative of augmented heat transfer, although the local flow reversal may reduce the upstream temperature difference in heat transfer applications. While unsteady effects remain evident at the lower frequency, the annular effect subsides and retreats from the wall. The shear rate at the wall is increased during the accelerating half-cycle and decreased during deceleration compared to steady flow, suggesting that the flow may experience both enhanced and diminished heat transfer during a single period. Hence, the thickness of the hydrodynamic boundary layer is reduced for positively moving flow during one half of the pulsation cycle at the investigated frequencies. It is expected that the size of the thermal boundary layer is similarly reduced during the cycle, leading to intervals of heat transfer enhancement.Keywords: Heat transfer enhancement, particle image velocimetry, localized and time-resolved velocity, photonics and electronics cooling, pulsating flow, Richardson’s annular effect
Procedia PDF Downloads 345140 Economic of Chickpea Cultivars as Influenced by Sowing Time and Seed Rate
Authors: Indu Bala Sethi, Meena Sewhag, Rakesh Kumar, Parveen Kumar
Abstract:
Field experiment was conducted at Pulse Research Area of CCS Haryana Agricultural University, Hisar during rabi 2012-13 to study the economics of chickpea cultivars as influenced by sowing time and seed rate on sandy loam soils under irrigated conditions. The factorial experiment consisting of 24 treatment combinations with two sowing time (1st fortnight of November and 1st fortnight of December.) and four cultivars (H09-23, H08-18, C-235 and HC-1) kept in main plots while three seed rates viz. 40 kg ha-1, 50 kg ha-1 and 60 kg ha-1 was laid out in split plot design with three replications. The crop was sown with common row spacing of 30 cm as per the dates of sowing. The fertilizer was applied in the form of di- ammonium phosphate. The soil of the experimental site was deep sandy loam having pH of 7.9, EC of 0.13 dS/m and low in organic carbon (0.34%), low in available N status (193.36 kg ha-1), medium in available P2O5 (32.18 kg ha-1) and high in available K2O (249.67 kg ha-1). The crop was irrigated as and when required so as to maintain adequate soil moisture in the root zone The crop was sprayed with monocrotophos (1.25 l/ha) at initiation of flowering and at pod filling stage to protect the crop from pod borer attack. The yield was measured at the time of harvest. The cost of field preparation, sowing of seeds, thinning, weeding, plant protection, harvesting and cleaning contributed to fixed cost. The experiment was laid out in a split plot design with two sowing time (1st fortnight of November and 1st fortnight of December.) and four cultivars (H09-23, H08-18, C-235 and HC-1) kept in main plots while three seed rates viz. 40 kg ha-1, 50 kg ha-1 and 60 kg ha-1 were kept in subplots and replicated thrice. Results revealed that 1st fortnight of November sowing recorded significantly higher gross (Rs.1, 01,254 ha-1), net returns (Rs. 68,504 ha-1) and BC (3.09) ratio as compared to delayed crop of chickpea. Highest gross (Rs.91826 ha-1), net returns (Rs. 59076ha-1) and BC ratio (2.81) was recorded with H08-18. Higher value of cost of cultivation of chickpea was observed in higher seed rate than the lower ones. However no significant variation in net and gross returns was observed due to seed rates. Highest BC (2.72) ratio was recorded with 50 kg ha-1 which differs significantly from 60 kg ha-1 but was at par with 40 kg ha-1. This is because of higher grain yield obtained with 50 kg ha-1 seed rate. Net profit for farmers growing chickpea with seed rate of 50 kg ha-1 was higher than the farmers growing chickpea with seed rate of 40 and 60 kg ha.Keywords: chickpea, cultivars, seed rate, sowing time
Procedia PDF Downloads 441139 Malaria Outbreak Facilitated by Appearance of Vector-Breeding Sites after Heavy Rainfall and Inadequate Preventive Measures: Nwoya District, Uganda, March–May 2018
Authors: Godfrey Nsereko, Daniel Kadobera, Denis Okethwangu, Joyce Nguna, Alex Riolexus Ario
Abstract:
Background: Malaria is a leading cause of morbidity and mortality in Uganda. In April 2018, malaria cases surged in Nwoya District, northern Uganda, exceeding the action thresholds. We investigated to assess the outbreak’s magnitude, identify transmission risk factors, and recommend evidence-based control measures. Methods: We defined a malaria case as onset of fever in a resident of Nwoya District with a positive Rapid Diagnostic Test or microscopy for malaria P. falciparum from 1 February to 22 May 2018. We reviewed medical records in all health facilities of affected sub-counties to find cases. In a case-control study, we compared exposure risk factors between 107 case-persons and 107 asymptomatic controls matched by age and village. We conducted entomological assessment on vector-density and behavior. Results: We identified 3,879 case-persons (attack rate [AR]=6.5%) and 2 deaths (case-fatality rate=5.2/10,000). Females (AR=8.1%) were more affected than males (AR=4.7%). Of all age groups, the 5-18 year age group (AR=8.4%) was most affected. Heavy rain started on 4 March; a propagated outbreak began during the week of 2 April. In the case-control study, 55% (59/107) of case-patients and 18% (19/107) of controls had stagnant water around households for several days following rainfall (ORM-H=5.6, 95%CI=3.0-11); 25% (27/107) of case-patients and 51% (55/107) of controls wore long-sleeve cloths during evening hours (ORM-H=0.30, 95%CI=0.20-0.60); 29% (31/107) of case-patients and 15% (16/107) of controls did not sleep under a long-lasting insecticide-treated net (LLIN) (ORM-H=2.3, 95%CI=1.1-4.9); 37% (40/107) of case-patients and 52% (56/107) of controls had ≥1 LLIN per 2 household members (ORM-H=0.54, 95%CI=0.30-0.97). Entomological assessment indicated active breeding sites; Anopheles gambiae sensu lato species were the predominant vector. Conclusion: Increased vector breeding sites after heavy rainfall, together with inadequate malaria preventive measures caused this outbreak. We recommended increasing coverage for LLINs and larviciding breeding sites.Keywords: malaria outbreak, Plasmodium falciparum, global health security, Uganda
Procedia PDF Downloads 224138 Randomized Trial of Tian Jiu Therapy in San Fu Days for Patients with Chronic Asthma
Authors: Libing Zhu, Waichung Chen, Kwaicing Lo, Lei Li
Abstract:
Background: Tian Jiu Therapy (a medicinal vesiculation therapy according to traditional Chinese medicine theory) in San Fu Days (the three hottest days in a year is calculated by the Chinese ancient calendar) is widely used by patients with chronic asthma in China although from modern medicine perspective there is insufficient evidence of its effectiveness and safety issues. We investigated the efficacy and safety of Tian Jiu Therapy compared with placebo in patients with chronic asthma. Methods: Patients with chronic asthma were randomly assigned to Tian Jiu treatment group (n=165), placebo control group (n=158). Registered Chinese Medicine practitioners, in Orthopedics-Traumatology, Acupuncture, and Tui-na Clinical Centre for Teaching and Research, School of Chinese Medicine, The University of Hong Kong, administered Tian Jiu Therapy and placebo treatment in 3 times over 2 months. Patients completed questionnaires and lung function test before treatment and after treatment, 3, 6, 9, and 11 months, respectively. The primary outcome was the no of asthma-related sub-healthy symptoms and the percentage of patients with twenty-three symptoms. Results: 451 patients were recruited totally, 111 patients refused or did not participate according the appointment time and 17 did not meet the inclusion criteria. Consequently, 323 of eligible patients were enrolled. There was nothing difference between Tian Jiu Therapy group and placebo control group at the end of all treatments neither primary nor secondary outcomes. While Tian Jiu Therapy as compared with placebo significantly reduced the percentage of participants who are susceptible waken up by asthma symptoms from 27% to 14% at 2nd follow-up (P < 0.05). Similarly, Tian Jiu Therapy significantly reduced the proportion of participants who had the symptom of running nose and sneezing before onset from 18% to 8% at 2nd follow-up (P < 0.05). Additionally, Tian Jiu Therapy significantly reduced the level of asthma, the proportion of participants who don’t need to processed during asthma attack increased from 6% to 15% at 1st follow-up and 0% to 7% at 3rd follow-up (P < 0.05). Improvements also occurred with Tian Jiu Therapy group, it reduced the proportion of participants who were spontaneously sweating at 3rd follow up and diarrhea after intake of oily food at 4th follow-up (P < 0.05). Conclusion: When added to a regimen of foundational therapy for chronic asthma participants, Tian Jiu Therapy further reduced the need for medications to control asthma, improved the quality of participants’ life, and significantly reduced the level of asthma. What is more, this benefit seems to have an accumulative effect over time was in accordance with the TCM theory of 'winter disease is being cured in summer'.Keywords: asthma, Tian Jiu Therapy, San Fu Days, triaditional Chinese medicine, clinical trial
Procedia PDF Downloads 312137 Preceptor Program: A Way to Reduce Absconding Rate and Increase Patient Satisfaction
Authors: Akanksha Dicholkar, Celin Jacob, Omkar More
Abstract:
Work force instability, as demonstrated by high rates of staff turnover and lingering vacancy rates, continues to be a major challenge faced by health care organizations. The impact is manifested in workflow inefficiencies, delays in delivering patient care, and dissatisfaction among patients and staff, all of which can have significant negative effects on quality of care and patient safety. In addition, the staggering administrative costs created by a transient work force threaten health care organizations financial viability. One nurse retention strategy is to have newly hired nurses partake in Preceptorship. Precepting is a way to enculturate new employees into their role. Also good professional, collegial relationship between an experienced nurse and a newly hired nurse relations was evidenced. This study demonstrates impact of preceptor program on absconding rate, employee satisfaction & Patient satisfaction. Purpose of study: To decrease absconding rate. Objective: 1. To reduce the high absconding rate among nurses in Aster Medcity (AMC). 2. To facilitate the acclimatization of the newly hired nurse into their role, focusing on professional growth, inter-professional relationships and clinical skills required for the job. Methodology: Descriptive study by Convenience sampling method and collect data by direct observation, questionnaire, interviews. Sample size as per Sample size statistical table at 95 % CI. We conducted a pre and post intervention analysis to assess the impact of Preceptorship at AMC, with a daily occupancy of approx. 300 patients. Result: Preceptor program has had a significant improvement positive impact on all measured parameters. Absconding rate came down from 20% to 0% (P= 0.001). Patient satisfaction scores rose from 85% to 95%. Employee satisfaction rose form 65% to 85%. Conclusion: The project proved that Preceptor Development Programme and the steps taken in hand holding of the new joinees were effective in reducing the absconding rate among nurses and improved the overall satisfaction of new nurses. Preceptee satisfaction with the preceptorship experience was correlated with favorable evaluation of the relationship between the preceptee and preceptor. These findings indicate that when preceptors and preceptees have the benefit of formal preceptorship programs that are well supported, and when the preceptors’ efforts are rewarded, satisfaction is enhanced for both participants, preceptor commitment to the role is reinforced.Keywords: absconding rate, preceptor, employee satisfaction index, satisfaction index
Procedia PDF Downloads 305136 Numerical Investigation of Solid Subcooling on a Low Melting Point Metal in Latent Thermal Energy Storage Systems Based on Flat Slab Configuration
Authors: Cleyton S. Stampa
Abstract:
This paper addresses the perspectives of using low melting point metals (LMPMs) as phase change materials (PCMs) in latent thermal energy storage (LTES) units, through a numerical approach. This is a new class of PCMs that has been one of the most prospective alternatives to be considered in LTES, due to these materials present high thermal conductivity and elevated heat of fusion, per unit volume. The chosen type of LTES consists of several horizontal parallel slabs filled with PCM. The heat transfer fluid (HTF) circulates through the channel formed between each two consecutive slabs on a laminar regime through forced convection. The study deals with the LTES charging process (heat-storing) by using pure gallium as PCM, and it considers heat conduction in the solid phase during melting driven by natural convection in the melt. The transient heat transfer problem is analyzed in one arbitrary slab under the influence of the HTF. The mathematical model to simulate the isothermal phase change is based on a volume-averaged enthalpy method, which is successfully verified by comparing its predictions with experimental data from works available in the pertinent literature. Regarding the convective heat transfer problem in the HTF, it is assumed that the flow is thermally developing, whereas the velocity profile is already fully developed. The study aims to learn about the effect of the solid subcooling in the melting rate through comparisons with the melting process of the solid in which it starts to melt from its fusion temperature. In order to best understand this effect in a metallic compound, as it is the case of pure gallium, the study also evaluates under the same conditions established for the gallium, the melting process of commercial paraffin wax (organic compound) and of the calcium chloride hexahydrate (CaCl₂ 6H₂O-inorganic compound). In the present work, it is adopted the best options that have been established by several researchers in their parametric studies with respect to this type of LTES, which lead to high values of thermal efficiency. To do so, concerning with the geometric aspects, one considers a gap of the channel formed by two consecutive slabs, thickness and length of the slab. About the HTF, one considers the type of fluid, the mass flow rate, and inlet temperature.Keywords: flat slab, heat storing, pure metal, solid subcooling
Procedia PDF Downloads 140135 Advancing Entrepreneurial Knowledge Through Re-Engineering Social Studies Education
Authors: Chukwuka Justus Iwegbu, Monye Christopher Prayer
Abstract:
Propeller aircraft engines, and more generally engines with a large rotating part (turboprops, high bypass ratio turbojets, etc.) are widely used in the industry and are subject to numerous developments in order to reduce their fuel consumption. In this context, unconventional architectures such as open rotors or distributed propulsion appear, and it is necessary to consider the influence of these systems on the aircraft's stability in flight. Indeed, the tendency to lengthen the blades and wings on which these propulsion devices are fixed increases their flexibility and accentuates the risk of whirl flutter. This phenomenon of aeroelastic instability is due to the precession movement of the axis of rotation of the propeller, which changes the angle of attack of the flow on the blades and creates unsteady aerodynamic forces and moments that can amplify the motion and make it unstable. The whirl flutter instability can ultimately lead to the destruction of the engine. We note the existence of a critical speed of the incident flow. If the flow velocity is lower than this value, the motion is damped and the system is stable, whereas beyond this value, the flow provides energy to the system (negative damping) and the motion becomes unstable. A simple model of whirl flutter is based on the work of Houbolt & Reed who proposed an analytical expression of the aerodynamic load on a rigid blade propeller whose axis orientation suffers small perturbations. Their work considered a propeller subjected to pitch and yaw movements, a flow undisturbed by the blades and a propeller not generating any thrust in the absence of precession. The unsteady aerodynamic forces were then obtained using the thin airfoil theory and the strip theory. In the present study, the unsteady aerodynamic loads are expressed for a general movement of the propeller (not only pitch and yaw). The acceleration and rotation of the flow by the propeller are modeled using a Blade Element Momentum Theory (BEMT) approach, which also enable to take into account the thrust generated by the blades. It appears that the thrust has a stabilizing effect. The aerodynamic model is further developed using Theodorsen theory. A reduced order model of the aerodynamic load is finally constructed in order to perform linear stability analysis.Keywords: advancing, entrepreneurial, knowledge, industralization
Procedia PDF Downloads 95134 A New Second Tier Screening for Congenital Adrenal Hyperplasia Utilizing One Dried Blood Spot
Authors: Engy Shokry, Giancarlo La Marca, Maria Luisa Della Bona
Abstract:
Newborn screening for Congenital Adrenal Hyperplasia (CAH) relies on quantification of 17α-hydroxyprogesterone using enzyme immunoassays. These assays, in spite of being rapid, readily available and easy to perform, its reliability was found questionable due to lack of selectivity and specificity resulting in large number of false-positives, consequently family anxiety and associated hospitalization costs. To improve specificity of conventional 17α-hydroxyprogesterone screening which may experience false transient elevation in preterm, low birth weight or acutely ill neonates, steroid profiling by LC-MS/MS as a second-tier test was implemented. Unlike the previously applied LC-MS/MS methods, with the disadvantage of requiring a relatively high number of blood drops. Since newborn screening tests are increasing, it is necessary to minimize the sample volume requirement to make the maximum use of blood samples collected on filter paper. The proposed new method requires just one 3.2 mm dried blood spot (DBS) punch. Extraction was done using methanol: water: formic acid (90:10:0.1, v/v/v) containing deuterium labelled internal standards. Extracts were evaporated and reconstituted in 10 % acetone in water. Column switching strategy for on-line sample clean-up was applied to improve the chromatographic run. The first separative step retained the investigated steroids and passed through the majority of high molecular weight impurities. After the valve switching, the investigated steroids are back flushed from the POROS® column onto the analytical column and separated using gradient elution. Found quantitation limits were 5, 10 and 50 nmol/L for 17α-hydroxyprogesterone, androstenedione and cortisol respectively with mean recoveries of between 98.31-103.24 % and intra-/ inter-assay CV% < 10 % except at LLOQ. The method was validated using standard addition calibration and isotope dilution strategies. Reference ranges were determined by analysing samples from 896 infants of various ages at the time of sample collection. The method was also applied on patients with confirmed CAH. Our method represents an attractive combination of low sample volume requirement, minimal sample preparation time without derivatization and quick chromatography (5 min). The three steroid profile and the concentration ratios (17OHP + androstenedione/cortisol) allowed better screening outcomes of CAH reducing false positives, associated costs and anxiety.Keywords: congenital adrenal hyperplasia (CAH), 17α-hydroxyprogesterone, androstenedione, cortisol, LC-MS/MS
Procedia PDF Downloads 437133 Biosensor for Determination of Immunoglobulin A, E, G and M
Authors: Umut Kokbas, Mustafa Nisari
Abstract:
Immunoglobulins, also known as antibodies, are glycoprotein molecules produced by activated B cells that transform into plasma cells and result in them. Antibodies are critical molecules of the immune response to fight, which help the immune system specifically recognize and destroy antigens such as bacteria, viruses, and toxins. Immunoglobulin classes differ in their biological properties, structures, targets, functions, and distributions. Five major classes of antibodies have been identified in mammals: IgA, IgD, IgE, IgG, and IgM. Evaluation of the immunoglobulin isotype can provide a useful insight into the complex humoral immune response. Evaluation and knowledge of immunoglobulin structure and classes are also important for the selection and preparation of antibodies for immunoassays and other detection applications. The immunoglobulin test measures the level of certain immunoglobulins in the blood. IgA, IgG, and IgM are usually measured together. In this way, they can provide doctors with important information, especially regarding immune deficiency diseases. Hypogammaglobulinemia (HGG) is one of the main groups of primary immunodeficiency disorders. HGG is caused by various defects in B cell lineage or function that result in low levels of immunoglobulins in the bloodstream. This affects the body's immune response, causing a wide range of clinical features, from asymptomatic diseases to severe and recurrent infections, chronic inflammation and autoimmunity Transient infant hypogammaglobulinemia (THGI), IgM deficiency (IgMD), Bruton agammaglobulinemia, IgA deficiency (SIgAD) HGG samples are a few. Most patients can continue their normal lives by taking prophylactic antibiotics. However, patients with severe infections require intravenous immune serum globulin (IVIG) therapy. The IgE level may rise to fight off parasitic infections, as well as a sign that the body is overreacting to allergens. Also, since the immune response can vary with different antigens, measuring specific antibody levels also aids in the interpretation of the immune response after immunization or vaccination. Immune deficiencies usually occur in childhood. In Immunology and Allergy clinics, apart from the classical methods, it will be more useful in terms of diagnosis and follow-up of diseases, if it is fast, reliable and especially in childhood hypogammaglobulinemia, sampling from children with a method that is more convenient and uncomplicated. The antibodies were attached to the electrode surface via the poly hydroxyethyl methacrylamide cysteine nanopolymer. It was used to evaluate the anodic peak results obtained in the electrochemical study. According to the data obtained, immunoglobulin determination can be made with a biosensor. However, in further studies, it will be useful to develop a medical diagnostic kit with biomedical engineering and to increase its sensitivity.Keywords: biosensor, immunosensor, immunoglobulin, infection
Procedia PDF Downloads 101132 Identification of Natural Liver X Receptor Agonists as the Treatments or Supplements for the Management of Alzheimer and Metabolic Diseases
Authors: Hsiang-Ru Lin
Abstract:
Cholesterol plays an essential role in the regulation of the progression of numerous important diseases including atherosclerosis and Alzheimer disease so the generation of suitable cholesterol-lowering reagents is urgent to develop. Liver X receptor (LXR) is a ligand-activated transcription factor whose natural ligands are cholesterols, oxysterols and glucose. Once being activated, LXR can transactivate the transcription action of various genes including CYP7A1, ABCA1, and SREBP1c, involved in the lipid metabolism, glucose metabolism and inflammatory pathway. Essentially, the upregulation of ABCA1 facilitates cholesterol efflux from the cells and attenuates the production of beta-amyloid (ABeta) 42 in brain so LXR is a promising target to develop the cholesterol-lowering reagents and preventative treatment of Alzheimer disease. Engelhardia roxburghiana is a deciduous tree growing in India, China, and Taiwan. However, its chemical composition is only reported to exhibit antitubercular and anti-inflammatory effects. In this study, four compounds, engelheptanoxides A, C, engelhardiol A, and B isolated from the root of Engelhardia roxburghiana were evaluated for their agonistic activity against LXR by the transient transfection reporter assays in the HepG2 cells. Furthermore, their interactive modes with LXR ligand binding pocket were generated by molecular modeling programs. By using the cell-based biological assays, engelheptanoxides A, C, engelhardiol A, and B showing no cytotoxic effect against the proliferation of HepG2 cells, exerted obvious LXR agonistic effects with similar activity as T0901317, a novel synthetic LXR agonist. Further modeling studies including docking and SAR (structure-activity relationship) showed that these compounds can locate in LXR ligand binding pocket in the similar manner as T0901317. Thus, LXR is one of nuclear receptors targeted by pharmaceutical industry for developing treatments of Alzheimer and atherosclerosis diseases. Importantly, the cell-based assays, together with molecular modeling studies suggesting a plausible binding mode, demonstrate that engelheptanoxides A, C, engelhardiol A, and B function as LXR agonists. This is the first report to demonstrate that the extract of Engelhardia roxburghiana contains LXR agonists. As such, these active components of Engelhardia roxburghiana or subsequent analogs may show important therapeutic effects through selective modulation of the LXR pathway.Keywords: Liver X receptor (LXR), Engelhardia roxburghiana, CYP7A1, ABCA1, SREBP1c, HepG2 cells
Procedia PDF Downloads 419131 Linguistic Analysis of Argumentation Structures in Georgian Political Speeches
Authors: Mariam Matiashvili
Abstract:
Argumentation is an integral part of our daily communications - formal or informal. Argumentative reasoning, techniques, and language tools are used both in personal conversations and in the business environment. Verbalization of the opinions requires the use of extraordinary syntactic-pragmatic structural quantities - arguments that add credibility to the statement. The study of argumentative structures allows us to identify the linguistic features that make the text argumentative. Knowing what elements make up an argumentative text in a particular language helps the users of that language improve their skills. Also, natural language processing (NLP) has become especially relevant recently. In this context, one of the main emphases is on the computational processing of argumentative texts, which will enable the automatic recognition and analysis of large volumes of textual data. The research deals with the linguistic analysis of the argumentative structures of Georgian political speeches - particularly the linguistic structure, characteristics, and functions of the parts of the argumentative text - claims, support, and attack statements. The research aims to describe the linguistic cues that give the sentence a judgmental/controversial character and helps to identify reasoning parts of the argumentative text. The empirical data comes from the Georgian Political Corpus, particularly TV debates. Consequently, the texts are of a dialogical nature, representing a discussion between two or more people (most often between a journalist and a politician). The research uses the following approaches to identify and analyze the argumentative structures Lexical Classification & Analysis - Identify lexical items that are relevant in argumentative texts creating process - Creating the lexicon of argumentation (presents groups of words gathered from a semantic point of view); Grammatical Analysis and Classification - means grammatical analysis of the words and phrases identified based on the arguing lexicon. Argumentation Schemas - Describe and identify the Argumentation Schemes that are most likely used in Georgian Political Speeches. As a final step, we analyzed the relations between the above mentioned components. For example, If an identified argument scheme is “Argument from Analogy”, identified lexical items semantically express analogy too, and they are most likely adverbs in Georgian. As a result, we created the lexicon with the words that play a significant role in creating Georgian argumentative structures. Linguistic analysis has shown that verbs play a crucial role in creating argumentative structures.Keywords: georgian, argumentation schemas, argumentation structures, argumentation lexicon
Procedia PDF Downloads 69130 Experimental Research of High Pressure Jet Interaction with Supersonic Crossflow
Authors: Bartosz Olszanski, Zbigniew Nosal, Jacek Rokicki
Abstract:
An experimental study of cold-jet (nitrogen) reaction control jet system has been carried out to investigate the flow control efficiency for low to moderate jet pressure ratios (total jet pressure p0jet over free stream static pressure in the wind tunnel p∞) and different angles of attack for infinite Mach number equal to 2. An investigation of jet influence was conducted on a flat plate geometry placed in the test section of intermittent supersonic wind tunnel of Department of Aerodynamics, WUT. Various convergent jet nozzle geometries to obtain different jet momentum ratios were tested on the same test model geometry. Surface static pressure measurements, Schlieren flow visualizations (using continuous and photoflash light source), load cell measurements gave insight into the supersonic crossflow interaction for different jet pressure and jet momentum ratios and their influence on the efficiency of side jet control as described by the amplification factor (actual to theoretical net force generated by the control nozzle). Moreover, the quasi-steady numerical simulations of flow through the same wind tunnel geometry (convergent-divergent nozzle plus test section) were performed using ANSYS Fluent basing on Reynolds-Averaged Navier-Stokes (RANS) solver incorporated with k-ω Shear Stress Transport (SST) turbulence model to assess the possible spurious influence of test section walls over the jet exit near field area of interest. The strong bow shock, barrel shock, and Mach disk as well as lambda separation region in front of nozzle were observed as images taken by high-speed camera examine the interaction of the jet and the free stream. In addition, the development of large-scale vortex structures (counter-rotating vortex pair) was detected. The history of complex static pressure pattern on the plate was recorded and compared to the force measurement data as well as numerical simulation data. The analysis of the obtained results, especially in the wake of the jet showed important features of the interaction mechanisms between the lateral jet and the flow field.Keywords: flow visualization techniques, pressure measurements, reaction control jet, supersonic cross flow
Procedia PDF Downloads 294129 Analyzing the Impact of Bariatric Surgery in Obesity Associated Chronic Kidney Disease: A 2-Year Observational Study
Authors: Daniela Magalhaes, Jorge Pedro, Pedro Souteiro, Joao S. Neves, Sofia Castro-Oliveira, Vanessa Guerreiro, Rita Bettencourt- Silva, Maria M. Costa, Ana Varela, Joana Queiros, Paula Freitas, Davide Carvalho
Abstract:
Introduction: Obesity is an independent risk factor for renal dysfunction. Our aims were: (1) evaluate the impact of bariatric surgery (BS) on renal function; (2) clarify the factors determining the postoperative evolution of the glomerular filtration rate (GFR); (3) access the occurrence of oxalate-mediated renal complications. Methods: We investigated a cohort of 1448 obese patients who underwent bariatric surgery. Those with basal GFR (GFR0) < 30mL/min or without information about the GFR 2-year post-surgery (GFR2) were excluded. Results: We included 725 patients, of whom 647 (89.2%) women, with 41 (IQR 34-51) years, a median weight of 112.4 (IQR 103.0-125.0) kg and a median BMI of 43.4 (IQR 40.6-46.9) kg/m2. Of these, 459 (63.3%) performed gastric bypass (RYGB), 144 (19.9%) placed an adjustable gastric band (AGB) and 122 (16.8%) underwent vertical gastrectomy (VG). At 2-year post-surgery, excess weight loss (EWL) was 60.1 (IQR 43.7-72.4) %. There was a significant improve of metabolic and inflammatory status, as well as a significant decrease in the proportion of patients with diabetes, arterial hypertension and dyslipidemia (p < 0.0001). At baseline, 38 (5.2%) of subjects had hyperfiltration with a GFR0 ≥ 125mL/min/1.73m2, 492 (67.9%) had a GFR0 90-124 mL/min/1.73m2, 178 (24.6%) had a GFR0 60-89 mL/min/1.73m2, and 17 (2.3%) had a GFR0 < 60 mL/min/1.73m2. GFR decreased in 63.2% of patients with hyperfiltration (ΔGFR=-2.5±7.6), and increased in 96.6% (ΔGFR=22.2±12.0) and 82.4% (ΔGFR=24.3±30.0) of the subjects with GFR0 60-89 and < 60 mL/min/1.73m2, respectively ( p < 0.0001). This trend was maintained when adjustment was made for the type of surgery performed. Of 321 patients, 10 (3.3%) had a urinary albumin excretion (UAE) > 300 mg/dL (A3), 44 (14.6%) had a UAE 30-300 mg/dL (A2) and 247 (82.1%) has a UAE < 30 mg/dL (A1). Albuminuria decreased after surgery and at 2-year follow-up only 1 (0.3%) patient had A3, 17 (5.6%) had A2 and 283 (94%) had A1 (p < 0,0001). In multivariate analysis, the variables independently associated with ΔGFR were BMI (positively) and fasting plasma glucose (negatively). During the 2-year follow-up, only 57 of the 725 patients had transient urinary excretion of calcium oxalate crystals. None has records of oxalate-mediated renal complications at our center. Conclusions: The evolution of GFR after BS seems to depend on the initial renal function, as it decreases in subjects with hyperfiltration, but tends to increase in those with renal dysfunction. Our results suggest that BS is associated with improvement of renal outcomes, without significant increase of renal complications. So, apart the clear benefits in metabolic and inflammatory status, maybe obese adults with nondialysis-dependent CKD should be referred for bariatric surgery evaluation.Keywords: albuminuria, bariatric surgery, glomerular filtration rate, renal function
Procedia PDF Downloads 358128 Achieving Net Zero Energy Building in a Hot Climate Using Integrated Photovoltaic and Parabolic Trough Collectors
Authors: Adel A. Ghoneim
Abstract:
In most existing buildings in hot climate, cooling loads lead to high primary energy consumption and consequently high CO2 emissions. These can be substantially decreased with integrated renewable energy systems. Kuwait is characterized by its dry hot long summer and short warm winter. Kuwait receives annual total radiation more than 5280 MJ/m2 with approximately 3347 h of sunshine. Solar energy systems consist of PV modules and parabolic trough collectors are considered to satisfy electricity consumption, domestic water heating, and cooling loads of an existing building. This paper presents the results of an extensive program of energy conservation and energy generation using integrated photovoltaic (PV) modules and parabolic trough collectors (PTC). The program conducted on an existing institutional building intending to convert it into a Net-Zero Energy Building (NZEB) or near net Zero Energy Building (nNZEB). The program consists of two phases; the first phase is concerned with energy auditing and energy conservation measures at minimum cost and the second phase considers the installation of photovoltaic modules and parabolic trough collectors. The 2-storey building under consideration is the Applied Sciences Department at the College of Technological Studies, Kuwait. Single effect lithium bromide water absorption chillers are implemented to provide air conditioning load to the building. A numerical model is developed to evaluate the performance of parabolic trough collectors in Kuwait climate. Transient simulation program (TRNSYS) is adapted to simulate the performance of different solar system components. In addition, a numerical model is developed to assess the environmental impacts of building integrated renewable energy systems. Results indicate that efficient energy conservation can play an important role in converting the existing buildings into NZEBs as it saves a significant portion of annual energy consumption of the building. The first phase results in an energy conservation of about 28% of the building consumption. In the second phase, the integrated PV completely covers the lighting and equipment loads of the building. On the other hand, parabolic trough collectors of optimum area of 765 m2 can satisfy a significant portion of the cooling load, i.e about73% of the total building cooling load. The annual avoided CO2 emission is evaluated at the optimum conditions to assess the environmental impacts of renewable energy systems. The total annual avoided CO2 emission is about 680 metric ton/year which confirms the environmental impacts of these systems in Kuwait.Keywords: building integrated renewable systems, Net-Zero energy building, solar fraction, avoided CO2 emission
Procedia PDF Downloads 608127 The Effect of Using Emg-based Luna Neurorobotics for Strengthening of Affected Side in Chronic Stroke Patients - Retrospective Study
Authors: Surbhi Kaura, Sachin Kandhari, Shahiduz Zafar
Abstract:
Chronic stroke, characterized by persistent motor deficits, often necessitates comprehensive rehabilitation interventions to improve functional outcomes and mitigate long-term dependency. Luna neurorobotic devices, integrated with EMG feedback systems, provide an innovative platform for facilitating neuroplasticity and functional improvement in stroke survivors. This retrospective study aims to investigate the impact of EMG-based Luna neurorobotic interventions on the strengthening of the affected side in chronic stroke patients. In rehabilitation, active patient participation significantly activates the sensorimotor network during motor control, unlike passive movement. Stroke is a debilitating condition that, when not effectively treated, can result in significant deficits and lifelong dependency. Common issues like neglecting the use of limbs can lead to weakness in chronic stroke cases. In rehabilitation, active patient participation significantly activates the sensorimotor network during motor control, unlike passive movement. This study aims to assess how electromyographic triggering (EMG-triggered) robotic treatments affect walking, ankle muscle force after an ischemic stroke, and the coactivation of agonist and antagonist muscles, which contributes to neuroplasticity with the assistance of biofeedback using robotics. Methods: The study utilized robotic techniques based on electromyography (EMG) for daily rehabilitation in long-term stroke patients, offering feedback and monitoring progress. Each patient received one session per day for two weeks, with the intervention group undergoing 45 minutes of robot-assisted training and exercise at the hospital, while the control group performed exercises at home. Eight participants with impaired motor function and gait after stroke were involved in the study. EMG-based biofeedback exercises were administered through the LUNA neuro-robotic machine, progressing from trigger and release mode to trigger and hold, and later transitioning to dynamic mode. Assessments were conducted at baseline and after two weeks, including the Timed Up and Go (TUG) test, a 10-meter walk test (10m), Berg Balance Scale (BBG), and gait parameters like cadence, step length, upper limb strength measured by EMG threshold in microvolts, and force in Newton meters. Results: The study utilized a scale to assess motor strength and balance, illustrating the benefits of EMG-biofeedback following LUNA robotic therapy. In the analysis of the left hemiparetic group, an increase in strength post-rehabilitation was observed. The pre-TUG mean value was 72.4, which decreased to 42.4 ± 0.03880133 seconds post-rehabilitation, with a significant difference indicated by a p-value below 0.05, reflecting a reduced task completion time. Similarly, in the force-based task, the pre-knee dynamic force in Newton meters was 18.2NM, which increased to 31.26NM during knee extension post-rehabilitation. The post-student t-test showed a p-value of 0.026, signifying a significant difference. This indicated an increase in the strength of knee extensor muscles after LUNA robotic rehabilitation. Lastly, at baseline, the EMG value for ankle dorsiflexion was 5.11 (µV), which increased to 43.4 ± 0.06 µV post-rehabilitation, signifying an increase in the threshold and the patient's ability to generate more motor units during left ankle dorsiflexion. Conclusion: This study aimed to evaluate the impact of EMG and dynamic force-based rehabilitation devices on walking and strength of the affected side in chronic stroke patients without nominal data comparisons among stroke patients. Additionally, it provides insights into the inclusion of EMG-triggered neurorehabilitation robots in the daily rehabilitation of patients.Keywords: neurorehabilitation, robotic therapy, stroke, strength, paralysis
Procedia PDF Downloads 61126 Effectiveness Factor for Non-Catalytic Gas-Solid Pyrolysis Reaction for Biomass Pellet Under Power Law Kinetics
Authors: Haseen Siddiqui, Sanjay M. Mahajani
Abstract:
Various important reactions in chemical and metallurgical industries fall in the category of gas-solid reactions. These reactions can be categorized as catalytic and non-catalytic gas-solid reactions. In gas-solid reaction systems, heat and mass transfer limitations put an appreciable influence on the rate of the reaction. The consequences can be unavoidable for overlooking such effects while collecting the reaction rate data for the design of the reactor. Pyrolysis reaction comes in this category that involves the production of gases due to the interaction of heat and solid substance. Pyrolysis is also an important step in the gasification process and therefore, the gasification reactivity majorly influenced by the pyrolysis process that produces the char, as a feed for the gasification process. Therefore, in the present study, a non-isothermal transient 1-D model is developed for a single biomass pellet to investigate the effect of heat and mass transfer limitations on the rate of pyrolysis reaction. The obtained set of partial differential equations are firstly discretized using the concept of ‘method of lines’ to obtain a set of ordinary differential equation with respect to time. These equations are solved, then, using MATLAB ode solver ode15s. The model is capable of incorporating structural changes, porosity variation, variation in various thermal properties and various pellet shapes. The model is used to analyze the effectiveness factor for different values of Lewis number and heat of reaction (G factor). Lewis number includes the effect of thermal conductivity of the solid pellet. Higher the Lewis number, the higher will be the thermal conductivity of the solid. The effectiveness factor was found to be decreasing with decreasing Lewis number due to the fact that smaller Lewis numbers retard the rate of heat transfer inside the pellet owing to a lower rate of pyrolysis reaction. G factor includes the effect of the heat of reaction. Since the pyrolysis reaction is endothermic in nature, the G factor takes negative values. The more the negative value higher will be endothermic nature of the pyrolysis reaction. The effectiveness factor was found to be decreasing with more negative values of the G factor. This behavior can be attributed to the fact that more negative value of G factor would result in more energy consumption by the reaction owing to a larger temperature gradient inside the pellet. Further, the analytical expressions are also derived for gas and solid concentrations and effectiveness factor for two limiting cases of the general model developed. The two limiting cases of the model are categorized as the homogeneous model and unreacted shrinking core model.Keywords: effectiveness factor, G-factor, homogeneous model, lewis number, non-catalytic, shrinking core model
Procedia PDF Downloads 136125 Antihypertensive Effect of Formulated Apium graveolens: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial
Authors: Maryam Shayani Rad, Seyed Ahmad Mohajeri, Mohsen Mouhebati, Seyed Danial Mousavi
Abstract:
High blood pressure is one of the most important and serious health-threatening because of no symptoms in most people, which can lead to sudden heart attack, heart failure, and stroke. Nowadays, herbal medicine is one of the best and safest strategies for treatment that have no adverse effects. Apium graveolens (celery) can be used as an alternative treatment for many health conditions such as hypertension. Natural compounds reduce blood pressure via different mechanisms in which Apium graveolens extract provides potent calcium channel blocking properties. A randomized, double-blind, placebo-controlled, cross-over clinical trial was done to evaluate the efficacy of formulated Apium graveolens extract with a maximum yield of 3-n-butylphthalide to reduce systolic and diastolic blood pressure in patients with hypertension. 54 hypertensive patients in the range of 20-68 years old were randomly assigned to the treatment group (26 cases) and the placebo control group (26 cases) and were crossed over after washout duration. The treatment group received at least 2 grams of formulated powder in hard capsules orally, before each meal, 2 times daily. The control group received 2 grams of placebo in hard capsules orally, exactly as the same as shape, time, and doses of treatment group. Treatment was administrated in 12 weeks with 4 weeks washout period at the middle of the study, meaning 4 weeks drug consumption for the treatment group, 4 weeks washout and 4 weeks placebo consumption, and vice versa for the placebo control group. The clinical assessment was done 4 times, including at the beginning and ending of the drug and placebo consumption period by 24-hour ambulatory blood pressure monitoring (ABPM) holter, which measured blood pressure every 15 minutes continuously. There was a statistically significant decrease in both systolic blood pressure (SBP) and diastolic blood pressure (DBP) at the end of drug duration compared to baseline. The changes after 4 weeks on average was about 12.34 mm Hg for the SBP (P < 0.005) and 7.83 mm Hg for the DBP (P < 0.005). The results from this clinical trial study showed this Apium graveolens extract formulation in the mentioned dosage had a significant effect on blood pressure-lowering for hypertensive patients.Keywords: Apium graveolens extract, clinical trial, cross-over, hypertension
Procedia PDF Downloads 209124 The Toxicity of Doxorubicin Connected with Nanotransporters
Authors: Iva Blazkova, Amitava Moulick, Vedran Milosavljevic, Pavel Kopel, Marketa Vaculovicova, Vojtech Adam, Rene Kizek
Abstract:
Doxorubicin is one of the most commonly used and the most effective chemotherapeutic drugs. This antracycline drug isolated from the bacteria Streptomyces peuceticus var. caesius is sold under the trade name Adriamycin (hydroxydaunomycin, hydroxydaunorubicin). Doxorubicin is used in single therapy to treat hematological malignancies (blood cancers, leukaemia, lymphoma), many types of carcinoma (solid tumors) and soft tissue sarcomas. It has many serious side effects like nausea and vomiting, hair lost, myelosupression, oral mucositis, skin reactions and redness, but the most serious one is the cardiotoxicity. Because of the risk of heart attack and congestive heart failure, the total dose administered to patients has to be accurately monitored. With the aim to lower the side effects and to targeted delivery of doxorubicin into the tumor tissue, the different nanoparticles are studied. The drug can be bound on a surface of nanoparticle, encapsulated in the inner cavity, or incorporated into the structure of nanoparticle. Among others, carbon nanoparticles (graphene, carbon nanotubes, fullerenes) are highly studied. Besides the number of inorganic nanoparticles, a great potential exhibit also organic ones mainly lipid-based and polymeric nanoparticle. The aim of this work was to perform a toxicity study of free doxorubicin compared to doxorubicin conjugated with various nanotransporters. The effect of liposomes, fullerenes, graphene, and carbon nanotubes on the toxicity was analyzed. As a first step, the binding efficacy of between doxorubicin and the nanotransporter was determined. The highest efficacy was detected in case of liposomes (85% of applied drug was encapsulated) followed by graphene, carbon nanotubes and fullerenes. For the toxicological studies, the chicken embryos incubated under controlled conditions (37.5 °C, 45% rH, rotation every 2 hours) were used. In 7th developmental day of chicken embryos doxorubicin or doxorubicin-nanotransporter complex was applied on the chorioallantoic membrane of the eggs and the viability was analyzed every day till the 17th developmental day. Then the embryos were extracted from the shell and the distribution of doxorubicin in the body was analyzed by measurement of organs extracts using laser induce fluorescence detection. The chicken embryo mortality caused by free doxorubicin (30%) was significantly lowered by using the conjugation with nanomaterials. The highest accumulation of doxorubicin and doxorubicin nanotransporter complexes was observed in the liver tissueKeywords: doxorubicin, chicken embryos, nanotransporters, toxicity
Procedia PDF Downloads 447123 CSoS-STRE: A Combat System-of-System Space-Time Resilience Enhancement Framework
Authors: Jiuyao Jiang, Jiahao Liu, Jichao Li, Kewei Yang, Minghao Li, Bingfeng Ge
Abstract:
Modern warfare has transitioned from the paradigm of isolated combat forces to system-to-system confrontations due to advancements in combat technologies and application concepts. A combat system-of-systems (CSoS) is a combat network composed of independently operating entities that interact with one another to provide overall operational capabilities. Enhancing the resilience of CSoS is garnering increasing attention due to its significant practical value in optimizing network architectures, improving network security and refining operational planning. Accordingly, a unified framework called CSoS space-time resilience enhancement (CSoS-STRE) has been proposed, which enhances the resilience of CSoS by incorporating spatial features. Firstly, a multilayer spatial combat network model has been constructed, which incorporates an information layer depicting the interrelations among combat entities based on the OODA loop, along with a spatial layer that considers the spatial characteristics of equipment entities, thereby accurately reflecting the actual combat process. Secondly, building upon the combat network model, a spatiotemporal resilience optimization model is proposed, which reformulates the resilience optimization problem as a classical linear optimization model with spatial features. Furthermore, the model is extended from scenarios without obstacles to those with obstacles, thereby further emphasizing the importance of spatial characteristics. Thirdly, a resilience-oriented recovery optimization method based on improved non dominated sorting genetic algorithm II (R-INSGA) is proposed to determine the optimal recovery sequence for the damaged entities. This method not only considers spatial features but also provides the optimal travel path for multiple recovery teams. Finally, the feasibility, effectiveness, and superiority of the CSoS-STRE are demonstrated through a case study. Simultaneously, under deliberate attack conditions based on degree centrality and maximum operational loop performance, the proposed CSoS-STRE method is compared with six baseline recovery strategies, which are based on performance, time, degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality. The comparison demonstrates that CSoS-STRE achieves faster convergence and superior performance.Keywords: space-time resilience enhancement, resilience optimization model, combat system-of-systems, recovery optimization method, no-obstacles and obstacles
Procedia PDF Downloads 14122 Floating Populations, Rooted Networks Tracing the Evolution of Russeifa City in Relation to Marka Refugee Camp
Authors: Dina Dahood Dabash
Abstract:
Refugee camps are habitually defined as receptive sites, transient spaces of exile and nondescript depoliticized places of exception. However, such arguments form partial sides of reality, especially in countries that are geopolitically challenged and rely immensely on international aid. In Jordan, the dynamics brought with the floating population of refugees (Palestinian amongst others) have resulted in spatial after-effects that cannot be easily overlooked. For instance, Palestine refugee camps have turned by time into socioeconomic centers of gravity and cores of spatial evolution. Yet, such a position is not instantaneous. Amongst various reasons, it can be related, according to this paper, to a distinctive institutional climate that has been co-produced by the refugees, host community and the state. This paper aims to investigate the evolution of urban and spatial regulations in Jordan between 1948 and 1995, more specifically, state regulations, community regulations and refugee-self-regulation that all dynamically interacted that period. The paper aims to unpack the relations between refugee camps and their environs to further explore the agency of such floating populations in establishing rooted networks that extended the time and place boundaries. The paper’s argument stems from the fact that the spatial configuration of urban systems is not only an outcome of a historical evolutionary process but is also a result of interactions between the actors. The research operationalizes Marka camp in Jordan as a case study. Marka Camp is one of the six "emergency" camps erected in 1968 to shelter 15,000 Palestine refugees and displaced persons who left the West Bank and Gaza Strip. Nowadays, camp shelters more than 50,000 refugees in the same area of land. The camp is located in Russeifa, a city in Zarqa Governorate in Jordan. Together with Amman and Zarqa, Russeifa is part of a larger metropolitan area that acts as a home to more than half of Jordan’s businesses. The paper aspires to further understand the post-conflict strategies which were historically applied in Jordan and can be employed to handle more recent geopolitical challenges such as the Syrian refugee crisis. Methodological framework: The paper traces the evolution of the refugee-camp regulating norms in Jordan, parallel with the horizontal and vertical evolution of the Marka camp and its surroundings. Consequently, the main methods employed are historical and mental tracing, Interviews, in addition to using available Aerial and archival photos of the Marka camp and its surrounding.Keywords: forced migration, Palestine refugee camps, spatial agency, urban regulations
Procedia PDF Downloads 186121 A Qualitative Study on Cyberbullying and Traditional Bullying among Taiwanese High School Students
Authors: Chia-Wen Wang, Patou Masika Musumari, Teeranee Techasrivichien, S. Pilar Suguimoto, Chang-Chuan Chan, Masako Ono-Kihara, Masahiro Kihara
Abstract:
Background: In recent years, a particular form of bullying, referred to as 'cyberbullying' has emerged along with the rapid expansion of the Internet, social network services (SNSs) and smart phones. Many Asian countries, including Taiwan, are faced with both the cyberbullying and the traditional form of bullying. This study aims to explore Taiwanese adolescents’ experiences, perceptions and opinions regarding cyberbullying and traditional bullying through the perspective of victim, perpetrator, or witness. Method: This is a qualitative study using face-to-face in-depth interviews guided by a semi-structured questionnaire among high school students -aged 16 to 18 years- in Taipei, Taiwan. The participants were recruited through convenience sampling from five high schools between June and November 2016. Interviews were digitally recorded, transcribed, and analyzed using the thematic analysis approach. Results: Forty-eight participants were recruited, of which, 14 (29.2%) reported had ever experienced bullying. Specifically, 7 participants (14.6%) reported had ever been victims of cyberbullying, 1 (2%) had been victims of traditional bullying, and 6 (12.5%) had been victims of both cyber and traditional bullying. The majority (70.8%) reported had ever witnessed acts of bullying; however, none of the participants recognized had ever been a perpetrator of bullying. Cyberbullying mostly happens on social media (Facebook and Instagram) or LINE instant messaging application, and included upload and sharing of degrading pictures and videos of victims, as well as gossip and mean messages by the perpetrators. The anonymous and public nature of social media groups in schools made it easier to perpetrate bullying. The victim of traditional bullying reported being the target of verbal attack because of his physical appearance. Regardless of the type of bullying, victims reported feeling bad, angry, or depressed as a result of being bullied. Witnesses of both cyber- and traditional bullying cited physical appearance (e.g. having the big/flat bust or big butt, or overweight or obese) and disability as the most reasons of being a bullying victim. Conclusion: Both cyberbullying and traditional bullying had negative emotional and psychological impacts on victims. This study warrants further research to assess the extent of this phenomenon and understand the characteristics of perpetrators, victims, and witnesses to inform the design of tailored interventions using appropriate channels of dissemination.Keywords: cyberbullying, traditional bullying, social media, adolescents
Procedia PDF Downloads 345120 Design, Simulation and Fabrication of Electro-Magnetic Pulse Welding Coil and Initial Experimentation
Authors: Bharatkumar Doshi
Abstract:
Electro-Magnetic Pulse Welding (EMPW) is a solid state welding process carried out at almost room temperature, in which joining is enabled by high impact velocity deformation. In this process, high voltage capacitor’s stored energy is discharged in an EM coil resulting in a damped, sinusoidal current with an amplitude of several hundred kiloamperes. Due to these transient magnetic fields of few tens of Tesla near the coil is generated. As the conductive (tube) part is positioned in this area, an opposing eddy current is induced in this part. Consequently, high Lorentz forces act on the part, leading to acceleration away from the coil. In case of a tube, it gets compressed under forming velocities of more than 300 meters per second. After passing the joining gap it collides with the second metallic joining rod, leading to the formation of a jet under appropriate collision conditions. Due to the prevailing high pressure, metallurgical bonding takes place. A characteristic feature is the wavy interface resulting from the heavy plastic deformations. In the process, the formation of intermetallic compounds which might deteriorate the weld strength can be avoided, even for metals with dissimilar thermal properties. In order to optimize the process parameters like current, voltage, inductance, coil dimensions, workpiece dimensions, air gap, impact velocity, effective plastic strain, shear stress acting in the welding zone/impact zone etc. are very critical and important to establish. These process parameters could be determined by simulation using Finite Element Methods (FEM) in which electromagnetic –structural couple field analysis is performed. The feasibility of welding could thus be investigated by varying the parameters in the simulation using COMSOL. Simulation results shall be applied in performing the preliminary experiments of welding the different alloy steel tubes and/or alloy steel to other materials. The single turn coil (S.S.304) with field shaper (copper) has been designed and manufactured. The preliminary experiments are performed using existing EMPW facility available Institute for Plasma Research, Gandhinagar, India. The experiments are performed at 22kV charged into 64µF capacitor bank and the energy is discharged into single turn EM coil. Welding of axi-symetric components such as aluminum tube and rod has been proven experimentally using EMPW techniques. In this paper EM coil design, manufacturing, Electromagnetic-structural FEM simulation of Magnetic Pulse Welding and preliminary experiment results is reported.Keywords: COMSOL, EMPW, FEM, Lorentz force
Procedia PDF Downloads 183119 Effect of Enzymatic Hydrolysis and Ultrasounds Pretreatments on Biogas Production from Corn Cob
Authors: N. Pérez-Rodríguez, D. García-Bernet, A. Torrado-Agrasar, J. M. Cruz, A. B. Moldes, J. M. Domínguez
Abstract:
World economy is based on non-renewable, fossil fuels such as petroleum and natural gas, which entails its rapid depletion and environmental problems. In EU countries, the objective is that at least 20% of the total energy supplies in 2020 should be derived from renewable resources. Biogas, a product of anaerobic degradation of organic substrates, represents an attractive green alternative for meeting partial energy needs. Nowadays, trend to circular economy model involves efficiently use of residues by its transformation from waste to a new resource. In this sense, characteristics of agricultural residues (that are available in plenty, renewable, as well as eco-friendly) propitiate their valorisation as substrates for biogas production. Corn cob is a by-product obtained from maize processing representing 18 % of total maize mass. Corn cob importance lies in the high production of this cereal (more than 1 x 109 tons in 2014). Due to its lignocellulosic nature, corn cob contains three main polymers: cellulose, hemicellulose and lignin. Crystalline, highly ordered structures of cellulose and lignin hinders microbial attack and subsequent biogas production. For the optimal lignocellulose utilization and to enhance gas production in anaerobic digestion, materials are usually submitted to different pretreatment technologies. In the present work, enzymatic hydrolysis, ultrasounds and combination of both technologies were assayed as pretreatments of corn cob for biogas production. Enzymatic hydrolysis pretreatment was started by adding 0.044 U of Ultraflo® L feruloyl esterase per gram of dry corncob. Hydrolyses were carried out in 50 mM sodium-phosphate buffer pH 6.0 with a solid:liquid proportion of 1:10 (w/v), at 150 rpm, 40 ºC and darkness for 3 hours. Ultrasounds pretreatment was performed subjecting corn cob, in 50 mM sodium-phosphate buffer pH 6.0 with a solid: liquid proportion of 1:10 (w/v), at a power of 750W for 1 minute. In order to observe the effect of the combination of both pretreatments, some samples were initially sonicated and then they were enzymatically hydrolysed. In terms of methane production, anaerobic digestion of the corn cob pretreated by enzymatic hydrolysis was positive achieving 290 L CH4 kg MV-1 (compared with 267 L CH4 kg MV-1 obtained with untreated corn cob). Although the use of ultrasound as the only pretreatment resulted detrimentally (since gas production decreased to 244 L CH4 kg MV-1 after 44 days of anaerobic digestion), its combination with enzymatic hydrolysis was beneficial, reaching the highest value (300.9 L CH4 kg MV-1). Consequently, the combination of both pretreatments improved biogas production from corn cob.Keywords: biogas, corn cob, enzymatic hydrolysis, ultrasound
Procedia PDF Downloads 266118 Spontaneous Rupture of Splenic Artery Pseudoaneurysm; A Rare Presentation of Acute Abdominal Pain in the Emergency Department: Case Report
Authors: Zainab Elazab, Azhar Aziz
Abstract:
Background: Spontaneous Splenic artery pseudoaneurysm rupture is a rare condition which is potentially life threatening, if not detected and managed early. We report a case of abdominal pain with intraperitoneal free fluid, which turned out to be spontaneous rupture of a splenic artery pseudoaneurysm, and was treated with arterial embolization. Case presentation: A 28-year old, previously healthy male presented to the ED with a history of sudden onset upper abdominal pain and fainting attack. The patient denied any history of trauma or prior similar attacks. On examination, the patient had tachycardia and a low-normal BP (HR 110, BP 106/66) but his other vital signs were normal (Temp. 37.2, RR 18 and SpO2 100%). His abdomen was initially soft with mild tenderness in the upper region. Blood tests showed leukocytosis of 12.3 X109/L, Hb of 12.6 g/dl and lactic acid of 5.9 mmol/L. Ultrasound showed trace of free fluid in the perihepatic and perisplenic areas, and a splenic hypoechoic lesion. The patient remained stable; however, his abdomen became increasingly tender with guarding. We made a provisional diagnosis of a perforated viscus and the patient was started on IV fluids and IV antibiotics. An erect abdominal x-ray did not show any free air under the diaphragm so a CT abdomen was requested. Meanwhile, bedside ultrasound was repeated which showed increased amount of free fluid, suggesting intra-abdominal bleeding as the most probable etiology for the condition. His CT abdomen revealed a splenic injury with multiple lacerations, a focal intrasplenic enhancing area on venous phase scan (suggesting a pseudoaneurysm with associated splenic intraparenchymal, sub capsular and perisplenic hematomas). Free fluid in the subhepatic and intraperitoneal regions along the small bowel was also detected. Angiogram was done which confirmed a diagnosis of pseudoaneurysm of intrasplenic arterial branch, and angio-embolization was done to control the bleeding. The patient was later discharged in good condition with a surgery follow-up. Conclusion: Splenic artery pseudoaneurysm rupture is a rare cause of abdominal pain which should be considered in any case of abdominal pain with intraperitoneal bleeding. Early management is crucial as it carries a high mortality. Bedside ultrasound is a useful tool to help for early diagnosis of such cases.Keywords: abdominal pain, pseudo aneurysm, rupture, splenic artery
Procedia PDF Downloads 308117 A Theoretical Approach of Tesla Pump
Authors: Cristian Sirbu-Dragomir, Stefan-Mihai Sofian, Adrian Predescu
Abstract:
This paper aims to study Tesla pumps for circulating biofluids. It is desired to make a small pump for the circulation of biofluids. This type of pump will be studied because it has the following characteristics: It doesn’t have blades which results in very small frictions; Reduced friction forces; Low production cost; Increased adaptability to different types of fluids; Low cavitation (towards 0); Low shocks due to lack of blades; Rare maintenance due to low cavity; Very small turbulences in the fluid; It has a low number of changes in the direction of the fluid (compared to rotors with blades); Increased efficiency at low powers.; Fast acceleration; The need for a low torque; Lack of shocks in blades at sudden starts and stops. All these elements are necessary to be able to make a small pump that could be inserted into the thoracic cavity. The pump will be designed to combat myocardial infarction. Because the pump must be inserted in the thoracic cavity, elements such as Low friction forces, shocks as low as possible, low cavitation and as little maintenance as possible are very important. The operation should be performed once, without having to change the rotor after a certain time. Given the very small size of the pump, the blades of a classic rotor would be very thin and sudden starts and stops could cause considerable damage or require a very expensive material. At the same time, being a medical procedure, the low cost is important in order to be easily accessible to the population. The lack of turbulence or vortices caused by a classic rotor is again a key element because when it comes to blood circulation, the flow must be laminar and not turbulent. The turbulent flow can even cause a heart attack. Due to these aspects, Tesla's model could be ideal for this work. Usually, the pump is considered to reach an efficiency of 40% being used for very high powers. However, the author of this type of pump claimed that the maximum efficiency that the pump can achieve is 98%. The key element that could help to achieve this efficiency or one as close as possible is the fact that the pump will be used for low volumes and pressures. The key elements to obtain the best efficiency for this model are the number of rotors placed in parallel and the distance between them. The distance between them must be small, which helps to obtain a pump as small as possible. The principle of operation of such a rotor is to place in several parallel discs cut inside. Thus the space between the discs creates the vacuum effect by pulling the liquid through the holes in the rotor and throwing it outwards. Also, a very important element is the viscosity of the liquid. It dictates the distance between the disks to achieve a lossless power flow.Keywords: lubrication, temperature, tesla-pump, viscosity
Procedia PDF Downloads 178116 Photoswitchable and Polar-Dependent Fluorescence of Diarylethenes
Authors: Sofia Lazareva, Artem Smolentsev
Abstract:
Fluorescent photochromic materials collect strong interest due to their possible application in organic photonics such as optical logic systems, optical memory, visualizing sensors, as well as characterization of polymers and biological systems. In photochromic fluorescence switching systems the emission of fluorophore is modulated between ‘on’ and ‘off’ via the photoisomerization of photochromic moieties resulting in effective resonance energy transfer (FRET). In current work, we have studied both photochromic and fluorescent properties of several diarylethenes. It was found that coloured forms of these compounds are not fluorescent because of the efficient intramolecular energy transfer. Spectral and photochromic parameters of investigated substances have been measured in five solvents having different polarity. Quantum yields of photochromic transformation A↔B ΦA→B and ΦB→A as well as B isomer extinction coefficients were determined by kinetic method. It was found that the photocyclization reaction quantum yield of all compounds decreases with the increase of solvent polarity. In addition, the solvent polarity is revealed to affect fluorescence significantly. Increasing of the solvent dielectric constant was found to result in a strong shift of emission band position from 450 nm (nhexane) to 550 nm (DMSO and ethanol) for all three compounds. Moreover, the emission intensive in polar solvents becomes weak and hardly detectable in n-hexane. The only one exception in the described dependence is abnormally low fluorescence quantum yield in ethanol presumably caused by the loss of electron-donating properties of nitrogen atom due to the protonation. An effect of the protonation was also confirmed by the addition of concentrated HCl in solution resulting in a complete disappearance of the fluorescent band. Excited state dynamics were investigated by ultrafast optical spectroscopy methods. Kinetic curves of excited states absorption and fluorescence decays were measured. Lifetimes of transient states were calculated from the data measured. The mechanism of ring opening reaction was found to be polarity dependent. Comparative analysis of kinetics measured in acetonitrile and hexane reveals differences in relaxation dynamics after the laser pulse. The most important fact is the presence of two decay processes in acetonitrile, whereas only one is present in hexane. This fact supports an assumption made on the basis of steady-state preliminary experiments that in polar solvents occur stabilization of TICT state. Thus, results achieved prove the hypothesis of two channel mechanism of energy relaxation of compounds studied.Keywords: diarylethenes, fluorescence switching, FRET, photochromism, TICT state
Procedia PDF Downloads 675115 Enhancement of Shelflife of Malta Fruit with Active Packaging
Authors: Rishi Richa, N. C. Shahi, J. P. Pandey, S. S. Kautkar
Abstract:
Citrus fruits rank third in area and production after banana and mango in India. Sweet oranges are the second largest citrus fruits cultivated in the country. Andhra Pradesh, Maharashtra, Karnataka, Punjab, Haryana, Rajasthan, and Uttarakhand are the main sweet orange-growing states. Citrus fruits occupy a leading position in the fruit trade of Uttarakhand, is casing about 14.38% of the total area under fruits and contributing nearly 17.75 % to the total fruit production. Malta is grown in most of the hill districts of the Uttarakhand. Malta common is having high acceptability due to its attractive colour, distinctive flavour, and taste. The excellent quality fruits are generally available for only one or two months. However due to its less shelf-life, Malta can not be stored for longer time under ambient conditions and cannot be transported to distant places. Continuous loss of water adversely affects the quality of Malta during storage and transportation. Method of picking, packaging, and cold storage has detrimental effects on moisture loss. The climatic condition such as ambient temperature, relative humidity, wind condition (aeration) and microbial attack greatly influences the rate of moisture loss and quality. Therefore, different agro-climatic zone will have different moisture loss pattern. The rate of moisture loss can be taken as one of the quality parameters in combination of one or more parameter such as RH, and aeration. The moisture contents of the fruits and vegetables determine their freshness. Hence, it is important to maintain initial moisture status of fruits and vegetable for prolonged period after the harvest. Keeping all points in views, effort was made to store Malta at ambient condition. In this study, the response surface method and experimental design were applied for optimization of independent variables to enhance the shelf life of four months stored malta. Box-Benkhen design, with, 12 factorial points and 5 replicates at the centre point were used to build a model for predicting and optimizing storage process parameters. The independent parameters, viz., scavenger (3, 4 and 5g), polythene thickness (75, 100 and 125 gauge) and fungicide concentration (100, 150 and 200ppm) were selected and analyzed. 5g scavenger, 125 gauge and 200ppm solution of fungicide are the optimized value for storage which may enhance life up to 4months.Keywords: Malta fruit, scavenger, packaging, shelf life
Procedia PDF Downloads 279114 Numerical and Experimental Investigation of Air Distribution System of Larder Type Refrigerator
Authors: Funda Erdem Şahnali, Ş. Özgür Atayılmaz, Tolga N. Aynur
Abstract:
Almost all of the domestic refrigerators operate on the principle of the vapor compression refrigeration cycle and removal of heat from the refrigerator cabinets is done via one of the two methods: natural convection or forced convection. In this study, airflow and temperature distributions inside a 375L no-frost type larder cabinet, in which cooling is provided by forced convection, are evaluated both experimentally and numerically. Airflow rate, compressor capacity and temperature distribution in the cooling chamber are known to be some of the most important factors that affect the cooling performance and energy consumption of a refrigerator. The objective of this study is to evaluate the original temperature distribution in the larder cabinet, and investigate for better temperature distribution solutions throughout the refrigerator domain via system optimizations that could provide uniform temperature distribution. The flow visualization and airflow velocity measurements inside the original refrigerator are performed via Stereoscopic Particle Image Velocimetry (SPIV). In addition, airflow and temperature distributions are investigated numerically with Ansys Fluent. In order to study the heat transfer inside the aforementioned refrigerator, forced convection theories covering the following cases are applied: closed rectangular cavity representing heat transfer inside the refrigerating compartment. The cavity volume has been represented with finite volume elements and is solved computationally with appropriate momentum and energy equations (Navier-Stokes equations). The 3D model is analyzed as transient, with k-ε turbulence model and SIMPLE pressure-velocity coupling for turbulent flow situation. The results obtained with the 3D numerical simulations are in quite good agreement with the experimental airflow measurements using the SPIV technique. After Computational Fluid Dynamics (CFD) analysis of the baseline case, the effects of three parameters: compressor capacity, fan rotational speed and type of shelf (glass or wire) are studied on the energy consumption; pull down time, temperature distributions in the cabinet. For each case, energy consumption based on experimental results is calculated. After the analysis, the main effective parameters for temperature distribution inside a cabin and energy consumption based on CFD simulation are determined and simulation results are supplied for Design of Experiments (DOE) as input data for optimization. The best configuration with minimum energy consumption that provides minimum temperature difference between the shelves inside the cabinet is determined.Keywords: air distribution, CFD, DOE, energy consumption, experimental, larder cabinet, refrigeration, uniform temperature
Procedia PDF Downloads 108