Search results for: modular function deployment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5562

Search results for: modular function deployment

4482 Building Safety Through Real-time Design Fire Protection Systems

Authors: Mohsin Ali Shaikh, Song Weiguo, Muhammad Kashan Surahio, Usman Shahid, Rehmat Karim

Abstract:

When the area of a structure that is threatened by a disaster affects personal safety, the effectiveness of disaster prevention, evacuation, and rescue operations can be summarized by three assessment indicators: personal safety, property preservation, and attribution of responsibility. These indicators are applicable regardless of the disaster that affects the building. People need to get out of the hazardous area and to a safe place as soon as possible because there's no other way to respond. The results of the tragedy are thus closely related to how quickly people are advised to evacuate and how quickly they are rescued. This study considers present fire prevention systems to address catastrophes and improve building safety. It proposes the methods of Prevention Level for Deployment in Advance and Spatial Transformation by Human-Machine Collaboration. We present and prototype a real-time fire protection system architecture for building disaster prevention, evacuation, and rescue operations. The design encourages the use of simulations to check the efficacy of evacuation, rescue, and disaster prevention procedures throughout the planning and design phase of the structure.

Keywords: prevention level, building information modeling, quality management system, simulated reality

Procedia PDF Downloads 69
4481 Bayesian Value at Risk Forecast Using Realized Conditional Autoregressive Expectiel Mdodel with an Application of Cryptocurrency

Authors: Niya Chen, Jennifer Chan

Abstract:

In the financial market, risk management helps to minimize potential loss and maximize profit. There are two ways to assess risks; the first way is to calculate the risk directly based on the volatility. The most common risk measurements are Value at Risk (VaR), sharp ratio, and beta. Alternatively, we could look at the quantile of the return to assess the risk. Popular return models such as GARCH and stochastic volatility (SV) focus on modeling the mean of the return distribution via capturing the volatility dynamics; however, the quantile/expectile method will give us an idea of the distribution with the extreme return value. It will allow us to forecast VaR using return which is direct information. The advantage of using these non-parametric methods is that it is not bounded by the distribution assumptions from the parametric method. But the difference between them is that expectile uses a second-order loss function while quantile regression uses a first-order loss function. We consider several quantile functions, different volatility measures, and estimates from some volatility models. To estimate the expectile of the model, we use Realized Conditional Autoregressive Expectile (CARE) model with the bayesian method to achieve this. We would like to see if our proposed models outperform existing models in cryptocurrency, and we will test it by using Bitcoin mainly as well as Ethereum.

Keywords: expectile, CARE Model, CARR Model, quantile, cryptocurrency, Value at Risk

Procedia PDF Downloads 109
4480 An Immune-Inspired Web Defense Architecture

Authors: Islam Khalil, Amr El-Kadi

Abstract:

With the increased use of web technologies, microservices, and Application Programming Interface (API) for integration between systems, and with the development of containerization of services on the operating system level as a method of isolating system execution and for easing the deployment and scaling of systems, there is a growing need as well as opportunities for providing platforms that improve the security of such services. In our work, we propose an architecture for a containerization platform that utilizes various concepts derived from the human immune system. The goal of the proposed containerization platform is to introduce the concept of slowing down or throttling suspected malicious digital pathogens (intrusions) to reduce their damage footprint while providing more opportunities for forensic inspection of suspected pathogens in addition to the ability to snapshot, rollback, and recover from possible damage. The proposed platform also leverages existing intrusion detection algorithms by integrating and orchestrating their cooperative operation for more effective intrusion detection. We show how this model reduces the damage footprint of intrusions and gives a greater time window for forensic investigation. Moreover, during our experiments, our proposed platform was able to uncover unintentional system design flaws that resulted in internal DDoS-like attacks by submodules of the system itself rather than external intrusions.

Keywords: containers, human immunity, intrusion detection, security, web services

Procedia PDF Downloads 95
4479 Generalized Correlation Coefficient in Genome-Wide Association Analysis of Cognitive Ability in Twins

Authors: Afsaneh Mohammadnejad, Marianne Nygaard, Jan Baumbach, Shuxia Li, Weilong Li, Jesper Lund, Jacob v. B. Hjelmborg, Lene Christensen, Qihua Tan

Abstract:

Cognitive impairment in the elderly is a key issue affecting the quality of life. Despite a strong genetic background in cognition, only a limited number of single nucleotide polymorphisms (SNPs) have been found. These explain a small proportion of the genetic component of cognitive function, thus leaving a large proportion unaccounted for. We hypothesize that one reason for this missing heritability is the misspecified modeling in data analysis concerning phenotype distribution as well as the relationship between SNP dosage and the phenotype of interest. In an attempt to overcome these issues, we introduced a model-free method based on the generalized correlation coefficient (GCC) in a genome-wide association study (GWAS) of cognitive function in twin samples and compared its performance with two popular linear regression models. The GCC-based GWAS identified two genome-wide significant (P-value < 5e-8) SNPs; rs2904650 near ZDHHC2 on chromosome 8 and rs111256489 near CD6 on chromosome 11. The kinship model also detected two genome-wide significant SNPs, rs112169253 on chromosome 4 and rs17417920 on chromosome 7, whereas no genome-wide significant SNPs were found by the linear mixed model (LME). Compared to the linear models, more meaningful biological pathways like GABA receptor activation, ion channel transport, neuroactive ligand-receptor interaction, and the renin-angiotensin system were found to be enriched by SNPs from GCC. The GCC model outperformed the linear regression models by identifying more genome-wide significant genetic variants and more meaningful biological pathways related to cognitive function. Moreover, GCC-based GWAS was robust in handling genetically related twin samples, which is an important feature in handling genetic confounding in association studies.

Keywords: cognition, generalized correlation coefficient, GWAS, twins

Procedia PDF Downloads 124
4478 Lateralisation of Visual Function in Yellow-Eyed Mullet (Aldrichetta forsteri) and Its Role in Schooling Behaviour

Authors: Karen L. Middlemiss, Denham G. Cook, Peter Jaksons, Alistair Jerrett, William Davison

Abstract:

Lateralisation of cognitive function is a common phenomenon found throughout the animal kingdom. Strong biases in functional behaviours have evolved from asymmetrical brain hemispheres which differ in structure and/or cognitive function. In fish, lateralisation is involved in visually mediated behaviours such as schooling, predator avoidance, and foraging, and is considered to have a direct impact on species fitness. Currently, there is very little literature on the role of lateralisation in fish schools. The yellow-eyed mullet (Aldrichetta forsteri), is an estuarine and coastal species found commonly throughout temperate regions of Australia and New Zealand. This study sought to quantify visually mediated behaviours in yellow-eyed mullet to identify the significance of lateralisation, and the factors which influence functional behaviours in schooling fish. Our approach to study design was to conduct a series of tank based experiments investigating; a) individual and population level lateralisation, b) schooling behaviour, and d) optic lobe anatomy. Yellow-eyed mullet showed individual variation in direction and strength of lateralisation in juveniles, and trait specific spatial positioning within the school was evidenced in strongly lateralised fish. In combination with observed differences in schooling behaviour, the possibility of ontogenetic plasticity in both behavioural lateralisation and optic lobe morphology in adults is suggested. These findings highlight the need for research into the genetic and environmental factors (epigenetics) which drive functional behaviours such as schooling, feeding and aggression. Improved knowledge on collective behaviour could have significant benefits to captive rearing programmes through improved culture techniques and will add to the limited body of knowledge on the complex ecophysiological interactions present in our inshore fisheries.

Keywords: cerebral asymmetry, fisheries, schooling, visual bias

Procedia PDF Downloads 214
4477 On the Internal Structure of the ‘Enigmatic Electrons’

Authors: Natarajan Tirupattur Srinivasan

Abstract:

Quantum mechanics( QM) and (special) relativity (SR) have indeed revolutionized the very thinking of physicists, and the spectacular successes achieved over a century due to these two theories are mind-boggling. However, there is still a strong disquiet among some physicists. While the mathematical structure of these two theories has been established beyond any doubt, their physical interpretations are still being contested by many. Even after a hundred years of their existence, we cannot answer a very simple question, “What is an electron”? Physicists are struggling even now to come to grips with the different interpretations of quantum mechanics with all their ramifications. However, it is indeed strange that the (special) relativity theory of Einstein enjoys many orders of magnitude of “acceptance”, though both theories have their own stocks of weirdness in the results, like time dilation, mass increase with velocity, the collapse of the wave function, quantum jump, tunnelling, etc. Here, in this paper, it would be shown that by postulating an intrinsic internal motion to these enigmatic electrons, one can build a fairly consistent picture of reality, revealing a very simple picture of nature. This is also evidenced by Schrodinger’s ‘Zitterbewegung’ motion, about which so much has been written. This leads to a helical trajectory of electrons when they move in a laboratory frame. It will be shown that the helix is a three-dimensional wave having all the characteristics of our familiar 2D wave. Again, the helix, being a geodesic on an imaginary cylinder, supports ‘quantization’, and its representation is just the complex exponentials matching with the wave function of quantum mechanics. By postulating the instantaneous velocity of the electrons to be always ‘c’, the velocity of light, the entire relativity comes alive, and we can interpret the ‘time dilation’, ‘mass increase with velocity’, etc., in a very simple way. Thus, this model unifies both QM and SR without the need for a counterintuitive postulate of Einstein about the constancy of the velocity of light for all inertial observers. After all, if the motion of an inertial frame cannot affect the velocity of light, the converse that this constant also cannot affect the events in the frame must be true. But entire relativity is about how ‘c’ affects time, length, mass, etc., in different frames.

Keywords: quantum reconstruction, special theory of relativity, quantum mechanics, zitterbewegung, complex wave function, helix, geodesic, Schrodinger’s wave equations

Procedia PDF Downloads 73
4476 Ill-Posed Inverse Problems in Molecular Imaging

Authors: Ranadhir Roy

Abstract:

Inverse problems arise in medical (molecular) imaging. These problems are characterized by large in three dimensions, and by the diffusion equation which models the physical phenomena within the media. The inverse problems are posed as a nonlinear optimization where the unknown parameters are found by minimizing the difference between the predicted data and the measured data. To obtain a unique and stable solution to an ill-posed inverse problem, a priori information must be used. Mathematical conditions to obtain stable solutions are established in Tikhonov’s regularization method, where the a priori information is introduced via a stabilizing functional, which may be designed to incorporate some relevant information of an inverse problem. Effective determination of the Tikhonov regularization parameter requires knowledge of the true solution, or in the case of optical imaging, the true image. Yet, in, clinically-based imaging, true image is not known. To alleviate these difficulties we have applied the penalty/modified barrier function (PMBF) method instead of Tikhonov regularization technique to make the inverse problems well-posed. Unlike the Tikhonov regularization method, the constrained optimization technique, which is based on simple bounds of the optical parameter properties of the tissue, can easily be implemented in the PMBF method. Imposing the constraints on the optical properties of the tissue explicitly restricts solution sets and can restore uniqueness. Like the Tikhonov regularization method, the PMBF method limits the size of the condition number of the Hessian matrix of the given objective function. The accuracy and the rapid convergence of the PMBF method require a good initial guess of the Lagrange multipliers. To obtain the initial guess of the multipliers, we use a least square unconstrained minimization problem. Three-dimensional images of fluorescence absorption coefficients and lifetimes were reconstructed from contact and noncontact experimentally measured data.

Keywords: constrained minimization, ill-conditioned inverse problems, Tikhonov regularization method, penalty modified barrier function method

Procedia PDF Downloads 270
4475 Deep Neural Networks for Restoration of Sky Images Affected by Static and Anisotropic Aberrations

Authors: Constanza A. Barriga, Rafael Bernardi, Amokrane Berdja, Christian D. Guzman

Abstract:

Most image restoration methods in astronomy rely upon probabilistic tools that infer the best solution for a deconvolution problem. They achieve good performances when the point spread function (PSF) is spatially invariable in the image plane. However, this latter condition is not always satisfied with real optical systems. PSF angular variations cannot be evaluated directly from the observations, neither be corrected at a pixel resolution. We have developed a method for the restoration of images affected by static and anisotropic aberrations using deep neural networks that can be directly applied to sky images. The network is trained using simulated sky images corresponding to the T-80 telescope optical system, an 80 cm survey imager at Cerro Tololo (Chile), which are synthesized using a Zernike polynomial representation of the optical system. Once trained, the network can be used directly on sky images, outputting a corrected version of the image, which has a constant and known PSF across its field-of-view. The method was tested with the T-80 telescope, achieving better results than with PSF deconvolution techniques. We present the method and results on this telescope.

Keywords: aberrations, deep neural networks, image restoration, variable point spread function, wide field images

Procedia PDF Downloads 134
4474 Use of SUDOKU Design to Assess the Implications of the Block Size and Testing Order on Efficiency and Precision of Dulce De Leche Preference Estimation

Authors: Jéssica Ferreira Rodrigues, Júlio Silvio De Sousa Bueno Filho, Vanessa Rios De Souza, Ana Carla Marques Pinheiro

Abstract:

This study aimed to evaluate the implications of the block size and testing order on efficiency and precision of preference estimation for Dulce de leche samples. Efficiency was defined as the inverse of the average variance of pairwise comparisons among treatments. Precision was defined as the inverse of the variance of treatment means (or effects) estimates. The experiment was originally designed to test 16 treatments as a series of 8 Sudoku 16x16 designs being 4 randomized independently and 4 others in the reverse order, to yield balance in testing order. Linear mixed models were assigned to the whole experiment with 112 testers and all their grades, as well as their partially balanced subgroups, namely: a) experiment with the four initial EU; b) experiment with EU 5 to 8; c) experiment with EU 9 to 12; and b) experiment with EU 13 to 16. To record responses we used a nine-point hedonic scale, it was assumed a mixed linear model analysis with random tester and treatments effects and with fixed test order effect. Analysis of a cumulative random effects probit link model was very similar, with essentially no different conclusions and for simplicity, we present the results using Gaussian assumption. R-CRAN library lme4 and its function lmer (Fit Linear Mixed-Effects Models) was used for the mixed models and libraries Bayesthresh (default Gaussian threshold function) and ordinal with the function clmm (Cumulative Link Mixed Model) was used to check Bayesian analysis of threshold models and cumulative link probit models. It was noted that the number of samples tested in the same session can influence the acceptance level, underestimating the acceptance. However, proving a large number of samples can help to improve the samples discrimination.

Keywords: acceptance, block size, mixed linear model, testing order, testing order

Procedia PDF Downloads 321
4473 Pathologies in the Left Atrium Reproduced Using a Low-Order Synergistic Numerical Model of the Cardiovascular System

Authors: Nicholas Pearce, Eun-jin Kim

Abstract:

Pathologies of the cardiovascular (CV) system remain a serious and deadly health problem for human society. Computational modelling provides a relatively accessible tool for diagnosis, treatment, and research into CV disorders. However, numerical models of the CV system have largely focused on the function of the ventricles, frequently overlooking the behaviour of the atria. Furthermore, in the study of the pressure-volume relationship of the heart, which is a key diagnosis of cardiac vascular pathologies, previous works often evoke popular yet questionable time-varying elastance (TVE) method that imposes the pressure-volume relationship instead of calculating it consistently. Despite the convenience of the TVE method, there have been various indications of its limitations and the need for checking its validity in different scenarios. A model of the combined left ventricle (LV) and left atrium (LA) is presented, which consistently considers various feedback mechanisms in the heart without having to use the TVE method. Specifically, a synergistic model of the left ventricle is extended and modified to include the function of the LA. The synergy of the original model is preserved by modelling the electro-mechanical and chemical functions of the micro-scale myofiber for the LA and integrating it with the microscale and macro-organ-scale heart dynamics of the left ventricle and CV circulation. The atrioventricular node function is included and forms the conduction pathway for electrical signals between the atria and ventricle. The model reproduces the essential features of LA behaviour, such as the two-phase pressure-volume relationship and the classic figure of eight pressure-volume loops. Using this model, disorders in the internal cardiac electrical signalling are investigated by recreating the mechano-electric feedback (MEF), which is impossible where the time-varying elastance method is used. The effects of AV node block and slow conduction are then investigated in the presence of an atrial arrhythmia. It is found that electrical disorders and arrhythmia in the LA degrade the CV system by reducing the cardiac output, power, and heart rate.

Keywords: cardiovascular system, left atrium, numerical model, MEF

Procedia PDF Downloads 115
4472 A Multivariate 4/2 Stochastic Covariance Model: Properties and Applications to Portfolio Decisions

Authors: Yuyang Cheng, Marcos Escobar-Anel

Abstract:

This paper introduces a multivariate 4/2 stochastic covariance process generalizing the one-dimensional counterparts presented in Grasselli (2017). Our construction permits stochastic correlation not only among stocks but also among volatilities, also known as co-volatility movements, both driven by more convenient 4/2 stochastic structures. The parametrization is flexible enough to separate these types of correlation, permitting their individual study. Conditions for proper changes of measure and closed-form characteristic functions under risk-neutral and historical measures are provided, allowing for applications of the model to risk management and derivative pricing. We apply the model to an expected utility theory problem in incomplete markets. Our analysis leads to closed-form solutions for the optimal allocation and value function. Conditions are provided for well-defined solutions together with a verification theorem. Our numerical analysis highlights and separates the impact of key statistics on equity portfolio decisions, in particular, volatility, correlation, and co-volatility movements, with the latter being the least important in an incomplete market.

Keywords: stochastic covariance process, 4/2 stochastic volatility model, stochastic co-volatility movements, characteristic function, expected utility theory, veri cation theorem

Procedia PDF Downloads 152
4471 Multidimensional Approach to Analyse the Environmental Impacts of Mobility

Authors: Andras Gyorfi, Andras Torma, Adrienn Buruzs

Abstract:

Mobility has been evolved to a determining field of science. The continuously developing segment involves a variety of affected issues such as public and economic sectors. Beside the changes in mobility the state of environment had also changed in the last period. Alternative mobility as a separate category and the idea of its widespread appliance is such a new field that needs to be studied deeper. Alternative mobility implies finding new types of propulsion, using innovative kinds of power and energy resources, revolutionizing the approach to vehicular control. Including new resources and excluding others has such a complex effect which cannot be unequivocally confirmed by today’s scientific achievements. Changes in specific parameters will most likely reduce the environmental impacts, however, the production of new substances or even their subtraction of the system will cause probably energy deficit as well. The aim of this research is to elaborate the environmental impact matrix of alternative mobility and cognize the factors that are yet unknown, analyse them, look for alternative solutions and conclude all the above in a coherent system. In order to this, we analyse it with a method called ‘the system of systems (SoS) method’ to model the effects and the dynamics of the system. A part of the research process is to examine its impacts on the environment, and to decide whether the newly developed versions of alternative mobility are affecting the environmental state. As a final result, a complex approach will be used which can supplement the current scientific studies. By using the SoS approach, we create a framework of reference containing elements in which we examine the interactions as well. In such a way, a flexible and modular model can be established which supports the prioritizing of effects and the deeper analysis of the complex system.

Keywords: environment, alternative mobility, complex model, element analysis, multidimensional map

Procedia PDF Downloads 324
4470 Albumin-Induced Turn-on Fluorescence in Molecular Engineered Fluorescent Probe for Biomedical Application

Authors: Raja Chinnappan, Huda Alanazi, Shanmugam Easwaramoorthi, Tanveer Mir, Balamurugan Kanagasabai, Ahmed Yaqinuddin, Sandhanasamy Devanesan, Mohamad S. AlSalhi

Abstract:

Serum albumin (SA) is a highly rich water-soluble protein in plasma. It is known to maintain the living organisms' health and help to maintain the proper liver function, kidney function, and plasma osmolality in the body. Low levels of serum albumin are an indication of liver failure and chronic hepatitis. Therefore, it is important to have a low-cost, accurate and rapid method. In this study, we designed a fluorescent probe, triphenylamine rhodanine-3-acetic acid (mRA), which triggers the fluorescence signal upon binding with serum albumin (SA). mRA is a bifunctional molecule with twisted intramolecular charge transfer (TICT)-induced emission characteristics. An aqueous solution of mRA has an insignificant fluorescence signal; however, when mRA binds to SA, it undergoes TICT and turns on the fluorescence emission. A SA dose-dependent fluorescence signal was performed, and the limit of detection was found to be less than ng/mL. The specific binding of SA was tested from the cross-reactivity study using similar structural or functional proteins.

Keywords: serum albumin, fluorescent sensing probe, liver diseases, twisted intramolecular charge transfer

Procedia PDF Downloads 17
4469 Functional Beverage to Boosting Immune System in Elderly

Authors: Adineh Tajmousavilangerudi, Ali Zein Alabiden Tlais, Raffaella Di Cagno

Abstract:

The SARS-Cov-2 pandemic has exposed our vulnerability to new illnesses and novel viruses that attack our immune systems, particularly in the elderly. The vaccine is being gradually introduced over the world, but new strains of the virus and COVID-19 will emerge and continue to cause illness. Aging is associated with significant changes in intestinal physiology, which increases the production of inflammatory products, alters the gut microbiota, and consequently establish inadequate immune response to minimize symptoms and disease development. In this context, older people who followed a Mediterranean-style diet, rich in polyphenols and dietary fiber, performed better physically and mentally (1,2). This demonstrates the importance of the human gut microbiome in transforming complex dietary macromolecules into the most biologically available and active nutrients, which in turn help to regulate metabolism and both intestinal and systemic immune function (3,4). The role of lactic acid fermentation is prominent also as a powerful tool for improving the nutritional quality of the human diet by releasing nutrients and boosting the complex bioactive compounds and vitamin content. the PhD project aims to design fermented and functional foods/beverages capable of modulating human immune function via the gut microbiome.

Keywords: functional bevarage, fermented beverage, gut microbiota functionality, immun system

Procedia PDF Downloads 112
4468 Tokenization of Blue Bonds as an Emerging Green Finance Tool

Authors: Rodrigo Buaiz Boabaid

Abstract:

Tokenization of Blue Bonds is an emerging Green Finance tool that has the potential to scale Blue Carbon Projects to fight climate change. This innovative solution has a huge potential to democratize the green finance market and catalyze innovations in the climate change finance sector. Switzerland has emerged as a leader in the Green Finance space and is well-positioned to drive the adoption of Tokenization of Blue & Green Bonds. This unique approach has the potential to unlock new sources of capital and enable global investors to participate in the financing of sustainable blue carbon projects. By leveraging the power of blockchain technology, Tokenization of Blue Bonds can provide greater transparency, efficiency, and security in the investment process, while also reducing transaction costs. Investments are in line with the highest regulations and designed according to the stringent legal framework and compliance standards set by Switzerland. The potential benefits of Tokenization of Blue Bonds are significant and could transform the way that sustainable projects are financed. By unlocking new sources of capital, this approach has the potential to accelerate the deployment of Blue Carbon projects and create new opportunities for investors to participate in the fight against climate change.

Keywords: blue carbon, blue bonds, green finance, Tokenization, blockchain solutions

Procedia PDF Downloads 72
4467 Determination of the Pull-Out/ Holding Strength at the Taper-Trunnion Junction of Hip Implants

Authors: Obinna K. Ihesiulor, Krishna Shankar, Paul Smith, Alan Fien

Abstract:

Excessive fretting wear at the taper-trunnion junction (trunnionosis) apparently contributes to the high failure rates of hip implants. Implant wear and corrosion lead to the release of metal particulate debris and subsequent release of metal ions at the taper-trunnion surface. This results in a type of metal poisoning referred to as metallosis. The consequences of metal poisoning include; osteolysis (bone loss), osteoarthritis (pain), aseptic loosening of the prosthesis and revision surgery. Follow up after revision surgery, metal debris particles are commonly found in numerous locations. Background: A stable connection between the femoral ball head (taper) and stem (trunnion) is necessary to prevent relative motions and corrosion at the taper junction. Hence, the importance of component assembly cannot be over-emphasized. Therefore, the aim of this study is to determine the influence of head-stem junction assembly by press fitting and the subsequent disengagement/disassembly on the connection strength between the taper ball head and stem. Methods: CoCr femoral heads were assembled with High stainless hydrogen steel stem (trunnion) by Push-in i.e. press fit; and disengaged by Pull-out test. The strength and stability of the two connections were evaluated by measuring the head pull-out forces according to ISO 7206-10 standards. Findings: The head-stem junction strength linearly increases with assembly forces.

Keywords: wear, modular hip prosthesis, taper head-stem, force assembly and disassembly

Procedia PDF Downloads 400
4466 The Pore–Scale Darcy–Brinkman–Stokes Model for the Description of Advection–Diffusion–Precipitation Using Level Set Method

Authors: Jiahui You, Kyung Jae Lee

Abstract:

Hydraulic fracturing fluid (HFF) is widely used in shale reservoir productions. HFF contains diverse chemical additives, which result in the dissolution and precipitation of minerals through multiple chemical reactions. In this study, a new pore-scale Darcy–Brinkman–Stokes (DBS) model coupled with Level Set Method (LSM) is developed to address the microscopic phenomena occurring during the iron–HFF interaction, by numerically describing mass transport, chemical reactions, and pore structure evolution. The new model is developed based on OpenFOAM, which is an open-source platform for computational fluid dynamics. Here, the DBS momentum equation is used to solve for velocity by accounting for the fluid-solid mass transfer; an advection-diffusion equation is used to compute the distribution of injected HFF and iron. The reaction–induced pore evolution is captured by applying the LSM, where the solid-liquid interface is updated by solving the level set distance function and reinitialized to a signed distance function. Then, a smoothened Heaviside function gives a smoothed solid-liquid interface over a narrow band with a fixed thickness. The stated equations are discretized by the finite volume method, while the re-initialized equation is discretized by the central difference method. Gauss linear upwind scheme is used to solve the level set distance function, and the Pressure–Implicit with Splitting of Operators (PISO) method is used to solve the momentum equation. The numerical result is compared with 1–D analytical solution of fluid-solid interface for reaction-diffusion problems. Sensitivity analysis is conducted with various Damkohler number (DaII) and Peclet number (Pe). We categorize the Fe (III) precipitation into three patterns as a function of DaII and Pe: symmetrical smoothed growth, unsymmetrical growth, and dendritic growth. Pe and DaII significantly affect the location of precipitation, which is critical in determining the injection parameters of hydraulic fracturing. When DaII<1, the precipitation uniformly occurs on the solid surface both in upstream and downstream directions. When DaII>1, the precipitation mainly occurs on the solid surface in an upstream direction. When Pe>1, Fe (II) transported deeply into and precipitated inside the pores. When Pe<1, the precipitation of Fe (III) occurs mainly on the solid surface in an upstream direction, and they are easily precipitated inside the small pore structures. The porosity–permeability relationship is subsequently presented. This pore-scale model allows high confidence in the description of Fe (II) dissolution, transport, and Fe (III) precipitation. The model shows fast convergence and requires a low computational load. The results can provide reliable guidance for injecting HFF in shale reservoirs to avoid clogging and wellbore pollution. Understanding Fe (III) precipitation, and Fe (II) release and transport behaviors give rise to a highly efficient hydraulic fracture project.

Keywords: reactive-transport , Shale, Kerogen, precipitation

Procedia PDF Downloads 163
4465 An Intelligent Transportation System for Safety and Integrated Management of Railway Crossings

Authors: M. Magrini, D. Moroni, G. Palazzese, G. Pieri, D. Azzarelli, A. Spada, L. Fanucci, O. Salvetti

Abstract:

Railway crossings are complex entities whose optimal management cannot be addressed unless with the help of an intelligent transportation system integrating information both on train and vehicular flows. In this paper, we propose an integrated system named SIMPLE (Railway Safety and Infrastructure for Mobility applied at level crossings) that, while providing unparalleled safety in railway level crossings, collects data on rail and road traffic and provides value-added services to citizens and commuters. Such services include for example alerts, via variable message signs to drivers and suggestions for alternative routes, towards a more sustainable, eco-friendly and efficient urban mobility. To achieve these goals, SIMPLE is organized as a System of Systems (SoS), with a modular architecture whose components range from specially-designed radar sensors for obstacle detection to smart ETSI M2M-compliant camera networks for urban traffic monitoring. Computational unit for performing forecast according to adaptive models of train and vehicular traffic are also included. The proposed system has been tested and validated during an extensive trial held in the mid-sized Italian town of Montecatini, a paradigmatic case where the rail network is inextricably linked with the fabric of the city. Results of the tests are reported and discussed.

Keywords: Intelligent Transportation Systems (ITS), railway, railroad crossing, smart camera networks, radar obstacle detection, real-time traffic optimization, IoT, ETSI M2M, transport safety

Procedia PDF Downloads 496
4464 Quality of Life Assessment across the Cancer Continuum: Understanding the Role of an Exercise Rehabilitation Programme

Authors: Bernat-Carles Serdà Ferrer, Arantza Del Valle Gómez

Abstract:

The Quality of Life (QoL) paradigm is multidimensional, dynamic and modular and its definition differs across the cancer continuum. The challenge in the interpretation of QoL data in clinical research is that QoL is influenced by psychological phenomena such as adaptation to illness. This research aims to obtain a valid and sensitive assessment of QoL change over the continuum disease, and to evaluate a rehabilitation programme aimed at inverting the observed decrease in QoL when patients return to daily living activities. The sample comprised 66 men. Patients were first assessed to establish a baseline (P1-diagnosis). This was followed by a post-test (P2-discharge) and a then-test measurement (P3-retrospective evaluation) and after returning home patients were randomized in experimental and control groups. The experimental group attended a rehabilitation programme over 24 weeks (P4). Results show that from baseline to post-test, QoL decreased significantly. The recalibration then-test confirmed a low QoL in all periods evaluated. Significant differences between the experimental and control groups prove the positive effect of the Exercise Rehabilitation Programme (ERP) on QoL. Understanding the real dynamic of QoL over time would help to adapt rehabilitation programmes by improving sensitivity and efficacy and provide professionals with a more accurate perception of the impact of treatment and side effects on patients’ QoL. Our results underline the importance of changing the approach adopted by health professionals towards one of watchful waiting on patients’ QoL until their complete recovery in daily life.

Keywords: exercise, prostate cancer, quality of life, rehabilitation programme, response shift

Procedia PDF Downloads 167
4463 A Monopole Intravascular Antenna with Three Parasitic Elements Optimized for Higher Tesla MRI Systems

Authors: Mohammad Mohammadzadeh, Alireza Ghasempour

Abstract:

In this paper, a new design of monopole antenna has been proposed that increases the contrast of intravascular magnetic resonance images through increasing the homogeneity of the intrinsic signal-to-noise ratio (ISNR) distribution around the antenna. The antenna is made of a coaxial cable with three parasitic elements. Lengths and positions of the elements are optimized by the improved genetic algorithm (IGA) for 1.5, 3, 4.7, and 7Tesla MRI systems based on a defined cost function. Simulations were also conducted to verify the performance of the designed antenna. Our simulation results show that each time IGA is executed different values for the parasitic elements are obtained so that the cost functions of those antennas are high. According to the obtained results, IGA can also find the best values for the parasitic elements (regarding cost function) in the next executions. Additionally, two dimensional and one-dimensional maps of ISNR were drawn for the proposed antenna and compared to the previously published monopole antenna with one parasitic element at the frequency of 64MHz inside a saline phantom. Results verified that in spite of ISNR decreasing, there is a considerable improvement in the homogeneity of ISNR distribution of the proposed antenna so that their multiplication increases.

Keywords: intravascular MR antenna, monopole antenna, parasitic elements, signal-to-noise ratio (SNR), genetic algorithm

Procedia PDF Downloads 299
4462 Decoupled Dynamic Control of Unicycle Robot Using Integral Linear Quadratic Regulator and Sliding Mode Controller

Authors: Shweda Mohan, J. L. Nandagopal, S. Amritha

Abstract:

This paper focuses on the dynamic modelling of unicycle robot. Two main concepts used for balancing unicycle robot are: reaction wheel pendulum and inverted pendulum. The pitch axis is modelled as inverted pendulum and roll axis is modelled as reaction wheel pendulum. The unicycle yaw dynamics is not considered which makes the derivation of dynamics relatively simple. For the roll controller, sliding-mode controller has been adopted and optimal methods are used to minimize switching-function chattering. For pitch controller, an LQR controller has been implemented to drive the unicycle robot to follow the desired velocity trajectory. The pitching and rolling balance could be achieved by two DC motors. Unicycle robot is a non-holonomic, non-linear, static unbalance system that has the minimal number of point contact to the ground, therefore, it is a perfect platform for researchers to study motion and balance control. These real-time solutions will be a viable solution for advanced robotic systems and controls.

Keywords: decoupled dynamics, linear quadratic regulator (LQR) control, Lyapunov function sliding mode control, unicycle robot, velocity and trajectory control

Procedia PDF Downloads 363
4461 Enhancing Internet of Things Security: A Blockchain-Based Approach for Preventing Spoofing Attacks

Authors: Salha Abdullah Ali Al-Shamrani, Maha Muhammad Dhaher Aljuhani, Eman Ali Ahmed Aldhaheri

Abstract:

With the proliferation of Internet of Things (IoT) devices in various industries, there has been a concurrent rise in security vulnerabilities, particularly spoofing attacks. This study explores the potential of blockchain technology in enhancing the security of IoT systems and mitigating these attacks. Blockchain's decentralized and immutable ledger offers significant promise for improving data integrity, transaction transparency, and tamper-proofing. This research develops and implements a blockchain-based IoT architecture and a reference network to simulate real-world scenarios and evaluate a blockchain-integrated intrusion detection system. Performance measures including time delay, security, and resource utilization are used to assess the system's effectiveness, comparing it to conventional IoT networks without blockchain. The results provide valuable insights into the practicality and efficacy of employing blockchain as a security mechanism, shedding light on the trade-offs between speed and security in blockchain deployment for IoT. The study concludes that despite minor increases in time consumption, the security benefits of incorporating blockchain technology into IoT systems outweigh potential drawbacks, demonstrating a significant potential for blockchain in bolstering IoT security.

Keywords: internet of things, spoofing, IoT, access control, blockchain, raspberry pi

Procedia PDF Downloads 74
4460 Modelling and Simulation of Aero-Elastic Vibrations Using System Dynamic Approach

Authors: Cosmas Pandit Pagwiwoko, Ammar Khaled Abdelaziz Abdelsamia

Abstract:

Flutter as a phenomenon of flow-induced and self-excited vibration has to be recognized considering its harmful effect on the structure especially in a stage of aircraft design. This phenomenon is also important for a wind energy harvester based on the fluttering surface due to its effective operational velocity range. This multi-physics occurrence can be presented by two governing equations in both fluid and structure simultaneously in respecting certain boundary conditions on the surface of the body. In this work, the equations are resolved separately by two distinct solvers, one-time step of each domain. The modelling and simulation of this flow-structure interaction in ANSYS show the effectiveness of this loosely coupled method in representing flutter phenomenon however the process is time-consuming for design purposes. Therefore, another technique using the same weak coupled aero-structure is proposed by using system dynamics approach. In this technique, the aerodynamic forces were calculated using singularity function for a range of frequencies and certain natural mode shapes are transformed into time domain by employing an approximation model of fraction rational function in Laplace variable. The representation of structure in a multi-degree-of-freedom coupled with a transfer function of aerodynamic forces can then be simulated in time domain on a block-diagram platform such as Simulink MATLAB. The dynamic response of flutter at certain velocity can be evaluated with another established flutter calculation in frequency domain k-method. In this method, a parameter of artificial structural damping is inserted in the equation of motion to assure the energy balance of flow and vibrating structure. The simulation in time domain is particularly interested as it enables to apply the structural non-linear factors accurately. Experimental tests on a fluttering airfoil in the wind tunnel are also conducted to validate the method.

Keywords: flutter, flow-induced vibration, flow-structure interaction, non-linear structure

Procedia PDF Downloads 315
4459 Viscoelastic Behaviour of Hyaluronic Acid Copolymers

Authors: Loredana Elena Nita, Maria Bercea, Aurica P. Chiriac, Iordana Neamtu

Abstract:

The paper is devoted to the behavior of gels based on poly(itaconic anhydride-co-3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5) undecane) copolymers, with different ratio between the comonomers, and hyaluronic acid (HA). The gel formation was investigated by small-amplitude oscillatory shear measurements following the viscoelastic behavior as a function of gel composition, temperature and shear conditions. Hyaluronic acid was investigated in the same conditions and its rheological behavior is typical to viscous fluids. In the case of the copolymers, the ratio between the two comonomers influences the viscoelastic behavior, a higher content of itaconic anhydride favoring the gel formation. Also, the sol-gel transition was evaluated according to Winter-Chambon criterion that identifies the gelation point when the viscoelastic moduli (G’ and G”) behave similarly as a function of oscillation frequency. From rheological measurements, an optimum composition was evidenced for which the system presents a typical gel-like behavior at 37 °C: the elastic modulus is higher than the viscous modulus and they are not dependent on the oscillation frequency. The formation of the 3D macroporous network was also evidenced by FTIR spectra, SEM microscopy and chemical imaging. These hydrogels present a high potential as drug delivery systems.

Keywords: copolymer, viscoelasticity, gelation, 3D network

Procedia PDF Downloads 287
4458 An Empirical Study on Switching Activation Functions in Shallow and Deep Neural Networks

Authors: Apoorva Vinod, Archana Mathur, Snehanshu Saha

Abstract:

Though there exists a plethora of Activation Functions (AFs) used in single and multiple hidden layer Neural Networks (NN), their behavior always raised curiosity, whether used in combination or singly. The popular AFs –Sigmoid, ReLU, and Tanh–have performed prominently well for shallow and deep architectures. Most of the time, AFs are used singly in multi-layered NN, and, to the best of our knowledge, their performance is never studied and analyzed deeply when used in combination. In this manuscript, we experiment with multi-layered NN architecture (both on shallow and deep architectures; Convolutional NN and VGG16) and investigate how well the network responds to using two different AFs (Sigmoid-Tanh, Tanh-ReLU, ReLU-Sigmoid) used alternately against a traditional, single (Sigmoid-Sigmoid, Tanh-Tanh, ReLUReLU) combination. Our results show that using two different AFs, the network achieves better accuracy, substantially lower loss, and faster convergence on 4 computer vision (CV) and 15 Non-CV (NCV) datasets. When using different AFs, not only was the accuracy greater by 6-7%, but we also accomplished convergence twice as fast. We present a case study to investigate the probability of networks suffering vanishing and exploding gradients when using two different AFs. Additionally, we theoretically showed that a composition of two or more AFs satisfies Universal Approximation Theorem (UAT).

Keywords: activation function, universal approximation function, neural networks, convergence

Procedia PDF Downloads 158
4457 Revealing the Structural and Dynamic Properties of Betaine Aldehyde Dehydrogenase 2 from Rice (Oryza sativa): Simulation Studies

Authors: Apisaraporn Baicharoen, Prapasiri Pongprayoon

Abstract:

Betaine aldehyde dehydrogenase 2 (BADH2) is an enzyme that inhibits the accumulation of 2-acetyl-1-pyrroline (2AP), a potent flavor compound in rice fragrance. BADH2 contains three domains (NAD-binding, substrate-binding, and oligomerization domains). It catalyzes the oxidation of amino aldehydes. The lack of BADH2 results in the formation of 2AP and consequently an increase in rice fragrance. To date, inadequate data on BADH2 structure and function are available. An insight into the nature of BADH2 can serve as one of key starting points for the production of high quality fragrant rice. In this study, we therefore constructed the homology model of BADH2 and employed 500-ns Molecular Dynamics simulations (MD) to primarily understand the structural and dynamic properties of BADH2. Initially, Ramachandran plot confirms the good quality of modeled protein structure. Principle Component Analysis (PCA) was also calculated to capture the protein dynamics. Among 3 domains, the results show that NAD binding site is found to be more flexible. Moreover, interactions from key amino acids (N162, E260, C294, and Y419) that are crucial for function are investigated.

Keywords: betaine aldehyde dehydrogenase 2, fragrant rice, homology modeling, molecular dynamics simulations

Procedia PDF Downloads 215
4456 Enhancing Disaster Response Capabilities in Asia-Pacific: An Explorative Study Applied to Decision Support Tools for Logistics Network Design

Authors: Giuseppe Timperio, Robert de Souza

Abstract:

Logistics operations in the context of disaster response are characterized by a high degree of complexity due to the combined effect of a large number of stakeholders involved, time pressure, uncertainties at various levels, massive deployment of goods and personnel, and gigantic financial flow to be managed. It also involves several autonomous parties such as government agencies, militaries, NGOs, UN agencies, private sector to name few, to have a highly collaborative approach especially in the critical phase of the immediate response. This is particularly true in the context of L3 emergencies that are the most severe, large-scale humanitarian crises. Decision-making processes in disaster management are thus extremely difficult due to the presence of multiple decision-makers involved, and the complexity of the tasks being tackled. Hence, in this paper, we look at applying ICT based solutions to enable a speedy and effective decision making in the golden window of humanitarian operations. A high-level view of ICT based solutions in the context of logistics operations for humanitarian response in Southeast Asia is presented, and their viability in a real-life case about logistics network design is explored.

Keywords: decision support, disaster preparedness, humanitarian logistics, network design

Procedia PDF Downloads 167
4455 Nonclassical Antifolates: Synthesis, Biological Evaluation and Molecular Modeling Study of Some New Quinazolin-4-One Analogues as Dihydrofolate Reductase Inhibitors

Authors: Yomna Ibrahim El-Gazzar, Hussien Ibrahim El-Subbagh, Hanan Hanaa Georgey, Ghada S. Hassan Hassan

Abstract:

Dihydrofolate reductase (DHFR) is an enzyme that has pivotal importance in biochemistry and medicinal chemistry. It catalyzes the reduction of dihydrofolate to tetrahydrofolate and intimately couples with thymidylate synthase. Thymidylate synthase is a crucial enzyme that catalyzes the reductive methylation of (dUMP) to (dTMP) utilizing N5, N10-methylenetetrahydrofolate as a cofactor. A new series of 2-substituted thio-quinazolin-4-one analogs was designed that possessed electron withdrawing or donating functional groups (Cl or OCH3) at position 6- or 7-, 4-methoxyphenyl function at position 3-.The thiol function is used to connect to either 1,2,4-triazole, or 1,3,4-thiadiazole via a methylene bridge. Most of the functional groups designed to be accommodated on the quinazoline ring such as thioether, alkyl to increase lipid solubility of polar compounds, a character very much needed in the nonclassical DHFR inhibitors. The target compounds were verified with spectral data and elemental analysis. DHFR inhibitions, as well as antitumor activity, were applied on three cell lines (MCF-7, CACO-2, HEPG-2).

Keywords: nonclassical antifolates, DHFR Inhibitors, antitumor activity, quinazoline ring

Procedia PDF Downloads 393
4454 Hidden Markov Movement Modelling with Irregular Data

Authors: Victoria Goodall, Paul Fatti, Norman Owen-Smith

Abstract:

Hidden Markov Models have become popular for the analysis of animal tracking data. These models are being used to model the movements of a variety of species in many areas around the world. A common assumption of the model is that the observations need to have regular time steps. In many ecological studies, this will not be the case. The objective of the research is to modify the movement model to allow for irregularly spaced locations and investigate the effect on the inferences which can be made about the latent states. A modification of the likelihood function to allow for these irregular spaced locations is investigated, without using interpolation or averaging the movement rate. The suitability of the modification is investigated using GPS tracking data for lion (Panthera leo) in South Africa, with many observations obtained during the night, and few observations during the day. Many nocturnal predator tracking studies are set up in this way, to obtain many locations at night when the animal is most active and is difficult to observe. Few observations are obtained during the day, when the animal is expected to rest and is potentially easier to observe. Modifying the likelihood function allows the popular Hidden Markov Model framework to be used to model these irregular spaced locations, making use of all the observed data.

Keywords: hidden Markov Models, irregular observations, animal movement modelling, nocturnal predator

Procedia PDF Downloads 244
4453 Forecasting of COVID-19 Cases, Hospitalization Admissions, and Death Cases Based on Wastewater Sars-COV-2 Surveillance Using Copula Time Series Model

Authors: Hueiwang Anna Jeng, Norou Diawara, Nancy Welch, Cynthia Jackson, Rekha Singh, Kyle Curtis, Raul Gonzalez, David Jurgens, Sasanka Adikari

Abstract:

Modeling effort is needed to predict the COVID-19 trends for developing management strategies and adaptation measures. The objective of this study was to assess whether SARS-CoV-2 viral load in wastewater could serve as a predictor for forecasting COVID-19 cases, hospitalization cases, and death cases using copula-based time series modeling. SARS-CoV-2 RNA load in raw wastewater in Chesapeake VA was measured using the RT-qPCR method. Gaussian copula time series marginal regression model, incorporating an autoregressive moving average model and the copula function, served as a forecasting model. COVID-19 cases were correlated with wastewater viral load, hospitalization cases, and death cases. The forecasted trend of COVID-19 cases closely paralleled one of the reported cases, with over 90% of the forecasted COVID-19 cases falling within the 99% confidence interval of the reported cases. Wastewater SARS-CoV-2 viral load could serve as a predictor for COVID-19 cases and hospitalization cases.

Keywords: COVID-19, modeling, time series, copula function

Procedia PDF Downloads 68