Search results for: iron phosphate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1419

Search results for: iron phosphate

339 Antidiabetic and Antioxidant Potential of Aqueous Extract of Jasminum humile Leaves in Nicotinamide/Streptozotocin induced Type-2 Diabetes Mellitus (T2DM) Rat

Authors: Parminder Nain, Jaspreet kaur, Vipin Saini, Sunil Sharma

Abstract:

Jasminum humile commonly known as yellow Jasmine or Pili chameli, is a medicinal plant used in Ayurveda for treating various diseases, one of which is diabetes mellitus. The current study aimed to establish the antidiabetic and antioxidant properties of aqueous extract of Jasminum humile leaves (AEJHL) in nicotinamide/streptozotocin induced type 2 diabetic rats. Phytochemical screening, HPLC analysis, and acute toxicity study of AEJHL were carried out. Male albino wistar rats (n=42) were divided into seven equal groups. Rats with moderate diabetes having hyperglycemia (blood glucose 250-400 mg/dl) were taken for the experiment. Various concentrations of aqueous extract of Jasminum humile leaves (50, 100, 200 and 300 mg/kg, p.o.), and glibenclamide (1mg/kg, p.o.) were orally administered to diabetic rats for 45 days. The effect of AEJHL on blood glucose, plasma insulin and biochemical parameters such as hemoglobin, total protein, serum creatinine, serum urea, alkaline phosphate, Glutamic-oxalacetic transaminase (SGOT) and glutamic-pyruvic transaminase (SGPT), as well as total cholesterol, triglycerides, and high-density lipoprotein (HDL) were also studied. The antioxidant effect of AEJHL was determined by analyzing hepatic and renal antioxidant markers, like superoxide dismutase (SOD), catalase (CAT), reduced Glutathione (GSH), Glutathione peroxidase (GPx), and lipid peroxidation (LPO) in diabetic rats. After 45-days oral administration of aqueous extract of Jasminum humile leaves significantly (p<0.05) reduced blood sugar and increase plasma insulin level and also reverse all above biochemical parameters and antioxidant enzyme level at dose dependent manner. These findings provide in vivo evidence that the aqueous extract of Jasminum humile leaves possess significant antidiabetic and antioxidant potential in nicotinamide/streptozotocin-induced type-2 diabetes mellitus in rats.

Keywords: antidiabetic, antioxidant, jasminum humile, nicotinamide/streptozotocin, type-2 diabetic

Procedia PDF Downloads 200
338 Ultrasonic Extraction of Phenolics from Leaves of Shallots and Peels of Potatoes for Biofortification of Cheese

Authors: Lila Boulekbache-Makhlouf, Fatiha Brahmi

Abstract:

This study was carried out with the aim of enriching fresh cheese with the food by-products, which are the leaves of shallots and the peels of potatoes. Firstly, the conditions for extracting the total polyphenols using ultrasound are optimized. Then, the contents of total polyphenols PPT , flavonoids and antioxidant activity were evaluated for the extracts obtained by adopting the optimal parameter. On the other hand, we have carried out some physicochemical, microbiological and sensory analyzes of the cheese produced. The maximum total polyphenols value of 70.44 mg GAE gallic acid equivalent / g of dry matter DM of shallot leaves was reached with 40% (v/v) ethanol, an extraction time of 90 min and a temperature of 10 °C. While, the maximum TPP total polyphenols content of potato peels of 45.03 ± 4.16 mg gallic acid equivalent / g of dry matter DM was obtained using an ethanol /water mixture (40%, v/v), a time of 30 min and a temperature of 60 °C and the flavonoid contents were 13.99 and 7.52 QE quercetin equivalent/g dry matter DM, respectively. From the antioxidant tests, we deduced that the potato peels present a higher antioxidant power with the concentration of extracts causing a 50% inhibition IC50s of 125.42 ± 2.78 μg/mL for 2,2-diphényl 1-picrylhydrazyle DPPH, of 87.21 ± 7.72 μg/mL for phosphomolybdate and 200.77 ± 13.38 μg/mL for iron chelation, compared with the results obtained for shallot leaves which were 204.29 ± 0.09, 45.85 ± 3,46 and 1004.10 ± 145.73 μg/mL, respectively. The results of the physicochemical analyzes have shown that the formulated cheese was compliant with standards. Microbiological analyzes show that the hygienic quality of the cheese produced was satisfactory. According to the sensory analysis, the experts liked the cheese enriched with the powder and pieces of the leaves of the shallots.

Keywords: shallots leaves, potato peels, ultrasound extraction, phenolics, cheese

Procedia PDF Downloads 93
337 Cryogenic Grinding of Mango (Mangifera indica L.) Peel and Its Effect on Chemical and Morphological Characteristics

Authors: Bhupinder Kaur, P. P. Srivastav

Abstract:

The fruit and vegetable industries are responsible for producing huge amount of waste, which is a problem to environmental safety and should be utilized efficiently. Mango (Mangifera indica L.) is an important commercially grown fruit and referred as the “King of fruits”. In 2015, India was the largest producer (18.506 MT) of mangoes and out of which 9.16 % lost during post-harvest handling. The mango kernel and peel represent approximately 17-22% and 7-22% of the overall mass of fruit respectively and discarded as waste. Hence, an attempt has been made with three mango cultivars (Langra, Dashehari, Fazli) to investigate the effect of cryogenic grinding on various characteristics of mango peel powder (MPP). The cryogenic grinding is an emerging technology which is used for retention of beneficial volatile and bioactive components. The feed rate was highest for Langra followed by Chausa. The samples have 2-4% fat along with significant amount of protein (4-6%) and crude fiber (9-13%). Mango peel is also a good source of minerals such as calcium, potassium, manganese, iron, copper, zinc, and magnesium. Interestingly, the significant amount of essential minerals like phosphorus and chlorine in all the varieties was found with the highest value in Langra (phosphorus 10.83% and chlorine 2.41%) which are not reported earlier. SEM analysis revealed the surface morphology and shape of the particles. Waste utilization is a promising measure from both an environmental and economic point of view. Chemical characterization of the samples indicated its potential to be used for the fortification of food products which in turn reduces hazards due to waste and improve functional quality of the foods.

Keywords: cryogenic grinding, morphological, mineral composition, SEM

Procedia PDF Downloads 236
336 Multicriteria for Optimal Land Use after Mining

Authors: Carla Idely Palencia-Aguilar

Abstract:

Mining in Colombia represents around 2% of the GDP (USD 8 billion in 2018), with main productions represented by coal, nickel, gold, silver, emeralds, iron, limestone, gypsum, among others. Sand and Gravel had been decreasing its participation of the GDP with a reduction of 33.2 million m3 in 2015, to 27.4 in 2016, 22.7 in 2017 and 15.8 in 2018, with a consumption of approximately 3 tons/inhabitant. However, with the new government policies it is expected to increase in the following years. Mining causes temporary environmental impacts, once restoration and rehabilitation takes place, social, environmental and economic benefits are higher than the initial state. A way to demonstrate how the mining interventions had contributed to improve the characteristics of the region after sand and gravel mining, the NDVI (Normalized Difference Vegetation Index) from MODIS and ASTER were employed. The histograms show not only increments of vegetation in the area (8 times higher), but also topographies similar to the ones before the intervention, according to the application for sustainable development selected: either agriculture, forestry, cattle raising, artificial wetlands or do nothing. The decision was based upon a Multicriteria analysis for optimal land use, with three main variables: geostatistics, evapotranspiration and groundwater characteristics. The use of remote sensing, meteorological stations, piezometers, sunphotometers, geoelectric analysis among others; provide the information required for the multicriteria decision. For cattle raising and agricultural applications (where various crops were implemented), conservation of products were tested by means of nanotechnology. The results showed a duration of 2 years with no chemicals added for preservation and concentration of vitamins of the tested products.

Keywords: ASTER, Geostatistics, MODIS, Multicriteria

Procedia PDF Downloads 126
335 Assessment of Water Quality of Euphrates River at Babylon Governorate, for Drinking, Irrigation and general, Using Water Quality Index (Canadian Version) (CCMEWQI)

Authors: Amer Obaid Saud

Abstract:

Water quality index (WQI) is considered as an effective tool in categorization of water resources for its quality and suitability for different uses. The Canadian version of water quality index (CCME WQI) which based on the comparison of the water quality parameters to regulatory standards and give a single value to the water quality of a source was applied in this study to assess the water quality of Euphrates river in Iraq at Babylon Governorate north of Baghdad and determine its suitability for aquatic environment (GWQI), drinking water (PWSI) and irrigation(IWQI). Five stations were selected on the river in Babylon (Euphrates River/AL-Musiab, Hindia barrage, two stations at Hilla city and the fifth station at Al-Hshmeya north of Hilla. Fifteen water samples were collected every month during August 2013 to July 2014 at the study sites and analyzed for the physico-chemical parameters like (Temperature, pH, Electrical Conductivity, Total Dissolved Solids(TDS), Total Suspended Solids(TSS), Total Alkalinity, Total Hardness, Calcium and Magnesium Concentration, some of nutrient like Nitrite, Nitrate, Phosphate also the study of concentration of some heavy metals (Fe, Pb, Zn, Cu, Mn, and Cd) in water and comparison of measures to benchmarks such as guidelines and objectives to assess change in water quality. The result of Canadian version of(CCME .WQI) to assess the irrigation water quality (IWQI) of Euphrates river was (83-good) at site one during second seasonal period while the lowest was (66-Fair) in the second station during the fourth seasonal period, the values of potable water supply index (PWSI)that the highest value was (68-Fair) in the fifth site during the second period while the lowest value (42 -Poor) in the second site during the first seasonal period,the highest value for general water quality (GWQI) was (74-Fair) in site five during the second seasonal period, the lowest value (48-Marginal) in the second site during the first seasonal period. It was observed that the main cause of deterioration in water quality was due to the lack of, unprotected river sites ,high anthropogenic activities and direct discharge of industrial effluent.

Keywords: Babylon governorate, Canadian version, water quality, Euphrates river

Procedia PDF Downloads 400
334 The Impact of Surface Roughness and PTFE/TiF3/FeF3 Additives in Plain ZDDP Oil on the Friction and Wear Behavior Using Thermal and Tribological Analysis under Extreme Pressure Condition

Authors: Gabi N. Nehme, Saeed Ghalambor

Abstract:

The use of titanium fluoride and iron fluoride (TiF3/FeF3) catalysts in combination with polutetrafluoroethylene (PTFE) in plain zinc dialkyldithiophosphate (ZDDP) oil is important for the study of engine tribocomponents and is increasingly a strategy to improve the formation of tribofilm and to provide low friction and excellent wear protection in reduced phosphorus plain ZDDP oil. The influence of surface roughness and the concentration of TiF3/FeF3/PTFE were investigated using bearing steel samples dipped in lubricant solution @100°C for two different heating time durations. This paper addresses the effects of water drop contact angle using different surface finishes after treating them with different lubricant combination. The calculated water drop contact angles were analyzed using Design of Experiment software (DOE) and it was determined that a 0.05 μm Ra surface roughness would provide an excellent TiF3/FeF3/PTFE coating for antiwear resistance as reflected in the scanning electron microscopy (SEM) images and the tribological testing under extreme pressure conditions. Both friction and wear performance depend greatly on the PTFE/and catalysts in plain ZDDP oil with 0.05% phosphorous and on the surface finish of bearing steel. The friction and wear reducing effects, which was observed in the tribological tests, indicated a better micro lubrication effect of the 0.05 μm Ra surface roughness treated at 100°C for 24 hours when compared to the 0.1 μm Ra surface roughness with the same treatment.

Keywords: scanning electron microscopy, ZDDP, catalysts, PTFE, friction, wear

Procedia PDF Downloads 351
333 Nutritional Composition of Provitamin A-Biofortified Amahewu, a Maize Based Beverage with Potential to Alleviate Vitamin A Deficiency

Authors: Temitope D. Awobusuyi, Eric O. Amonsou, Muthulisi Siwela

Abstract:

Amahewu, a lactic acid fermented non-alcoholic maize based beverage is widely consumed in Southern Africa. It is traditionally made with white maize which is deficient in vitamin A. Provitamin A-biofortified maize has been developed for use as a complementary strategy to alleviate vitamin A deficiency. In this study the nutritional composition and protein digestibility of amahewu produced using provitamin A-biofortified maize was determined. Provitamin A-biofortified amahewu was processed by fermenting cooked maize porridge using malted provitamin A-biofortified maize, wheat bran and lactobacillus mixed starter culture with either malted maize or wheat bran. The total provitamin A content in amahewu products ranged from 3.3-3.8 μg/g (DW). The % retention of total provitamin A ranged from 79 %- 90 % μg/g (DW). The lowest % retention was observed in products fermented with the addition of starter culture. The gross energy of amahewu products were approx. 20 MJ/kg. There was a slight increase in the lysine content of amahewu after fermentation. Protein digestibility of amahewu (approx.91%) was slightly higher compared to unprocessed provitamin A maize (86%). However, a general decrease was observed in the minerals when compared to the unprocessed provitamin A maize. Amahewu processed using starter cultures has higher iron content than those processed with the addition of malt. These result suggests that provitamin A-biofortified amahewu has the potential to make a significant contribution towards alleviating Vitamin A Deficiency in rural communities who are also the most vulnerable to VAD.

Keywords: vitamin A deficiency, provitamin A maize, biofortification, fermentation

Procedia PDF Downloads 418
332 Chemically Enhanced Primary Treatment: Full Scale Trial Results Conducted at a South African Wastewater Works

Authors: Priyanka Govender, S. Mtshali, Theresa Moonsamy, Zanele Mkwanazi, L. Mthembu

Abstract:

Chemically enhanced primary treatment (CEPT) can be used at wastewater works to improve the quality of the final effluent discharge, provided that the plant has spare anaerobic digestion capacity. CEPT can transfer part of the organic load to the digesters thereby effectively relieving the hydraulic loading on the plant and in this way can allow the plant to continue operating long after the hydraulic capacity of the plant has been exceeded. This can allow a plant to continue operating well beyond its original design capacity, requiring only fairly simple and inexpensive modifications to the primary settling tanks as well as additional chemical costs, thereby delaying or even avoiding the need for expensive capital upgrades. CEPT can also be effective at plants where high organic loadings prevent the wastewater discharge from meeting discharge standards, especially in the case of COD, phosphates and suspended solids. By increasing removals of these pollutants in the primary settling tanks, CEPT can enable the plant to conform to specifications without the need for costly upgrades. Laboratory trials were carried out recently at the Umbilo WWTW in Durban and these were followed by a baseline assessment of the current plant performance and a subsequent full scale trial on the Conventional plant i.e. West Plant. The operating conditions of the plant are described and the improvements obtained in COD, phosphate and suspended solids, are discussed. The PST and plant overall suspended solids removal efficiency increased by approximately 6% during the trial. Details regarding the effect that CEPT had on sludge production and the digesters are also provided. The cost implications of CEPT are discussed in terms of capital costs as well as operation and maintenance costs and the impact of Ferric chloride on the infrastructure was also studied and found to be minimal. It was concluded that CEPT improves the final quality of the discharge effluent, thereby improving the compliance of this effluent with the discharge license. It could also allow for a delay in upgrades to the plant, allowing the plant to operate above its design capacity. This will be elaborated further upon presentation.

Keywords: chemically enhanced, ferric, wastewater, primary

Procedia PDF Downloads 302
331 Status of Physical, Chemical and Biological Attributes of Isheri, Ogun River, in Relation to the Surrounding Anthropogenic Activities of Kara Abattoir, South West Nigeria

Authors: N. B. Ikenweiwe, A. A. Alimi, N. A. Bamidele, A. O. Ewumi, J. Dairo, I. A. Akinnubi, S. O. Otubusin

Abstract:

A study on the physical, chemical and biological parameters of the lower course of Ogun River, Isheri-Olofin was carried out between January and December 2014 in order to determine the effects of the anthropogenic activities of the Kara abattoir and domestic waste depositions on the quality of the water. Water samples were taken twice each month at three selected stations A, B and C (based on characteristic features or activity levels) along the water course. Samples were analysed using standard methods for chemical and biological parameters the same day in the laboratory while physical parameters were determined in-situ with water parameters kit. Generally, results of Transparency, Dissolved Oxygen, Nitrates, TDS and Alkalinity fall below the permissible limits of WHO and FEPA standards for drinking and fish production. Results of phosphates, lead and cadmium were also low but still within the permissible limit. Only Temperature and pH were within limit. Low plankton community, (phytoplankton, zooplankton), which ranges from 3, 5 to 40, 23 were as a result of low levels of DO, transparency and phosphate. The presence of coliform bacteria of public health importance like Escherichia coli, Proteus vulgaris, Aeromonas sp., Shigella sp, Enterobacter aerogenes as well as gram negative bacteria Proteus morganii are mainly indicators of faecal pollution. Fish and other resources obtained from this water stand the risk of being contaminated with these organisms and man is at the receiving end. The results of the physical, chemical and some biological parameters of Isheri, Ogun River, according to this study showed that the live forms of aquatic and fisheries resources there are dwelling under stress as a result of deposition of bones, horns, faecal components, slurry of suspended solids, fat and blood into the water. Government should therefore establish good monitoring system against illegal waste depositions and create education programmes that will enlighten the community on the social, ecological and economic values of the river.

Keywords: water parameters, Isheri Ogun river, anthropogenic activities, Kara abattoir

Procedia PDF Downloads 543
330 Contamination of the Groundwater by the Flow of the Discharge in Khouribga City (Morocco) and the Danger It Presents to the Health of the Surrounding Population.

Authors: Najih Amina

Abstract:

Our study focuses on monitoring the spatial evolution of a number of physico-chemical parameters of wells waters located at different distances from the discharge of the city of Khouribga (S0 upstream station, S1, S2 et S3 are respectively located at 5.5, 7.5, 11 Km away from solid waste discharge of the city). The absence of a source of drinking water in this region involves the population to feeding on its groundwater wells. Through the results, we note that most of the analyzed parameters exceed the potable water standards from S1. At this source of water, we find that the conductivity (1290 μmScm-1; Standard 1000 μmScm-1), Total Hardness TH (67.2°F/ Standard 50° F), Ca2 + (146 mg l-1 standard 60 mg l-1), Cl- (369 mg l-1 standard 150 mg l-1), NaCl (609 mgl-1), Methyl orange alakanity “M. alk” (280 mg l-1) greatly exceed the drinking water standards. By following these parameters, it is obvious that some values have decreased in the downstream stations, while others become important. We find that the conductivity is always higher than 950 μmScm-1; the TH registers 72°F in S3; Ca 2+ is in the range of 153 mg l-1 in S3, Cl- and NaCl- reached 426 mg l-1 and 702 mg l-1 respectively in S2, M alk becomes higher and reaches 430 to 350 in S3. At the wells S2, we found that the nitrites are well beyond the standard 1.05 mg l-1. Whereas, at the control station S0, the values are lower or at the limit of drinking water standards: conductivity (452 μmScm-1), TH (34 F°), Ca2+ (68 mg l-1), Cl- (157 mg l-1), NaCl- (258 mg l-1), M alk (220 mg l-1). Thus, the diagnosis reveals the presence of a high pollution caused by the leachates of the household waste discharge and by the effluents of the sewage waste water plant (SWWP). The phenomenon of the water hardness could, also, be generated by the processes of erosion, leaching and soil infiltration in the region (phosphate layers, intercalated layers of marl and limestone), phenomenons also caused by the acidity due to this surrounding pollution. The source S1 is the nearest surrounding site of the discharge and the most affected by the phenomenon of pollution, especially, it is near to a superficial water source S’1 polluted by the effluents coming from the sewage waste water plant of the city. In the light of these data, we can deduce that the consumption of this water from S1 does not conform the standards of drinking waters, and could affect the human health.

Keywords: physico-chemical parameters, ground water wells, infiltration, leaching, pollution, leachate discharge effluent SWWP, human health.

Procedia PDF Downloads 409
329 Effects of SNP in Semen Diluents on Motility, Viability and Lipid Peroxidation of Sperm of Bulls

Authors: Hamid Reza Khodaei, Behnaz Mahdavi, Alireza Banitaba

Abstract:

Nitric oxide (NO) plays an important role in all sexual activities of animals. It is made in body from NO syntheses enzyme and L-arginin molecule. NO can make band with sulfur-iron complexes and due to production of steroid sexual hormones related to enzymes which have this complex, NO can change the activity of these enzymes. NO affects many cells including endothelial cells of veins, macrophages and mast cells. These cells are found in testis leydig cells and therefore are important source of NO in testis tissue. Minimizing damages to sperm at the time of sperm freezing and thawing is really important. The goal of this study was to determine the function of NO before freezing and its effects on quality and viability of sperms after thawing and incubation. 4 Holstein bulls were selected from the age of 4, and artificial insemination was done for 3 weeks (2 times a week). Treatments were 0, 10, 50 and 100 nm of sodium nitroprusside (SNP). Data analysis was performed by SAS98 program. Also, mean comparison was done using Duncan's multiple ranges test (P<0.05). Concentrations used were found to increase motility and viability of spermatozoa at 1, 2 and 3 hours after thawing significantly (P<0.05) but there was no significant difference at zero time. SNP levels reduced the amount of lipid peroxidation in sperm membrane, increased acrosome health and improved samples membranes especially in 50 and 100 nm treatments. According to results, adding SNP to semen diluents increases motility and viability of spermatozoa. Also, it reduces lipid peroxidation in sperm membrane and improves sperm function.

Keywords: sperm motility, nitric oxide, lipid peroxidation, spermatozoa

Procedia PDF Downloads 659
328 Remote Controlled of In-Situ Forming Thermo-sensitive Hydrogel Nanocomposite for Hyperthermia Therapy Application: Synthesis and Characterizations

Authors: Elbadawy A. Kamoun

Abstract:

Magnetically responsive hydrogel nanocomposite (NCH) based on composites of superparamagnetic of Fe3O4 nano-particles and temperature responsive hydrogel matrices were developed. The nanocomposite hydrogel system based on the temperature sensitive N-isopropylacrylamide hydrogels crosslinked by poly(ethylene glycol)-400 dimethacrylate (PEG400DMA) incorporating with chitosan derivative, was synthesized and characterized. Likewise, the NCH system was synthesized by visible-light free radical photopolymerization, using carboxylated camphorquinone-amine system to avoid the common risks of the use of UV-light especially in hyperthermia treatment. Superparamagnetic of iron oxide nanoparticles were introduced into the hydrogel system by polymerizing mixture technique and monomer solution. FT-IR with Raman spectroscopy and Wide angle-XRD analysis were utilized to verify the chemical structure of NCH and exfoliation reaction for nanoparticles, respectively. Additionally, morphological structure of NCH was investigated using SEM and TEM photographs. The swelling responsive of the current nanocomposite hydrogel system with different crosslinking conditions, temperature, magnetic field efficiency, and the presence effect of magnetic nanoparticles were evaluated. Notably, hydrolytic degradation of this system was proved in vitro application. While, in-vivo release profile behavior is under investigation nowadays. Moreover, the compatibility and cytotoxicity tests were previously investigated in our studies for photoinitiating system. These systems show promised polymeric material candidate devices and are expected to have a wide applicability in various biomedical applications as mildly.

Keywords: hydrogel nanocomposites, tempretaure-responsive hydrogel, superparamagnetic nanoparticles, hyperthermia therapy

Procedia PDF Downloads 280
327 Experimental Study on Capturing of Magnetic Nanoparticles Transported in an Implant Assisted Cylindrical Tube under Magnetic Field

Authors: Anurag Gaur Nidhi

Abstract:

Targeted drug delivery is a method of delivering medication to a patient in a manner that increases the concentration of the medication in some parts of the body relative to others. Targeted drug delivery seeks to concentrate the medication in the tissues of interest while reducing the relative concentration of the medication in the remaining tissues. This improves efficacy of the while reducing side effects. In the present work, we investigate the effect of magnetic field, flow rate and particle concentration on the capturing of magnetic particles transported in a stent implanted fluidic channel. Iron oxide magnetic nanoparticles (Fe3O4) nanoparticles were synthesized via co-precipitation method. The synthesized Fe3O4 nanoparticles were added in the de-ionized (DI) water to prepare the Fe3O4 magnetic particle suspended fluid. This fluid is transported in a cylindrical tube of diameter 8 mm with help of a peristaltic pump at different flow rate (25-40 ml/min). A ferromagnetic coil of SS 430 has been implanted inside the cylindrical tube to enhance the capturing of magnetic nanoparticles under magnetic field. The capturing of magnetic nanoparticles was observed at different magnetic magnetic field, flow rate and particle concentration. It is observed that capture efficiency increases from 47-67 % at magnetic field 2-5kG, respectively at particle concentration 0.6 mg/ml and at flow rate 30 ml/min. However, the capture efficiency decreases from 65 to 44 % by increasing the flow rate from 25 to 40 ml/min, respectively. Furthermore, it is observed that capture efficiency increases from 51 to 67 % by increasing the particle concentration from 0.3 to 0.6 mg/ml, respectively.

Keywords: capture efficiency, implant assisted-Magnetic drug targeting (IA-MDT), magnetic nanoparticles, In-vitro study

Procedia PDF Downloads 309
326 Microbial Inoculants to Increase the Biomass and Nutrient Uptake of Tithonia Cultivated as Hedgerow Plants to Control Erosion in Ultisols

Authors: Nurhajati Hakim, Kiki Amalia, A. Agustian, H. Hermansah, Y. Yulnafatmawita

Abstract:

Ultisols require greater amounts of fertilizer application compared to other soils and susceptible to erosion. Unfortunately, the price of synthetic fertilizers has increased over time during the years, making them unaffordable for most Indonesian farmers. While terrace technique to control erosion very costly.Over the last century, efforts to reduce reliance on synthetic agro-chemicals fertilizers and erosion control have recently focused on Tithonia diversifolia as a fertilizer alternative, and as hedgerow plant to control erosion. Generally known by its common name of tree marigold or Mexican sunflower, this plant has attracted considerable attention for its prolific production of green biomass, rich in nitrogen, phosphorous and potassium (NPK). In pot experiments has founded some microbial such as Mycorrhizal, Azotobacter, Azospirillum, phosphate solubilizing bacterial (PSB) and fungi (PSF) are expected to play an important role in biomass production and high nutrient uptake of this plant. This issue of importance was pursued further in the following investigation in field condition. The aim of this study was to determine the type of microbial combination suitable for Tithonia cultivation as hedgerow plants in Ultisols which have higher biomass production and nutrient content, and decline soil erosion. The field experiment was conducted with 6 treatments in a randomized block design (RBD) using 3 replications. The treatments were: Tithonia rhizosphere without microbial inoculated (A); Inokulanted by Mycorrhizal + Azotobacter + Azospirillium (B); Mycorrhizal + PSF (C); Mycorrhizal + PSB(D); Mycorrhizal + PSB + PSF(E);and without hedgerow Tithonia (F).The microbial substrates were inoculated into the Tithonia rhizosphere in the nursery. The young Tithonia plants were then planted as hedgerow on Ultisols in the experimental field for 8 months, and pruned once every 2 months. Soil erosion were collected every rainy time. The differences between treatments were statistically significant by HSD test at the 95% level of probability. The result showed that treatment C (mycorrhizal + PSB) was the most effective, and followed by treatment D (mycorrhizal + PSF) in producing higher Tithonia biomass about 8 t dry matter 2000 m-2 ha-1 y-1 and declined soil erosion 71-75%.

Keywords: hedgerow tithonia, microbial inoculants, organic fertilizer, soil erosion control

Procedia PDF Downloads 358
325 Analysis on the Feasibility of Landsat 8 Imagery for Water Quality Parameters Assessment in an Oligotrophic Mediterranean Lake

Authors: V. Markogianni, D. Kalivas, G. Petropoulos, E. Dimitriou

Abstract:

Lake water quality monitoring in combination with the use of earth observation products constitutes a major component in many water quality monitoring programs. Landsat 8 images of Trichonis Lake (Greece) acquired on 30/10/2013 and 30/08/2014 were used in order to explore the possibility of Landsat 8 to estimate water quality parameters and particularly CDOM absorption at specific wavelengths, chlorophyll-a and nutrient concentrations in this oligotrophic freshwater body, characterized by inexistent quantitative, temporal and spatial variability. Water samples have been collected at 22 different stations, on late August of 2014 and the satellite image of the same date was used to statistically correlate the in-situ measurements with various combinations of Landsat 8 bands in order to develop algorithms that best describe those relationships and calculate accurately the aforementioned water quality components. Optimal models were applied to the image of late October of 2013 and the validation of the results was conducted through their comparison with the respective available in-situ data of 2013. Initial results indicated the limited ability of the Landsat 8 sensor to accurately estimate water quality components in an oligotrophic waterbody. As resulted by the validation process, ammonium concentrations were proved to be the most accurately estimated component (R = 0.7), followed by chl-a concentration (R = 0.5) and the CDOM absorption at 420 nm (R = 0.3). In-situ nitrate, nitrite, phosphate and total nitrogen concentrations of 2014 were measured as lower than the detection limit of the instrument used, hence no statistical elaboration was conducted. On the other hand, multiple linear regression among reflectance measures and total phosphorus concentrations resulted in low and statistical insignificant correlations. Our results were concurrent with other studies in international literature, indicating that estimations for eutrophic and mesotrophic lakes are more accurate than oligotrophic, owing to the lack of suspended particles that are detectable by satellite sensors. Nevertheless, although those predictive models, developed and applied to Trichonis oligotrophic lake are less accurate, may still be useful indicators of its water quality deterioration.

Keywords: landsat 8, oligotrophic lake, remote sensing, water quality

Procedia PDF Downloads 397
324 Backwash Optimization for Drinking Water Treatment Biological Filters

Authors: Sarra K. Ikhlef, Onita Basu

Abstract:

Natural organic matter (NOM) removal efficiency using drinking water treatment biological filters can be highly influenced by backwashing conditions. Backwashing has the ability to remove the accumulated biomass and particles in order to regenerate the biological filters' removal capacity and prevent excessive headloss buildup. A lab scale system consisting of 3 biological filters was used in this study to examine the implications of different backwash strategies on biological filtration performance. The backwash procedures were evaluated based on their impacts on dissolved organic carbon (DOC) removals, biological filters’ biomass, backwash water volume usage, and particle removal. Results showed that under nutrient limited conditions, the simultaneous use of air and water under collapse pulsing conditions lead to a DOC removal of 22% which was significantly higher (p>0.05) than the 12% removal observed under water only backwash conditions. Employing a bed expansion of 20% under nutrient supplemented conditions compared to a 30% reference bed expansion while using the same amount of water volume lead to similar DOC removals. On the other hand, utilizing a higher bed expansion (40%) lead to significantly lower DOC removals (23%). Also, a backwash strategy that reduced the backwash water volume usage by about 20% resulted in similar DOC removals observed with the reference backwash. The backwash procedures investigated in this study showed no consistent impact on biological filters' biomass concentrations as measured by the phospholipids and the adenosine tri-phosphate (ATP) methods. Moreover, none of these two analyses showed a direct correlation with DOC removal. On the other hand, dissolved oxygen (DO) uptake showed a direct correlation with DOC removals. The addition of the extended terminal subfluidization wash (ETSW) demonstrated no apparent impact on DOC removals. ETSW also successfully eliminated the filter ripening sequence (FRS). As a result, the additional water usage resulting from implementing ETSW was compensated by water savings after restart. Results from this study provide insight to researchers and water treatment utilities on how to better optimize the backwashing procedure for the goal of optimizing the overall biological filtration process.

Keywords: biological filtration, backwashing, collapse pulsing, ETSW

Procedia PDF Downloads 274
323 Modeling and Simulation of Vibratory Behavior of Hybrid Smart Composite Plate

Authors: Salah Aguib, Noureddine Chikh, Abdelmalek Khabli, Abdelkader Nour, Toufik Djedid, Lallia Kobzili

Abstract:

This study presents the behavior of a hybrid smart sandwich plate with a magnetorheological elastomer core. In order to improve the vibrational behavior of the plate, the pseudo‐fibers formed by the effect of the magnetic field on the elastomer charged by the ferromagnetic particles are oriented at 45° with respect to the direction of the magnetic field at 0°. Ritz's approach is taken to solve the physical problem. In order to verify and compare the results obtained by the Ritz approach, an analysis using the finite element method was carried out. The rheological property of the MRE material at 0° and at 45° are determined experimentally, The studied elastomer is prepared by a mixture of silicone oil, RTV141A polymer, and 30% of iron particles of total mixture, the mixture obtained is mixed for about 15 minutes to obtain an elastomer paste with good homogenization. In order to develop a magnetorheological elastomer (MRE), this paste is injected into an aluminum mold and subjected to a magnetic field. In our work, we have chosen an ideal percentage of filling of 30%, to obtain the best characteristics of the MRE. The mechanical characteristics obtained by dynamic mechanical viscoanalyzer (DMA) are used in the two numerical approaches. The natural frequencies and the modal damping of the sandwich plate are calculated and discussed for various magnetic field intensities. The results obtained by the two methods are compared. These off‐axis anisotropic MRE structures could open up new opportunities in various fields of aeronautics, aerospace, mechanical engineering and civil engineering.

Keywords: hybrid smart sandwich plate, vibratory behavior, FEM, Ritz approach, MRE

Procedia PDF Downloads 68
322 Value Addition of Quinoa (Chenopodium Quinoa Willd.) Using an Indigenously Developed Saponin Removal Machine

Authors: M.A. Ali, M. Matloob, A. Sahar, M. Yamin, M. Imran, Y.A. Yusof

Abstract:

Quinoa (Chenopodium quinoa Willd.) is known as pseudocereal was originated in South America's Andes. Quinoa is a good source of protein, amino acids, micronutrients and bioactive components. The lack of gluten makes it suitable for celiac patients. Saponins, the leading ant-nutrient, are found in the pericarp, which adheres to the seed and transmits the bitter flavor to the quinoa grain. It is found in varying amounts in quinoa from 0.1% to 5%. This study was planned to design an indigenous machine to remove saponin from quinoa grains at the farm level to promote entrepreneurship. The machine consisted of a feeding hopper, rotating shaft, grooved stone, perforated steel cylinder, V-belts, pulleys, electric motor and mild steel angle iron and sheets. The motor transmitted power to the shaft with a belt drive. The shaft on which the grooved stone was attached rotated inside the perforated cylinder having a clearance of 2 mm and was removed saponin by an abrasion mechanism. The saponin-removed quinoa was then dipped in water to determine the presence of saponin as it produced foam in water and data were statistically analyzed. The results showed that the raw seed feeding rate of 25 g/s and milling time of 135 s completely removed saponin from seeds with minimum grain losses of 2.85% as compared to the economic analysis of the machine showed that its break-even point was achieved after one and half months with 18,000 s and a production capacity of 33 g/s.

Keywords: quinoa seeds, saponin, abrasion mechanism, stone polishing, indigenous machine

Procedia PDF Downloads 72
321 Antibacterial Wound Dressing Based on Metal Nanoparticles Containing Cellulose Nanofibers

Authors: Mohamed Gouda

Abstract:

Antibacterial wound dressings based on cellulose nanofibers containing different metal nanoparticles (CMC-MNPs) were synthesized using an electrospinning technique. First, the composite of carboxymethyl cellulose containing different metal nanoparticles (CMC/MNPs), such as copper nanoparticles (CuNPs), iron nanoparticles (FeNPs), zinc nanoparticles (ZnNPs), cadmium nanoparticles (CdNPs) and cobalt nanoparticles (CoNPs) were synthesized, and finally, these composites were transferred to the electrospinning process. Synthesized CMC-MNPs were characterized using scanning electron microscopy (SEM) coupled with high-energy dispersive X-ray (EDX) and UV-visible spectroscopy used to confirm nanoparticle formation. The SEM images clearly showed regular flat shapes with semi-porous surfaces. All MNPs were well distributed inside the backbone of the cellulose without aggregation. The average particle diameters were 29-39 nm for ZnNPs, 29-33 nm for CdNPs, 25-33 nm for CoNPs, 23-27 nm for CuNPs and 22-26 nm for FeNPs. Surface morphology, water uptake and release of MNPs from the nanofibers in water and antimicrobial efficacy were studied. SEM images revealed that electrospun CMC-MNPs nanofibers are smooth and uniformly distributed without bead formation with average fiber diameters in the range of 300 to 450 nm. Fiber diameters were not affected by the presence of MNPs. TEM images showed that MNPs are present in/on the electrospun CMC-MNPs nanofibers. The diameter of the electrospun nanofibers containing MNPs was in the range of 300–450 nm. The MNPs were observed to be spherical in shape. The CMC-MNPs nanofibers showed good hydrophilic properties and had excellent antibacterial activity against the Gram-negative bacteria Escherichia coli and the Gram-positive bacteria Staphylococcus aureus.

Keywords: electrospinning technique, metal nanoparticles, cellulosic nanofibers, wound dressing

Procedia PDF Downloads 329
320 Bacteriological and Mineral Analyses of Leachate Samples from Erifun Dumpsite, Ado-Ekiti, Ekiti State, Nigeria

Authors: Adebowale T. Odeyemi, Oluwafemi A. Ajenifuja

Abstract:

The leachate samples collected from Erifun dumpsite along Federal Polythenic road, Ado-Ekiti, Ekiti State, were subjected to bacteriological and mineral analyses. The bacteriological estimation and isolation were done using serial dilution and pour plating techniques. Antibiotic susceptibility test was done using agar disc diffusion technique. Atomic Absorption Spectophotometry method was used to analyze the heavy metal contents in the leachate samples. The bacterial and coliform counts ranged from 4.2 × 105 CFU/ml to 2.97 × 106 CFU/ml and 5.0 × 104 CFU/ml to 2.45 x 106 CFU/ml, respectively. The isolated bacteria and percentage of occurrence include Bacillus cereus (22%), Enterobacter aerogenes (18%), Staphylococcus aureus (16%), Proteus vulgaris (14%), Escherichia coli (14%), Bacillus licheniformis (12%) and Klebsiella aerogenes (4%). The mineral value ranged as follow; iron (21.30mg/L - 25.60mg/L), zinc (1.80mg/L - 5.60mg/L), copper (1.00mg/L - 2.60mg/L), chromium (0.50mg/L - 1.30mg/L), candium (0.20mg/L - 1.30mg/L), nickel (0.20mg/L - 0.80mg/L), lead (0.05mg/L-0.30mg/L), cobalt (0.03mg/L - 0.30mg/L) and in all samples manganese was not detected. The entire organisms isolated exhibited a high level of resistance to most of the antibiotics used. There is an urgent need for awareness to be created about the present situation of the leachate in Erifun, on the need for treatment of the nearby stream and other water sources before they can be used for drinking and other domestic use. In conclusion, a good method of waste disposal is required in those communities to prevent leachate formation, percolation, and runoff into water bodies during the raining season.

Keywords: antibiotic susceptibility, dumpsite, bacteriological analysis, heavy metal

Procedia PDF Downloads 142
319 Effects of Microbial Biofertilization on Nodulation, Nitrogen Fixation, and Yield of Lablab purpureus

Authors: Benselama Amel, Ounane S. Mohamed, Bekki Abdelkader

Abstract:

A collection of 20 isolates from fresh Nodules of the legume plant Lablab purpureus was isolated. These isolates have been authenticated by seedling inoculation grown in jars containing sand. The results obtained after two months of culture have revealed that the 20 isolates (100% of the isolates) are able to nodulate their host plants. The results obtained were analyzed statistically by ANOVA using the software statistica and had shown that the effect of the inoculation has significantly improved all the growth parameters (the height of the plant and the dry weight of the aerial parts and roots, and the number of nodules). We have evaluated the tolerance of all strains of the collection to the major stress factors as the salinity, pH and extreme temperature. The osmotolerance reached a concentration up to 1710mm of NaCl. The strains were also able to grow on a wide range of pH, ranging from 4.5 to 9.5, and temperature, between 4°C and 40°C. Also, we tested the effect of the acidity, aluminum and ferric deficit on the Lablab-rhizobia symbiosis. Lablab purpureus has not been affected by the presence of high concentrations of aluminum. On the other hand, iron deficiency has caused a net decrease in the dry biomass of the aerial part. The results of all the phenotypic characters have been treated by the statistical Minitab software, the numerical analysis had shown that these bacterial strains are divided into two distinct groups at a level of similarity of 86 %. The SDS-PAGE was carried out to determine the profile of the total protein of the strains. The coefficients of similarity of polypeptide bands between the isolates and strains reference (Bradyrhizobium, Mesorizobium sp.) confirm that our strain belongs to the groups of rhizobia.

Keywords: SDS-PAGE, rhizobia, symbiosis, phenotypic characterization, Lablab purpureus

Procedia PDF Downloads 306
318 Magnetic Cellulase/Halloysite Nanotubes as Biocatalytic System for Converting Agro-Waste into Value-Added Product

Authors: Devendra Sillu, Shekhar Agnihotri

Abstract:

The 'nano-biocatalyst' utilizes an ordered assembling of enzyme on to nanomaterial carriers to catalyze desirable biochemical kinetics and substrate selectivity. The current study describes an inter-disciplinary approach for converting agriculture waste, sugarcane bagasse into D-glucose exploiting halloysite nanotubes (HNTs) decorated cellulase enzyme as nano-biocatalytic system. Cellulase was successfully immobilized on HNTs employing polydopamine as an eco-friendly crosslinker while iron oxide nanoparticles were attached to facilitate magnetic recovery of material. The characterization studies (UV-Vis, TEM, SEM, and XRD) displayed the characteristic features of both cellulase and magnetic HNTs in the resulting nanocomposite. Various factors (i.e., working pH, temp., crosslinker conc., enzyme conc.) which may influence the activity of biocatalytic system were investigated. The experimental design was performed using Response Surface Methodology (RSM) for process optimization. Analyses data demonstrated that the nanobiocatalysts retained 80.30% activity even at elevated temperature (55°C) and excellent storage stabilities after 10 days. The repeated usage of system revealed a remarkable consistent relative activity over several cycles. The immobilized cellulase was employed to decompose agro-waste and the maximum decomposition rate of 67.2 % was achieved. Conclusively, magnetic HNTs can serve as a potential support for enzyme immobilization with long term usage, good efficacy, reusability and easy recovery from solution.

Keywords: halloysite nanotubes, enzyme immobilization, cellulase, response surface methodology, magnetic recovery

Procedia PDF Downloads 133
317 Studies on the Effect of Dehydration Techniques, Treatments, Packaging Material and Methods on the Quality of Buffalo Meat during Ambient Temperature Storage

Authors: Tariq Ahmad Safapuri, Saghir Ahmad, Farhana Allai

Abstract:

The present study was conducted to evaluate the effect dehydration techniques (polyhouse and tray drying), different treatment (SHMP, SHMP+ salt, salt + turmeric), different packaging material (HDPE, combination film), and different packaging methods (air, vacuum, CO2 Flush) on quality of dehydrated buffalo meat during ambient temperature storage. The quality measuring parameters included physico-chemical characteristics i.e. pH, rehydration ratio, moisture content and microbiological characteristics viz total plate content. It was found that the treatment of (SHMP, SHMP + salt, salt + turmeric increased the pH. Moisture Content of dehydrated meat samples were found in between 7.20% and 5.54%.the rehydration ratio of salt+ turmeric treated sample was found to be highest and lowest for controlled meat sample. the bacterial count log TPC/g of salt + turmeric and tray dried was lowest i.e. 1.80.During ambient temperature storage ,there was no considerable change in pH of dehydrated sample till 150 days. however the moisture content of samples increased in different packaging system in different manner. The highest moisture rise was found in case of controlled meat sample HDPE/air packed while the lowest increase was reported for SHMP+ Salt treated Packed by vacuum in combination film packed sample. Rehydration ratio was found considerably affected in case of HDPE and air packed sample dehydrated in polyhouse after 150 days of ambient storage. While there was a very little change in the rehydration ratio of meat samples packed in combination film CO2 flush system. The TPC was found under safe limit even after 150 days of storage. The microbial count was found to be lowest for salt+ turmeric treated samples after 150 days of storage.

Keywords: ambient temperature, dehydration technique, rehydration ratio, SHMP (sodium hexa meta phosphate), HDPE (high density polyethelene)

Procedia PDF Downloads 419
316 Development of a Wound Dressing Material Based on Microbial Polyhydroxybutyrate Electrospun Microfibers Containing Curcumin

Authors: Ariel Vilchez, Francisca Acevedo, Rodrigo Navia

Abstract:

The wound healing process can be accelerated and improved by the action of antioxidants such as curcumin (Cur) over the tissues; however, the efficacy of curcumin used through the digestive system is not enough to exploit its benefits. Electrospinning presents an alternative to carry curcumin directly to the wounds, and polyhydroxybutyrate (PHB) is proposed as the matrix to load curcumin owing to its biodegradable and biocompatible properties. PHB is among 150 types of Polyhydroxyalkanoates (PHAs) identified, it is a natural thermoplastic polyester produced by microbial fermentation obtained from microorganisms. The proposed objective is to develop electrospun bacterial PHB-based microfibers containing curcumin for possible biomedical applications. Commercial PHB was solved in Chloroform: Dimethylformamide (4:1) to a final concentration of 7% m/V. Curcumin was added to the polymeric solution at 1%, and 7% m/m regarding PHB. The electrospinning equipment (NEU-BM, China) with a rotary collector was used to obtain Cur-PHB fibers at different voltages and flow rate of the polymeric solution considering a distance of 20 cm from the needle to the collector. Scanning electron microscopy (SEM) was used to determine the diameter and morphology of the obtained fibers. Thermal stability was obtained from Thermogravimetric (TGA) analysis, and Fourier Transform Infrared Spectroscopy (FT-IR) was carried out in order to study the chemical bonds and interactions. A preliminary curcumin release to Phosphate Buffer Saline (PBS) pH = 7.4 was obtained in vitro and measured by spectrophotometry. PHB fibers presented an intact chemical composition regarding the original condition (dust) according to FTIR spectra, the diameter fluctuates between 0.761 ± 0.123 and 2.157 ± 0.882 μm, with different qualities according to their morphology. The best fibers in terms of quality and diameter resulted in sample 2 and sample 6, obtained at 0-10kV and 0.5 mL/hr, and 0-10kV and 1.5 mL/hr, respectively. The melting temperature resulted near 178 °C, according to the bibliography. The crystallinity of fibers decreases while curcumin concentration increases for the studied interval. The curcumin release reaches near 14% at 37 °C at 54h in PBS adjusted to a quasi-Fickian Diffusion. We conclude that it is possible to load curcumin in PHB to obtain continuous, homogeneous, and solvent-free microfibers by electrospinning. Between 0% and 7% of curcumin, the crystallinity of fibers decreases as the concentration of curcumin increases. Thus, curcumin enhances the flexibility of the obtained material. HPLC should be used in further analysis of curcumin release.

Keywords: antioxidant, curcumin, polyhydroxybutyrate, wound healing

Procedia PDF Downloads 132
315 Identification of Nutrient Sensitive Signaling Pathways via Analysis of O-GlcNAcylation

Authors: Michael P. Mannino, Gerald W. Hart

Abstract:

The majority of glucose metabolism proceeds through glycolytic pathways such as glycolysis or pentose phosphate pathway, however, about 5% is shunted through the hexosamine biosynthetic pathway, producing uridine diphosphate N-acetyl glucosamine (UDP-GlcNAc). This precursor can then be incorporated into complex oligosaccharides decorating the cell surface or remain as an intracellular post-translational-modification (PTM) of serine/threonine residues (O-GlcNAcylation, OGN), which has been identified on over 4,000 cytosolic or nuclear proteins. Intracellular OGN has major implications on cellularprocesses, typically by modulating protein localization, protein-protein interactions, protein degradation, and gene expression. Additionally, OGN is known to have an extensive cross-talk with phosphorylation, be in a competitive or cooperative manner. Unlike other PTMs there are only two cycling enzymes that are capable of adding or removing the GlcNAc moiety, O-linked N-aceytl glucosamine Transferase (OGT) and O-linked N-acetyl glucoamidase (OGA), respectively. The activity of OGT has been shown to be sensitive to cellular UDP-GlcNAc levels, even changing substrate affinity. Owing to this and that the concentration of UDP-GlcNAc is related to the metabolisms of glucose, amino acid, fatty acid, and nucleotides, O-GlcNAc is often referred to as a nutrient sensing rheostat. Indeed OGN is known to regulate several signaling pathways as a result of nutrient levels, such as insulin signaling. Dysregulation of OGN is associated with several disease states such as cancer, diabetes, and neurodegeneration. Improvements in glycomics over the past 10-15 years has significantly increased the OGT substrate pool, suggesting O-GlcNAc’s involvement in a wide variety of signaling pathways. However, O-GlcNAc’s role at the receptor level has only been identified in a case-by-case basis of known pathways. Examining the OGN of the plasma membrane (PM) may better focus our understanding of O-GlcNAc-effected signaling pathways. In this current study, PM fractions were isolated from several cell types via ultracentrifugation, followed by purification and MS/MS analysis in several cell lines. This process was repeated with or without OGT/OGA inhibitors or with increased/decreased glucose levels in media to ascertain the importance of OGN. Various pathways are followed up on in more detailed studies employing methods to localize OGN at the PM specifically.

Keywords: GlcNAc, nutrient sensitive, post-translational-modification, receptor

Procedia PDF Downloads 112
314 Method Validation for Heavy Metal Determination in Spring Water and Sediments

Authors: Habtamu Abdisa

Abstract:

Spring water is particularly valuable due to its high mineral content, which is beneficial for human health. However, anthropogenic activities usually imbalance the natural levels of its composition, which can cause adverse health effects. Regular monitoring of a naturally given environmental resource is of great concern in the world today. The spectrophotometric application is one of the best methods for qualifying and quantifying the mineral contents of environmental water samples. This research was conducted to evaluate the quality of spring water concerning its heavy metal composition. A grab sampling technique was employed to collect representative samples, including duplicates. The samples were then treated with concentrated HNO3 to a pH level below 2 and stored at 4oC. The samples were digested and analyzed for cadmium (Cd), chromium (Cr), manganese (Mn), copper (Cu), iron (Fe), and zinc (Zn) following method validation. Atomic Absorption Spectrometry (AAS) was utilized for the sample analysis. Quality control measures, including blanks, duplicates, and certified reference materials (CRMs), were implemented to ensure the accuracy and precision of the analytical results. Of the metals analyzed in the water samples, Cd and Cr were found to be below the detection limit. However, the concentrations of Mn, Cu, Fe, and Zn ranged from mean values of 0.119-0.227 mg/L, 0.142-0.166 mg/L, 0.183-0.267 mg/L, and 0.074-0.181 mg/L, respectively. Sediment analysis revealed mean concentration ranges of 348.31-429.21 mg/kg, 0.23-0.28 mg/kg, 18.73-22.84 mg/kg, 2.76-3.15 mg/kg, 941.84-1128.56 mg/kg, and 42.39-66.53 mg/kg for Mn, Cd, Cu, Cr, Fe, and Zn, respectively. The study results established that the evaluated spring water and its associated sediment met the regulatory standards and guidelines for heavy metal concentrations. Furthermore, this research can enhance the quality assurance and control processes for environmental sample analysis, ensuring the generation of reliable data.

Keywords: method validation, heavy metal, spring water, sediment, method detection limit

Procedia PDF Downloads 68
313 In vitro Study of Laser Diode Radiation Effect on the Photo-Damage of MCF-7 and MCF-10A Cell Clusters

Authors: A. Dashti, M. Eskandari, L. Farahmand, P. Parvin, A. Jafargholi

Abstract:

Breast Cancer is one of the most considerable diseases in the United States and other countries and is the second leading cause of death in women. Common breast cancer treatments would lead to adverse side effects such as loss of hair, nausea, and weakness. These complications arise because these cancer treatments damage some healthy cells while eliminating the cancer cells. In an effort to address these complications, laser radiation was utilized and tested as a targeted cancer treatment for breast cancer. In this regard, tissue engineering approaches are being employed by using an electrospun scaffold in order to facilitate the growth of breast cancer cells. Polycaprolacton (PCL) was used as a material for scaffold fabricating because of its biocompatibility, biodegradability, and supporting cell growth. The specific breast cancer cells have the ability to create a three-dimensional cell cluster due to the spontaneous accumulation of cells in the porosity of the scaffold under some specific conditions. Therefore, we are looking for a higher density of porosity and larger pore size. Fibers showed uniform diameter distribution and final scaffold had optimum characteristics with approximately 40% porosity. The images were taken by SEM and the density and the size of the porosity were determined with the Image. After scaffold preparation, it has cross-linked by glutaraldehyde. Then, it has been washed with glycine and phosphate buffer saline (PBS), in order to neutralize the residual glutaraldehyde. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromidefor (MTT) results have represented approximately 91.13% viability of the scaffolds for cancer cells. In order to create a cluster, Michigan Cancer Foundation-7 (MCF-7, breast cancer cell line) and Michigan Cancer Foundation-10A (MCF-10A, human mammary epithelial cell line) cells were cultured on the scaffold in 24 well plate for five days. Then, we have exposed the cluster to the laser diode 808 nm radiation to investigate the effect of laser on the tumor with different power and time. Under the same conditions, cancer cells lost their viability more than the healthy ones. In conclusion, laser therapy is a viable method to destroy the target cells and has a minimum effect on the healthy tissues and cells and it can improve the other method of cancer treatments limitations.

Keywords: breast cancer, electrospun scaffold, polycaprolacton, laser diode, cancer treatment

Procedia PDF Downloads 144
312 Statistical Model of Water Quality in Estero El Macho, Machala-El Oro

Authors: Rafael Zhindon Almeida

Abstract:

Surface water quality is an important concern for the evaluation and prediction of water quality conditions. The objective of this study is to develop a statistical model that can accurately predict the water quality of the El Macho estuary in the city of Machala, El Oro province. The methodology employed in this study is of a basic type that involves a thorough search for theoretical foundations to improve the understanding of statistical modeling for water quality analysis. The research design is correlational, using a multivariate statistical model involving multiple linear regression and principal component analysis. The results indicate that water quality parameters such as fecal coliforms, biochemical oxygen demand, chemical oxygen demand, iron and dissolved oxygen exceed the allowable limits. The water of the El Macho estuary is determined to be below the required water quality criteria. The multiple linear regression model, based on chemical oxygen demand and total dissolved solids, explains 99.9% of the variance of the dependent variable. In addition, principal component analysis shows that the model has an explanatory power of 86.242%. The study successfully developed a statistical model to evaluate the water quality of the El Macho estuary. The estuary did not meet the water quality criteria, with several parameters exceeding the allowable limits. The multiple linear regression model and principal component analysis provide valuable information on the relationship between the various water quality parameters. The findings of the study emphasize the need for immediate action to improve the water quality of the El Macho estuary to ensure the preservation and protection of this valuable natural resource.

Keywords: statistical modeling, water quality, multiple linear regression, principal components, statistical models

Procedia PDF Downloads 100
311 Geostatistical Simulation of Carcinogenic Industrial Effluent on the Irrigated Soil and Groundwater, District Sheikhupura, Pakistan

Authors: Asma Shaheen, Javed Iqbal

Abstract:

The water resources are depleting due to an intrusion of industrial pollution. There are clusters of industries including leather tanning, textiles, batteries, and chemical causing contamination. These industries use bulk quantity of water and discharge it with toxic effluents. The penetration of heavy metals through irrigation from industrial effluent has toxic effect on soil and groundwater. There was strong positive significant correlation between all the heavy metals in three media of industrial effluent, soil and groundwater (P < 0.001). The metal to the metal association was supported by dendrograms using cluster analysis. The geospatial variability was assessed by using geographically weighted regression (GWR) and pollution model to identify the simulation of carcinogenic elements in soil and groundwater. The principal component analysis identified the metals source, 48.8% variation in factor 1 have significant loading for sodium (Na), calcium (Ca), magnesium (Mg), iron (Fe), chromium (Cr), nickel (Ni), lead (Pb) and zinc (Zn) of tannery effluent-based process. In soil and groundwater, the metals have significant loading in factor 1 representing more than half of the total variation with 51.3 % and 53.6 % respectively which showed that pollutants in soil and water were driven by industrial effluent. The cumulative eigen values for the three media were also found to be greater than 1 representing significant clustering of related heavy metals. The results showed that heavy metals from industrial processes are seeping up toxic trace metals in the soil and groundwater. The poisonous pollutants from heavy metals turned the fresh resources of groundwater into unusable water. The availability of fresh water for irrigation and domestic use is being alarming.

Keywords: groundwater, geostatistical, heavy metals, industrial effluent

Procedia PDF Downloads 229
310 Serum Potassium Before, During and After Exercise at 70% Maximal Heart Rate: The Safe Exercise Dosage Across Different Parameters of Health and Fitness Level

Authors: Omar bin Mihat

Abstract:

The number of sudden deaths is increasing over the past years. These deaths occur not during physical activities but upon cessation. Post-mortem confirms these deaths as cardiac arrest non-specifically. Congenital heart disease is a condition undiagnosed whereby only surface upon physical exertion leading to sudden death is unavoidable. Channelopathy, a condition that refers to any disease from the defect in iron-channel function, particularly the sodium-potassium pump, during the cessation of the exercise can be controlled. The derivation of heart rate return (HRrtn) is a procedure of a control cooling down process according to the heart rate (HR). Empirically, potassium rises linearly with intensity and falls sharply upon abrupt cessation of exertion, resulting in fatal arrhythmia due to hypokalaemia. It is vital that the flux of potassium should be maintained within the normal range during physical activities. To achieve this, the dosage of physical exertion (exercise) should be identified. Various percentages of the intensity of maximum heart rate (MHR) will precipitate different adaptations and remodeling of various organs. 70% of MHR will surface physiological adaptations, including enhancement of endurance, fitness level, and general health, and there was no significant rise of serum potassium (K+) during the entire phase of the treadmill brisk walk at a different rate of perceived exertion (RPE) from the subject of various fitness background. There was also no significant rise in blood pressure (BP) during the entire phase of the treadmill brisk walk, substantiating 70% MHR is the safe dosage across different parameters of health and fitness level.

Keywords: potassium, maximal heart rate, exercise dosage, fitness level

Procedia PDF Downloads 68