Search results for: range detection
8498 Off-Policy Q-learning Technique for Intrusion Response in Network Security
Authors: Zheni S. Stefanova, Kandethody M. Ramachandran
Abstract:
With the increasing dependency on our computer devices, we face the necessity of adequate, efficient and effective mechanisms, for protecting our network. There are two main problems that Intrusion Detection Systems (IDS) attempt to solve. 1) To detect the attack, by analyzing the incoming traffic and inspect the network (intrusion detection). 2) To produce a prompt response when the attack occurs (intrusion prevention). It is critical creating an Intrusion detection model that will detect a breach in the system on time and also challenging making it provide an automatic and with an acceptable delay response at every single stage of the monitoring process. We cannot afford to adopt security measures with a high exploiting computational power, and we are not able to accept a mechanism that will react with a delay. In this paper, we will propose an intrusion response mechanism that is based on artificial intelligence, and more precisely, reinforcement learning techniques (RLT). The RLT will help us to create a decision agent, who will control the process of interacting with the undetermined environment. The goal is to find an optimal policy, which will represent the intrusion response, therefore, to solve the Reinforcement learning problem, using a Q-learning approach. Our agent will produce an optimal immediate response, in the process of evaluating the network traffic.This Q-learning approach will establish the balance between exploration and exploitation and provide a unique, self-learning and strategic artificial intelligence response mechanism for IDS.Keywords: cyber security, intrusion prevention, optimal policy, Q-learning
Procedia PDF Downloads 2348497 Development of Zinc Oxide Coated Carbon Nanoparticles from Pineapples Leaves Using SOL Gel Method for Optimal Adsorption of Copper ion and Reuse in Latent Fingerprint
Authors: Bienvenu Gael Fouda Mbanga, Zikhona Tywabi-Ngeva, Kriveshini Pillay
Abstract:
This work highlighted a new method for preparing Nitrogen carbon nanoparticles fused on zinc oxide nanoparticle nanocomposite (N-CNPs/ZnONPsNC) to remove copper ions (Cu²+) from wastewater by sol-gel method and applying the metal-loaded adsorbent in latent fingerprint application. The N-CNPs/ZnONPsNC showed to be an effective sorbent for optimum Cu²+ sorption at pH 8 and 0.05 g dose. The Langmuir isotherm was found to best fit the process, with a maximum adsorption capacity of 285.71 mg/g, which was higher than most values found in other research for Cu²+ removal. Adsorption was spontaneous and endothermic at 25oC. In addition, the Cu²+-N-CNPs/ZnONPsNC was found to be sensitive and selective for latent fingerprint (LFP) recognition on a range of porous surfaces. As a result, in forensic research, it is an effective distinguishing chemical for latent fingerprint detection.Keywords: latent fingerprint, nanocomposite, adsorption, copper ions, metal loaded adsorption, adsorbent
Procedia PDF Downloads 838496 Threshold Sand Detection Limits for Acoustic Monitors in Multiphase Flow
Authors: Vinod Ponnagandla, Brenton McLaury, Siamack Shirazi
Abstract:
Sand production can lead to deposition of particles or erosion. Low production rates resulting in deposition can partially clog systems and cause under deposit corrosion. Commercially available nonintrusive acoustic sand detectors are attractive as they claim to detect sand production. Acoustic sand detectors are used during oil and gas production; however, operators often do not know the threshold detection limits of these devices. It is imperative to know the detection limits to appropriately plan for cleaning of separation equipment or examine risk of erosion. These monitors are based on detecting the acoustic signature of sand as the particles impact the pipe walls. The objective of this work is to determine threshold detection limits for acoustic sand monitors that are commercially available. The minimum threshold sand concentration that can be detected in a pipe are determined as a function of flowing gas and liquid velocities. A large scale flow loop with a 4-inch test section is utilized. Commercially available sand monitors (ClampOn and Roxar) are evaluated for different flow regimes, sand sizes and pipe orientation (vertical and horizontal). The manufacturers’ recommend that the monitors be placed on a bend to maximize the number of particle impacts, so results are shown for monitors placed at 45 and 90 degree positions in a bend. Acoustic sand monitors that clamp to the outside of pipe are passive and listen for solid particle impact noise. The threshold sand rate is calculated by eliminating the background noise created by the flow of gas and liquid in the pipe for various flow regimes that are generated in horizontal and vertical test sections. The average sand sizes examined are 150 and 300 microns. For stratified and bubbly flows the threshold sand rates are much higher than other flow regimes such as slug and annular flow regimes that are investigated. However, the background noise generated by slug flow regime is very high and cause a high uncertainty in detection limits. The threshold sand rates for annular flow and dry gas conditions are the lowest because of high gas velocities. The effects of monitor placement around elbows that are in vertical and horizontal pipes are also examined for 150 micron. The results show that the threshold sand rates that are detected in vertical orientation are generally lower for all various flow regimes that are investigated.Keywords: acoustic monitor, sand, multiphase flow, threshold
Procedia PDF Downloads 4048495 Effect of the Mould Rotational Speed on the Quality of Centrifugal Castings
Authors: M. A. El-Sayed, S. A. Aziz
Abstract:
Centrifugal casting is a standard casting technique for the manufacture of hollow, intricate and sound castings without the use of cores. The molten metal or alloy poured into the rotating mold forms a hollow casting as the centrifugal forces lift the liquid along the mold inner surface. The rotational speed of the die was suggested to greatly affect the manner in which the molten metal flows within the mould and consequently the probability of the formation of a uniform cylinder. In this work the flow of the liquid metal at various speeds and its effect during casting were studied. The results suggested that there was a critical range for the speed, within which the produced castings exhibited best uniformity and maximum mechanical properties. When a mould was rotated at speeds below or beyond the critical range defects were found in the final castings, which affected the uniformity and significantly lowered the mechanical properties.Keywords: centrifugal casting, rotational speed, critical speed range, mechanical properties
Procedia PDF Downloads 4438494 Artificially Intelligent Context Aware Personal Computer Assistant (ACPCA)
Authors: Abdul Mannan Akhtar
Abstract:
In this paper a novel concept of a self learning smart personalized computer assistant (ACPCA) is established which is a context aware system. Based on user habits, moods, and other routines/situational reactions the system will manage various services and suggestions at appropriate times including what schedule to follow, what to watch, what software to be used, what should be deleted etc. This system will utilize a hybrid fuzzyNeural model to predict what the user will do next and support his actions. This will be done by establishing fuzzy sets of user activities, choices, preferences etc. and utilizing their combinations to predict his moods and immediate preferences. Various application of context aware systems exist separately e.g. on certain websites for music or multimedia suggestions but a personalized autonomous system that could adapt to user’s personality does not exist at present. Due to the novelty and massiveness of this concept, this paper will primarily focus on the problem establishment, product features and its functionality; however a small mini case is also implemented on MATLAB to demonstrate some of the aspects of ACPCA. The mini case involves prediction of user moods, activity, routine and food preference using a hybrid fuzzy-Neural soft computing technique.Keywords: context aware systems, APCPCA, soft computing techniques, artificial intelligence, fuzzy logic, neural network, mood detection, face detection, activity detection
Procedia PDF Downloads 4638493 Ultrasensitive Hepatitis B Virus Detection in Blood Using Nano-Porous Silicon Oxide: Towards POC Diagnostics
Authors: N. Das, N. Samanta, L. Pandey, C. Roy Chaudhuri
Abstract:
Early diagnosis of infection like Hep-B virus in blood is important for low cost medical treatment. For this purpose, it is desirable to develop a point of care device which should be able to detect trace quantities of the target molecule in blood. In this paper, we report a nanoporous silicon oxide sensor which is capable of detecting down to 1fM concentration of Hep-B surface antigen in blood without the requirement of any centrifuge or pre-concentration. This has been made possible by the presence of resonant peak in the sensitivity characteristics. This peak is observed to be dependent only on the concentration of the specific antigen and not on the interfering species in blood serum. The occurrence of opposite impedance change within the pores and at the bottom of the pore is responsible for this effect. An electronic interface has also been designed to provide a display of the virus concentration.Keywords: impedance spectroscopy, ultrasensitive detection in blood, peak frequency, electronic interface
Procedia PDF Downloads 3978492 Robust Diagnosis Efficiency by Bond-Graph Approach
Authors: Benazzouz Djamel, Termeche Adel, Touati Youcef, Alem Said, Ouziala Mahdi
Abstract:
This paper presents an approach which detect and isolate efficiently a fault in a system. This approach avoids false alarms, non-detections and delays in detecting faults. A study case have been proposed to show the importance of taking into consideration the uncertainties in the decision-making procedure and their effect on the degradation diagnostic performance and advantage of using Bond Graph (BG) for such degradation. The use of BG in the Linear Fractional Transformation (LFT) form allows generating robust Analytical Redundancy Relations (ARR’s), where the uncertain part of ARR’s is used to generate the residuals adaptive thresholds. The study case concerns an electromechanical system composed of a motor, a reducer and an external load. The aim of this application is to show the effectiveness of the BG-LFT approach to robust fault detection.Keywords: bond graph, LFT, uncertainties, detection and faults isolation, ARR
Procedia PDF Downloads 3038491 Reduce the Impact of Wildfires by Identifying Them Early from Space and Sending Location Directly to Closest First Responders
Authors: Gregory Sullivan
Abstract:
The evolution of global warming has escalated the number and complexity of forest fires around the world. As an example, the United States and Brazil combined generated more than 30,000 forest fires last year. The impact to our environment, structures and individuals is incalculable. The world has learned to try to take this in stride, trying multiple ways to contain fires. Some countries are trying to use cameras in limited areas. There are discussions of using hundreds of low earth orbit satellites and linking them together, and, interfacing them through ground networks. These are all truly noble attempts to defeat the forest fire phenomenon. But there is a better, simpler answer. A bigger piece of the solutions puzzle is to see the fires while they are small, soon after initiation. The approach is to see the fires while they are very small and report their location (latitude and longitude) to local first responders. This is done by placing a sensor at geostationary orbit (GEO: 26,000 miles above the earth). By placing this small satellite in GEO, we can “stare” at the earth, and sense temperature changes. We do not “see” fires, but “measure” temperature changes. This has already been demonstrated on an experimental scale. Fires were seen at close to initiation, and info forwarded to first responders. it were the first to identify the fires 7 out of 8 times. The goal is to have a small independent satellite at GEO orbit focused only on forest fire initiation. Thus, with one small satellite, focused only on forest fire initiation, we hope to greatly decrease the impact to persons, property and the environment.Keywords: space detection, wildfire early warning, demonstration wildfire detection and action from space, space detection to first responders
Procedia PDF Downloads 698490 Occurrence of Aspidiscus cristatus (Lamarck) in the 'Marnes De Smail' from the Bellezma-Batna Range (Algeria): An Index Species for the Middle Cenomanian
Authors: Salmi-Laouar Sihem, Aouissi Riadh
Abstract:
The Cenomanian formations of the Bellezma-Batna Range are yielding very diversified fossiliferous beds. Among the abundant and well-preserved fossils stands out Aspidiscus cristatus (Lamarck). This taxon is assigned to the Family Latomeandridae (Alloiteau) for the presence of six symmetry axes. The outer morphology of sampled specimens documents a low-energy environment with a high sedimentary rate and a mud-supported bottom. Its provincialism evidences some characteristic thermal gradients of the marked Tethysian climatic areas. Biometric measurements are given. Coral size increases from the North towards the southeastern Tethysian margin where waters are supposed warmer; this feature is also underlined by a frequent bio-erosion of sampled specimens. Its limited stratigraphic range makes it a good candidate for an index species for the Middle Cenomanian.Keywords: Aspidiscus cristatus, coral, Middle Cenomanian, Batna, Bellezma, Algeria
Procedia PDF Downloads 1738489 An Unexpected Hand Injury with Pluridigital Fractures Due to Premature Explosion of a Ramadan Cannon
Authors: Hakan Akgul
Abstract:
Purpose: The use of firecrackers (i.e., Ramadan Cannon) during the month of Ramadan is a traditional way of indicating that the fasting period is over in Muslim countries. Here, we report the rehabilitation of a case of hand injury with pluridigital fractures due to premature explosion of a Ramadan cannon. Materials and Methods: A 48-year old man admitted to the Emergency Department due to left hand injury as a result of a premature explosion of a Ramadan cannon. The patient was immediately taken to operation room because of the multiple fractures, tendon loss, and soft tissue loss in the left hand. Range of motion (ROM) of joints was measured with goniometer, pain and oedema were measured and splinting was performed. Results: Rehabilitation team took over the patient at postoperative 9th week. During the 3 month rehabilitation, range of motion increased, oedema was taken under control, pain was reduced, the colour of the skin turned to the normal tone. According to the visual analog scale (VAS), pain decreased from 9 to 4. Oedema, around the metacarpofalangeal (MCP) joints, decreased from 27,5 cm to 23,5 cm. Total active range of motion of the wrist increased from 5 degrees to 50 degrees.Total active range of motion of supination and pronation increased from 55 degrees to 70 degrees. Discussion: The rehabilitation of multiple hand injury is quite difficult. Different aspects of trauma should be taken into consideration when rehabilitation is planned. Factors such as waiting for the bone union, wound healing, and use of external fixators may delay rehabilitation process. Joint mobilization, massage for reducing oedema and preventing scar tissue, exercise within the range of motion are efficient measures. Poor patient compliance to treatment may lead to poor outcome. First of all, oedema and scar formation must be taken under control. Removing fixators should not be delayed depending on the bone union, and exercise within the range of motion should be started.Keywords: explosion, fracture, hand, injury
Procedia PDF Downloads 2428488 Localization of Near Field Radio Controlled Unintended Emitting Sources
Authors: Nurbanu Guzey, S. Jagannathan
Abstract:
Locating radio controlled (RC) devices using their unintended emissions has a great interest considering security concerns. Weak nature of these emissions requires near field localization approach since it is hard to detect these signals in far field region of array. Instead of only angle estimation, near field localization also requires range estimation of the source which makes this method more complicated than far field models. Challenges of locating such devices in a near field region and real time environment are analyzed in this paper. An ESPRIT like near field localization scheme is utilized for both angle and range estimation. 1-D search with symmetric subarrays is provided. Two 7 element uniform linear antenna arrays (ULA) are employed for locating RC source. Experiment results of location estimation for one unintended emitting walkie-talkie for different positions are given.Keywords: localization, angle of arrival (AoA), range estimation, array signal processing, ESPRIT, Uniform Linear Array (ULA)
Procedia PDF Downloads 5248487 Automatic Detection of Suicidal Behaviors Using an RGB-D Camera: Azure Kinect
Authors: Maha Jazouli
Abstract:
Suicide is one of the most important causes of death in the prison environment, both in Canada and internationally. Rates of attempts of suicide and self-harm have been on the rise in recent years, with hangings being the most frequent method resorted to. The objective of this article is to propose a method to automatically detect in real time suicidal behaviors. We present a gesture recognition system that consists of three modules: model-based movement tracking, feature extraction, and gesture recognition using machine learning algorithms (MLA). Our proposed system gives us satisfactory results. This smart video surveillance system can help assist staff responsible for the safety and health of inmates by alerting them when suicidal behavior is detected, which helps reduce mortality rates and save lives.Keywords: suicide detection, Kinect azure, RGB-D camera, SVM, machine learning, gesture recognition
Procedia PDF Downloads 1878486 'CardioCare': A Cutting-Edge Fusion of IoT and Machine Learning to Bridge the Gap in Cardiovascular Risk Management
Authors: Arpit Patil, Atharav Bhagwat, Rajas Bhope, Pramod Bide
Abstract:
This research integrates IoT and ML to predict heart failure risks, utilizing the Framingham dataset. IoT devices gather real-time physiological data, focusing on heart rate dynamics, while ML, specifically Random Forest, predicts heart failure. Rigorous feature selection enhances accuracy, achieving over 90% prediction rate. This amalgamation marks a transformative step in proactive healthcare, highlighting early detection's critical role in cardiovascular risk mitigation. Challenges persist, necessitating continual refinement for improved predictive capabilities.Keywords: cardiovascular diseases, internet of things, machine learning, cardiac risk assessment, heart failure prediction, early detection, cardio data analysis
Procedia PDF Downloads 98485 Parkinson’s Disease Detection Analysis through Machine Learning Approaches
Authors: Muhtasim Shafi Kader, Fizar Ahmed, Annesha Acharjee
Abstract:
Machine learning and data mining are crucial in health care, as well as medical information and detection. Machine learning approaches are now being utilized to improve awareness of a variety of critical health issues, including diabetes detection, neuron cell tumor diagnosis, COVID 19 identification, and so on. Parkinson’s disease is basically a disease for our senior citizens in Bangladesh. Parkinson's Disease indications often seem progressive and get worst with time. People got affected trouble walking and communicating with the condition advances. Patients can also have psychological and social vagaries, nap problems, hopelessness, reminiscence loss, and weariness. Parkinson's disease can happen in both men and women. Though men are affected by the illness at a proportion that is around partial of them are women. In this research, we have to get out the accurate ML algorithm to find out the disease with a predictable dataset and the model of the following machine learning classifiers. Therefore, nine ML classifiers are secondhand to portion study to use machine learning approaches like as follows, Naive Bayes, Adaptive Boosting, Bagging Classifier, Decision Tree Classifier, Random Forest classifier, XBG Classifier, K Nearest Neighbor Classifier, Support Vector Machine Classifier, and Gradient Boosting Classifier are used.Keywords: naive bayes, adaptive boosting, bagging classifier, decision tree classifier, random forest classifier, XBG classifier, k nearest neighbor classifier, support vector classifier, gradient boosting classifier
Procedia PDF Downloads 1278484 Combination of Electrochemical Impedance Spectroscopy and Electromembrane Extraction for the Determination of Zolpidem Using Modified Screen-Printed Electrode
Authors: Ali Naeemy, Mir Ghasem Hoseini
Abstract:
In this study, for the first time, an analytical method developed and validated by combining electrochemical impedance spectroscopy and electromembrane extraction (EIS-EME) by Vulcan/poly pyrrole nanocomposite modified screen-printed electrode (PPY–VU/SPE) for accurately quantifying zolpidem. EME parameters optimized, including solvent composition, voltage, pH adjustments and extraction time. Zolpidem was transferred from a donor solution (pH 5) to an acceptor solution (pH 13) using a hollow fiber in 1-octanol as a membrane, driven by a 60 V voltage for 25 minutes, ensuring precise and selective extraction. In comparison with SPE, VU/SPE and PPY/SPE, the PPY–VU/SPE was much more efficient for ZP oxidation. Calibration curves with good linearity were obtained in the concentration range of 2-75 µmol L-1 using the EIS-EME with the detection limit of 0.5 µmol L-1 . Finally, the EIS-EME by using the PPY– VU/SPE was successfully used to determine ZP in tablet dosage form, urine and plasma samples. Keywords: Electrochemical impedance spectroscopy, Electromembrane extraction, Zolpidem, Vulcan, poly pyrrole, Screen printed electrodeKeywords: electrochemical impedance spectroscopy, electromembrane extraction, screen printed electrode, zolpidem
Procedia PDF Downloads 398483 The Fabrication of Scintillator Column by Hydraulic Pressure Injection Method
Authors: Chien Chon Chen, Chun Mei Chu, Chuan Ju Wang, Chih Yuan Chen, Ker Jer Huang
Abstract:
Cesiumiodide with Na doping (CsI(Na)) solution or melt is easily forming three- dimension dendrites on the free surface. The defects or bobbles form inside the CsI(Na) during the solution or melt solidification. The defects or bobbles can further effect the x-ray path in the CsI(Na) crystal and decrease the scintillation characteristics of CsI(Na). In order to enhance the CsI(Na) scintillated property we made single crystal of CsI(Na) column in the anodic aluminum oxide (AAO) template by hydraulic pressure injection method. It is interesting that when CsI(Na) melt is confined in the small AAO channels, the column grow as stable single column without any dendrites. The high aspect ratio (100~10000) of AAO and nano to sub-micron channel structure which is a suitable template for single of crystal CsI(Na) formation. In this work, a new low-cost approach to fabricate scintillator crystals using anodic aluminum oxide (AAO) rather than Si is reported, which can produce scintillator crystals with a wide range of controllable size to optimize their performance in X-ray detection.Keywords: cesiumiodide, AAO, scintillator, crystal, X-ray
Procedia PDF Downloads 4618482 Numerical Simulation of Fiber Bragg Grating Spectrum for Mode-І Delamination Detection
Authors: O. Hassoon, M. Tarfoui, A. El Malk
Abstract:
Fiber Bragg optic sensor embedded in composite material to detect and monitor the damage which is occur in composite structure. In this paper we deal with the mode-Ι delamination to determine the resistance of material to crack propagation, and use the coupling mode theory and T-matrix method to simulating the FBGs spectrum for both uniform and non-uniform strain distribution. The double cantilever beam test which is modeling in FEM to determine the Longitudinal strain, there are two models which are used, the first is the global half model, and the second the sub-model to represent the FBGs with refine mesh. This method can simulate the damage in the composite structure and converting the strain to wavelength shifting of the FBG spectrum.Keywords: fiber bragg grating, delamination detection, DCB, FBG spectrum, structure health monitoring
Procedia PDF Downloads 3608481 Effect of Dehydration Methods of the Proximate Composition, Mineral Content and Functional Properties of Starch Flour Extracted from Maize
Authors: Olakunle M. Makanjuola, Adebola Ajayi
Abstract:
Effect of the dehydrated method on proximate, functional and mineral properties of corn starch was evaluated. The study was carried and to determine the proximate, functional and mineral properties of corn starch produced using three different drying methods namely (sun) (oven) and (cabinet) drying methods. The corn starch was obtained by cleaning, steeping, milling, sieving, dewatering and drying corn starch was evaluated for proximate composition, functional properties, and mineral properties to determine the nutritional properties, moisture, crude protein, crude fat, ash, and carbohydrate were in the range of 9.35 to 12.16, 6.5 to 10.78 1.08 to 2.5, 1.08 to 2.5, 4.0 to 5.2, 69.58 to 75.8% respectively. Bulk density range between 0.610g/dm3 to 0.718 g/dm3, water, and oil absorption capacities range between 116.5 to 117.25 and 113.8 to 117.25 ml/g respectively. Swelling powder had value varying from 1.401 to 1.544g/g respectively. The results indicate that the cabinet method had the best result item of the quality attribute.Keywords: starch flour, maize, dehydration, cabinet dryer
Procedia PDF Downloads 2378480 Somatosensory Detection Wristbands Applied Research of Baby
Authors: Chang Ting, Wu Chun Kuan
Abstract:
Wireless sensing technology is increasingly developed, in order to avoid caregiver neglect children in poor physiological condition, so there are more and more products into the wireless sensor-related technologies, in order to reduce the risk of infants. In view of this, the study will focus on Somatosensory detection wristbands Applied Research of Baby, and to explore through observation and literature, to find design criteria which conform baby products, as well as the advantages and disadvantages of existing products. This study will focus on 0-2 years of infant research and product design, to provide 2-3 new design concepts and products to identify weaknesses through the use of the actual product, further provide future baby wristbands design reference.Keywords: infants, observation, design criteria, wireless sensing
Procedia PDF Downloads 3098479 On the Use of Analytical Performance Models to Design a High-Performance Active Queue Management Scheme
Authors: Shahram Jamali, Samira Hamed
Abstract:
One of the open issues in Random Early Detection (RED) algorithm is how to set its parameters to reach high performance for the dynamic conditions of the network. Although original RED uses fixed values for its parameters, this paper follows a model-based approach to upgrade performance of the RED algorithm. It models the routers queue behavior by using the Markov model and uses this model to predict future conditions of the queue. This prediction helps the proposed algorithm to make some tunings over RED's parameters and provide efficiency and better performance. Widespread packet level simulations confirm that the proposed algorithm, called Markov-RED, outperforms RED and FARED in terms of queue stability, bottleneck utilization and dropped packets count.Keywords: active queue management, RED, Markov model, random early detection algorithm
Procedia PDF Downloads 5398478 Fine Characterization of Glucose Modified Human Serum Albumin by Different Biophysical and Biochemical Techniques at a Range
Authors: Neelofar, Khursheed Alam, Jamal Ahmad
Abstract:
Protein modification in diabetes mellitus may lead to early glycation products (EGPs) or amadori product as well as advanced glycation end products (AGEs). Early glycation involves the reaction of glucose with N-terminal and lysyl side chain amino groups to form Schiff’s base which undergoes rearrangements to form more stable early glycation product known as Amadori product. After Amadori, the reactions become more complicated leading to the formation of advanced glycation end products (AGEs) that interact with various AGE receptors, thereby playing an important role in the long-term complications of diabetes. Millard reaction or nonenzymatic glycation reaction accelerate in diabetes due to hyperglycation and alter serum protein’s structure, their normal functions that lead micro and macro vascular complications in diabetic patients. In this study, Human Serum Albumin (HSA) with a constant concentration was incubated with different concentrations of glucose at 370C for a week. At 4th day, Amadori product was formed that was confirmed by colorimetric method NBT assay and TBA assay which both are authenticate early glycation product. Conformational changes in native as well as all samples of Amadori albumin with different concentrations of glucose were investigated by various biophysical and biochemical techniques. Main biophysical techniques hyperchromacity, quenching of fluorescence intensity, FTIR, CD and SDS-PAGE were used. Further conformational changes were observed by biochemical assays mainly HMF formation, fructoseamine, reduction of fructoseamine with NaBH4, carbonyl content estimation, lysine and arginine residues estimation, ANS binding property and thiol group estimation. This study find structural and biochemical changes in Amadori modified HSA with normal to hyperchronic range of glucose with respect to native HSA. When glucose concentration was increased from normal to chronic range biochemical and structural changes also increased. Highest alteration in secondary and tertiary structure and conformation in glycated HSA was observed at the hyperchronic concentration (75mM) of glucose. Although it has been found that Amadori modified proteins is also involved in secondary complications of diabetes as AGEs but very few studies have been done to analyze the conformational changes in Amadori modified proteins due to early glycation. Most of the studies were found on the structural changes in Amadori protein at a particular glucose concentration but no study was found to compare the biophysical and biochemical changes in HSA due to early glycation with a range of glucose concentration at a constant incubation time. So this study provide the information about the biochemical and biophysical changes occur in Amadori modified albumin at a range of glucose normal to chronic in diabetes. Although many implicates currently in use i.e. glycaemic control, insulin treatment and other chemical therapies that can control many aspects of diabetes. However, even with intensive use of current antidiabetic agents more than 50 % of diabetic patient’s type 2 suffers poor glycaemic control and 18 % develop serious complications within six years of diagnosis. Experimental evidence related to diabetes suggests that preventing the nonenzymatic glycation of relevant proteins or blocking their biological effects might beneficially influence the evolution of vascular complications in diabetic patients or quantization of amadori adduct of HSA by authentic antibodies against HSA-EGPs can be used as marker for early detection of the initiation/progression of secondary complications of diabetes. So this research work may be helpful for the same.Keywords: diabetes mellitus, glycation, albumin, amadori, biophysical and biochemical techniques
Procedia PDF Downloads 2708477 Analysis of Automotive Sensor for Engine Knock System
Authors: Miroslav Gutten, Jozef Jurcik, Daniel Korenciak, Milan Sebok, Matej Kuceraa
Abstract:
This paper deals with the phenomenon of the undesirable detonation combustion in internal combustion engines. A control unit of the engine monitors these detonations using piezoelectric knock sensors. With the control of these sensors the detonations can be objectively measured just outside the car. If this component provides small amplitude of the output voltage it could happen that there would have been in the areas of the engine ignition combustion. The paper deals with the design of a simple device for the detection of this disorder. A construction of the testing device for the knock sensor suitable for diagnostics of knock combustion in internal combustion engines will be presented. The output signal of presented sensor will be described by Bessel functions. Using the first voltage extremes on the characteristics it is possible to create a reference for the evaluation of the polynomial residue. It should be taken into account that the velocity of sound in air is 330 m/s. This sound impinges on the walls of the combustion chamber and is detected by the sensor. The resonant frequency of the clicking of the motor is usually in the range from 5 kHz to 15 kHz. The sensor worked in the field to 37 kHz, which shall be taken into account on an own sensor resonance.Keywords: diagnostics, knock sensor, measurement, testing device
Procedia PDF Downloads 4458476 Study on Network-Based Technology for Detecting Potentially Malicious Websites
Authors: Byung-Ik Kim, Hong-Koo Kang, Tae-Jin Lee, Hae-Ryong Park
Abstract:
Cyber terrors against specific enterprises or countries have been increasing recently. Such attacks against specific targets are called advanced persistent threat (APT), and they are giving rise to serious social problems. The malicious behaviors of APT attacks mostly affect websites and penetrate enterprise networks to perform malevolent acts. Although many enterprises invest heavily in security to defend against such APT threats, they recognize the APT attacks only after the latter are already in action. This paper discusses the characteristics of APT attacks at each step as well as the strengths and weaknesses of existing malicious code detection technologies to check their suitability for detecting APT attacks. It then proposes a network-based malicious behavior detection algorithm to protect the enterprise or national networks.Keywords: Advanced Persistent Threat (APT), malware, network security, network packet, exploit kits
Procedia PDF Downloads 3658475 Mesoporous Carbon Ceramic SiO2/C Prepared by Sol-Gel Method and Modified with Cobalt Phthalocyanine and Used as an Electrochemical Sensor for Nitrite
Authors: Abdur Rahim, Lauro Tatsuo Kubota, Yoshitaka Gushikem
Abstract:
Carbon ceramic mesoporous SiO2/50wt%C (SBET= 170 m2g-1), where C is graphite, was prepared by the sol gel method. Scanning electron microscopy images and the respective element mapping showed that, within the magnification used, no phase segregation was detectable. It presented the electric conductivities of 0.49 S cm-1. This material was used to support cobalt phthalocyanine, prepared in situ, to assure a homogeneous dispersion of the electro active complex in the pores of the matrix. The surface density of cobalt phthalocyanine, on the matrix surfaces was 0.015 mol cm-2. Pressed disk, made with SiO2/50wt%C/CoPc, was used to fabricate an electrode and tested as sensors for nitrite determination by electro chemical technique. A linear response range between 0.039 and 0.42 mmol l−1,and correlation coefficient r=0.9996 was obtained. The electrode was chemically very stable and presented very high sensitivity for this analyte, with a limit of detection, LOD = 1.087 x 10-6 mol L-1.Keywords: SiO2/C/CoPc, sol-gel method, electrochemical sensor, nitrite oxidation, carbon ceramic material, cobalt phthalocyanine
Procedia PDF Downloads 3148474 A Vision-Based Early Warning System to Prevent Elephant-Train Collisions
Authors: Shanaka Gunasekara, Maleen Jayasuriya, Nalin Harischandra, Lilantha Samaranayake, Gamini Dissanayake
Abstract:
One serious facet of the worsening Human-Elephant conflict (HEC) in nations such as Sri Lanka involves elephant-train collisions. Endangered Asian elephants are maimed or killed during such accidents, which also often result in orphaned or disabled elephants, contributing to the phenomenon of lone elephants. These lone elephants are found to be more likely to attack villages and showcase aggressive behaviour, which further exacerbates the overall HEC. Furthermore, Railway Services incur significant financial losses and disruptions to services annually due to such accidents. Most elephant-train collisions occur due to a lack of adequate reaction time. This is due to the significant stopping distance requirements of trains, as the full braking force needs to be avoided to minimise the risk of derailment. Thus, poor driver visibility at sharp turns, nighttime operation, and poor weather conditions are often contributing factors to this problem. Initial investigations also indicate that most collisions occur in localised “hotspots” where elephant pathways/corridors intersect with railway tracks that border grazing land and watering holes. Taking these factors into consideration, this work proposes the leveraging of recent developments in Convolutional Neural Network (CNN) technology to detect elephants using an RGB/infrared capable camera around known hotspots along the railway track. The CNN was trained using a curated dataset of elephants collected on field visits to elephant sanctuaries and wildlife parks in Sri Lanka. With this vision-based detection system at its core, a prototype unit of an early warning system was designed and tested. This weatherised and waterproofed unit consists of a Reolink security camera which provides a wide field of view and range, an Nvidia Jetson Xavier computing unit, a rechargeable battery, and a solar panel for self-sufficient functioning. The prototype unit was designed to be a low-cost, low-power and small footprint device that can be mounted on infrastructures such as poles or trees. If an elephant is detected, an early warning message is communicated to the train driver using the GSM network. A mobile app for this purpose was also designed to ensure that the warning is clearly communicated. A centralized control station manages and communicates all information through the train station network to ensure coordination among important stakeholders. Initial results indicate that detection accuracy is sufficient under varying lighting situations, provided comprehensive training datasets that represent a wide range of challenging conditions are available. The overall hardware prototype was shown to be robust and reliable. We envision a network of such units may help contribute to reducing the problem of elephant-train collisions and has the potential to act as an important surveillance mechanism in dealing with the broader issue of human-elephant conflicts.Keywords: computer vision, deep learning, human-elephant conflict, wildlife early warning technology
Procedia PDF Downloads 2248473 Real Time Detection, Prediction and Reconstitution of Rain Drops
Authors: R. Burahee, B. Chassinat, T. de Laclos, A. Dépée, A. Sastim
Abstract:
The purpose of this paper is to propose a solution to detect, predict and reconstitute rain drops in real time – during the night – using an embedded material with an infrared camera. To prevent the system from needing too high hardware resources, simple models are considered in a powerful image treatment algorithm reducing considerably calculation time in OpenCV software. Using a smart model – drops will be matched thanks to a process running through two consecutive pictures for implementing a sophisticated tracking system. With this system drops computed trajectory gives information for predicting their future location. Thanks to this technique, treatment part can be reduced. The hardware system composed by a Raspberry Pi is optimized to host efficiently this code for real time execution.Keywords: reconstitution, prediction, detection, rain drop, real time, raspberry, infrared
Procedia PDF Downloads 4178472 Hybrid Localization Schemes for Wireless Sensor Networks
Authors: Fatima Babar, Majid I. Khan, Malik Najmus Saqib, Muhammad Tahir
Abstract:
This article provides range based improvements over a well-known single-hop range free localization scheme, Approximate Point in Triangulation (APIT) by proposing an energy efficient Barycentric coordinate based Point-In-Triangulation (PIT) test along with PIT based trilateration. These improvements result in energy efficiency, reduced localization error and improved localization coverage compared to APIT and its variants. Moreover, we propose to embed Received signal strength indication (RSSI) based distance estimation in DV-Hop which is a multi-hop localization scheme. The proposed localization algorithm achieves energy efficiency and reduced localization error compared to DV-Hop and its available improvements. Furthermore, a hybrid multi-hop localization scheme is also proposed that utilize Barycentric coordinate based PIT test and both range based (Received signal strength indicator) and range free (hop count) techniques for distance estimation. Our experimental results provide evidence that proposed hybrid multi-hop localization scheme results in two to five times reduction in the localization error compare to DV-Hop and its variants, at reduced energy requirements.Keywords: Localization, Trilateration, Triangulation, Wireless Sensor Networks
Procedia PDF Downloads 4678471 Analysis of Spatial and Temporal Data Using Remote Sensing Technology
Authors: Kapil Pandey, Vishnu Goyal
Abstract:
Spatial and temporal data analysis is very well known in the field of satellite image processing. When spatial data are correlated with time, series analysis it gives the significant results in change detection studies. In this paper the GIS and Remote sensing techniques has been used to find the change detection using time series satellite imagery of Uttarakhand state during the years of 1990-2010. Natural vegetation, urban area, forest cover etc. were chosen as main landuse classes to study. Landuse/ landcover classes within several years were prepared using satellite images. Maximum likelihood supervised classification technique was adopted in this work and finally landuse change index has been generated and graphical models were used to present the changes.Keywords: GIS, landuse/landcover, spatial and temporal data, remote sensing
Procedia PDF Downloads 4318470 Modeling of Digital and Settlement Consolidation of Soil under Oedomete
Authors: Yu-Lin Shen, Ming-Kuen Chang
Abstract:
In addition to a considerable amount of machinery and equipment, intricacies of the transmission pipeline exist in Petrochemical plants. Long term corrosion may lead to pipeline thinning and rupture, causing serious safety concerns. With the advances in non-destructive testing technology, more rapid and long-range ultrasonic detection techniques are often used for pipeline inspection, EMAT without coupling to detect, it is a non-contact ultrasonic, suitable for detecting elevated temperature or roughened e surface of line. In this study, we prepared artificial defects in pipeline for Electromagnetic Acoustic Transducer Testing (EMAT) to survey the relationship between the defect location, sizing and the EMAT signal. It was found that the signal amplitude of EMAT exhibited greater signal attenuation with larger defect depth and length.. In addition, with bigger flat hole diameter, greater amplitude attenuation was obtained. In summary, signal amplitude attenuation of EMAT was affected by the defect depth, defect length and the hole diameter and size.Keywords: EMAT, artificial defect, NDT, ultrasonic testing
Procedia PDF Downloads 3308469 Design of an Automated Deep Learning Recurrent Neural Networks System Integrated with IoT for Anomaly Detection in Residential Electric Vehicle Charging in Smart Cities
Authors: Wanchalerm Patanacharoenwong, Panaya Sudta, Prachya Bumrungkun
Abstract:
The paper focuses on the development of a system that combines Internet of Things (IoT) technologies and deep learning algorithms for anomaly detection in residential Electric Vehicle (EV) charging in smart cities. With the increasing number of EVs, ensuring efficient and reliable charging systems has become crucial. The aim of this research is to develop an integrated IoT and deep learning system for detecting anomalies in residential EV charging and enhancing EV load profiling and event detection in smart cities. This approach utilizes IoT devices equipped with infrared cameras to collect thermal images and household EV charging profiles from the database of Thailand utility, subsequently transmitting this data to a cloud database for comprehensive analysis. The methodology includes the use of advanced deep learning techniques such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) algorithms. IoT devices equipped with infrared cameras are used to collect thermal images and EV charging profiles. The data is transmitted to a cloud database for comprehensive analysis. The researchers also utilize feature-based Gaussian mixture models for EV load profiling and event detection. Moreover, the research findings demonstrate the effectiveness of the developed system in detecting anomalies and critical profiles in EV charging behavior. The system provides timely alarms to users regarding potential issues and categorizes the severity of detected problems based on a health index for each charging device. The system also outperforms existing models in event detection accuracy. This research contributes to the field by showcasing the potential of integrating IoT and deep learning techniques in managing residential EV charging in smart cities. The system ensures operational safety and efficiency while also promoting sustainable energy management. The data is collected using IoT devices equipped with infrared cameras and is stored in a cloud database for analysis. The collected data is then analyzed using RNN, LSTM, and feature-based Gaussian mixture models. The approach includes both EV load profiling and event detection, utilizing a feature-based Gaussian mixture model. This comprehensive method aids in identifying unique power consumption patterns among EV owners and outperforms existing models in event detection accuracy. In summary, the research concludes that integrating IoT and deep learning techniques can effectively detect anomalies in residential EV charging and enhance EV load profiling and event detection accuracy. The developed system ensures operational safety and efficiency, contributing to sustainable energy management in smart cities.Keywords: cloud computing framework, recurrent neural networks, long short-term memory, Iot, EV charging, smart grids
Procedia PDF Downloads 63