Search results for: cluster model approach
26391 Generation of Charged Nanoparticles in the Gas Phase and their Contribution to Deposition of GaN Films and Nanostructures during Atmospheric Pressure Chemical Vapor Deposition
Authors: Jin-Woo Park, Sung-Soo Lee, Nong-Moon Hwang
Abstract:
The generation of charged nanoparticles in the gas phase during the Chemical Vapor Deposition (CVD) process has been frequently reported with their subsequent deposition into films and nanostructures in many systems such as carbon, silicon and zinc oxide. The microstructure evolution of films and nanostructures is closely related with the size distribution of charged nanoparticles. To confirm the generation of charged nanoparticles during GaN, the generation of GaN charged nanoparticles was examined in an atmospheric pressure CVD process using a Differential Mobility Analyser (DMA) combined with a Faraday Cup Electrometer (FCE). It was confirmed that GaN charged nanoparticles were generated under the condition where GaN nanostructures were synthesized on the bare and Au-coated Si substrates. In addition, the deposition behaviour depends strongly on the charge transfer rate of metal substrates. On the metal substrates of a lower CTR such as Mo, the deposition rate of GaN was much lower than on those of a higher CTR such as Fe. GaN nanowires tend to grow on the substrates of a lower CTR whereas GaN thin films tend to be deposited on the substrates of a higher CTR.Keywords: chemical vapour deposition, charged cluster model, generation of charged nanoparticles, deposition behaviour, nanostructures, gan, charged transfer rate
Procedia PDF Downloads 43826390 Predictive Modelling of Aircraft Component Replacement Using Imbalanced Learning and Ensemble Method
Authors: Dangut Maren David, Skaf Zakwan
Abstract:
Adequate monitoring of vehicle component in other to obtain high uptime is the goal of predictive maintenance, the major challenge faced by businesses in industries is the significant cost associated with a delay in service delivery due to system downtime. Most of those businesses are interested in predicting those problems and proactively prevent them in advance before it occurs, which is the core advantage of Prognostic Health Management (PHM) application. The recent emergence of industry 4.0 or industrial internet of things (IIoT) has led to the need for monitoring systems activities and enhancing system-to-system or component-to- component interactions, this has resulted to a large generation of data known as big data. Analysis of big data represents an increasingly important, however, due to complexity inherently in the dataset such as imbalance classification problems, it becomes extremely difficult to build a model with accurate high precision. Data-driven predictive modeling for condition-based maintenance (CBM) has recently drowned research interest with growing attention to both academics and industries. The large data generated from industrial process inherently comes with a different degree of complexity which posed a challenge for analytics. Thus, imbalance classification problem exists perversely in industrial datasets which can affect the performance of learning algorithms yielding to poor classifier accuracy in model development. Misclassification of faults can result in unplanned breakdown leading economic loss. In this paper, an advanced approach for handling imbalance classification problem is proposed and then a prognostic model for predicting aircraft component replacement is developed to predict component replacement in advanced by exploring aircraft historical data, the approached is based on hybrid ensemble-based method which improves the prediction of the minority class during learning, we also investigate the impact of our approach on multiclass imbalance problem. We validate the feasibility and effectiveness in terms of the performance of our approach using real-world aircraft operation and maintenance datasets, which spans over 7 years. Our approach shows better performance compared to other similar approaches. We also validate our approach strength for handling multiclass imbalanced dataset, our results also show good performance compared to other based classifiers.Keywords: prognostics, data-driven, imbalance classification, deep learning
Procedia PDF Downloads 17426389 Estimation of PM2.5 Emissions and Source Apportionment Using Receptor and Dispersion Models
Authors: Swetha Priya Darshini Thammadi, Sateesh Kumar Pisini, Sanjay Kumar Shukla
Abstract:
Source apportionment using Dispersion model depends primarily on the quality of Emission Inventory. In the present study, a CMB receptor model has been used to identify the sources of PM2.5, while the AERMOD dispersion model has been used to account for missing sources of PM2.5 in the Emission Inventory. A statistical approach has been developed to quantify the missing sources not considered in the Emission Inventory. The inventory of each grid was improved by adjusting emissions based on road lengths and deficit in measured and modelled concentrations. The results showed that in CMB analyses, fugitive sources - soil and road dust - contribute significantly to ambient PM2.5 pollution. As a result, AERMOD significantly underestimated the ambient air concentration at most locations. The revised Emission Inventory showed a significant improvement in AERMOD performance which is evident through statistical tests.Keywords: CMB, GIS, AERMOD, PM₂.₅, fugitive, emission inventory
Procedia PDF Downloads 34026388 Assessing the Role of Human Mobility on Malaria Transmission in South Sudan
Authors: A. Y. Mukhtar, J. B. Munyakazi, R. Ouifki
Abstract:
Over the past few decades, the unprecedented increase in mobility has raised considerable concern about the relationship between mobility and vector-borne diseases and malaria in particular. Thus, one can claim that human mobility is one of the contributing factors to the resurgence of malaria. To assess human mobility on malaria burden among hosts, we formulate a movement-based model on a network of patches. We then extend human multi-group SEIAR deterministic epidemic models into a system of stochastic differential equations (SDEs). Our quantitative stochastic model which is expressed in terms of average rates of movement between compartments is fitted to time-series data (weekly malaria data of 2011 for each patch) using the maximum likelihood approach. Using the metapopulation (multi-group) model, we compute and analyze the basic reproduction number. The result shows that human movement is sufficient to preserve malaria disease firmness in the patches with the low transmission. With these results, we concluded that the sensitivity of malaria to the human mobility is turning to be greatly important over the implications of future malaria control in South Sudan.Keywords: basic reproduction number, malaria, maximum likelihood, movement, stochastic model
Procedia PDF Downloads 13426387 A Fuzzy-Logic Approach to Rule-Based Systems for Leadership Style Selection
Authors: Kim Michelle Siegling, Thomas Spengler, Sebastian Herzog
Abstract:
In personnel economics, the choice of a leadership style is about the question of how a supervisor should lead his or her employees in such a way that operational goals are achieved. In this paper, it is assumed that such leadership decisions are made according to the situation. Thus, the optimal or at least a permissible leadership style has to be selected from a set of several possible leadership styles. For this choice, a wide range of models has been developed in the scientific literature, from which the so-called normative decision model will be picked out and focused on. While the original model is based on univocal rules, this paper develops a fuzzy rule system.Keywords: leadership, leadership styles, rule based systems, fuzzy logic
Procedia PDF Downloads 4126386 Deep Learning Based-Object-classes Semantic Classification of Arabic Texts
Authors: Imen Elleuch, Wael Ouarda, Gargouri Bilel
Abstract:
We proposes in this paper a Deep Learning based approach to classify text in order to enrich an Arabic ontology based on the objects classes of Gaston Gross. Those object classes are defined by taking into account the syntactic and semantic features of the treated language. Thus, our proposed approach is a hybrid one. In fact, it is based on the one hand on the object classes that represents a knowledge based-approach on classification of text and in the other hand it uses the deep learning approach that use the word embedding-based-approach to classify text. We have applied our proposed approach on a corpus constructed from an Arabic dictionary. The obtained semantic classification of text will enrich the Arabic objects classes ontology. In fact, new classes can be added to the ontology or an expansion of the features that characterizes each object class can be updated. The obtained results are compared to a similar work that treats the same object with a classical linguistic approach for the semantic classification of text. This comparison highlight our hybrid proposed approach that can be ameliorated by broaden the dataset used in the deep learning process.Keywords: deep-learning approach, object-classes, semantic classification, Arabic
Procedia PDF Downloads 8726385 Assessment of ATC with Shunt FACTS Devices
Authors: Ashwani Kumar, Jitender Kumar
Abstract:
In this paper, an optimal power flow based approach has been applied for multi-transactions deregulated environment for ATC determination with SVC and STATCOM. The main contribution of the paper is (i) OPF based approach for evaluation of ATC with multi-transactions, (ii) ATC enhancement with FACTS devices viz. SVC and STATCOM for intact and line contingency cases, (iii) impact of ZIP load on ATC determination and comparison of ATC obtained with SVC and STATCOM. The results have been determined for intact and line contingency cases taking simultaneous as well as single transaction cases for IEEE 24 bus RTS.Keywords: available transfer capability, FACTS devices, line contingency, multi-transactions, ZIP load model
Procedia PDF Downloads 60026384 Target and Biomarker Identification Platform to Design New Drugs against Aging and Age-Related Diseases
Authors: Peter Fedichev
Abstract:
We studied fundamental aspects of aging to develop a mathematical model of gene regulatory network. We show that aging manifests itself as an inherent instability of gene network leading to exponential accumulation of regulatory errors with age. To validate our approach we studied age-dependent omic data such as transcriptomes, metabolomes etc. of different model organisms and humans. We build a computational platform based on our model to identify the targets and biomarkers of aging to design new drugs against aging and age-related diseases. As biomarkers of aging, we choose the rate of aging and the biological age since they completely determine the state of the organism. Since rate of aging rapidly changes in response to an external stress, this kind of biomarker can be useful as a tool for quantitative efficacy assessment of drugs, their combinations, dose optimization, chronic toxicity estimate, personalized therapies selection, clinical endpoints achievement (within clinical research), and death risk assessments. According to our model, we propose a method for targets identification for further interventions against aging and age-related diseases. Being a biotech company, we offer a complete pipeline to develop an anti-aging drug-candidate.Keywords: aging, longevity, biomarkers, senescence
Procedia PDF Downloads 27426383 Analysis of the Dynamics of Transmission of Microsporidia MB Inside the Population of Anopheles Mosquitoes
Authors: Charlene N. T. Mfangnia, Henri Tonnang, Berge Tsanou, Jeremy Herren
Abstract:
The Microsporidia MB found in the populations of anopheles is a recently discovered symbiont responsible for the Plasmodium transmission blocking. From early studies, it was established that the symbiont can be transmitted vertically and horizontally. The present study uses compartmental mathematical modelling approach to investigate the dynamics of Microsporidia transmission in the mosquito population with the mindset of establishing a mechanism for use to control malaria. Data and information obtained from laboratory experiments are used to estimate the model parameters with and without temperature dependency of mosquito traits. We carry out the mathematical analysis focusing on the equilibria states and their stability for the autonomous model. Through the modelling experiments, we are able to assess and confirm the contribution of vertical and horizontal transmission in the proliferation of Microsporidia MB in the mosquito population. In addition, the basic and target reproductions are computed, and some long-term behaviours of the model, such as the local (and global) stability of equilibrium points, are rigorously analysed and illustrated numerically. We establish the conditions responsible for the low prevalence of the symbiont-infected mosquitoes observed in nature. Moreover, we identify the male death rate, the mating rate and the attractiveness of MB-positive mosquitoes as mosquito traits that significantly influence the spread of Microsporidia MB. Furthermore, we highlight the influence of temperature in the establishment and persistence of MB-infected mosquitoes in a given area.Keywords: microsporidia MB, vertical transmission, horizontal transmission, compartmental modelling approach, temperature-dependent mosquito traits, malaria, plasmodium-transmission blocking
Procedia PDF Downloads 13026382 A Frictional-Collisional Closure Model for the Saturated Granular Flow: Experimental Evidence and Two Phase Modelling
Authors: Yunhui Sun, Qingquan Liu, Xiaoliang Wang
Abstract:
Dense granular flows widely exist in geological flows such as debris flow, landslide, or sheet flow, where both the interparticle and solid-liquid interactions are important to modify the flow. So, a two-phase approach with both phases correctly modelled is important for a better investigation of the saturated granular flows. However, a proper closure model covering a wide range of flowing states for the solid phase is still lacking. This study first employs a chute flow experiment based on the refractive index matching method, which makes it possible to obtain internal flow information such as velocity, shear rate, granular fluctuation, and volume fraction. The granular stress is obtained based on a steady assumption. The kinetic theory is found to describe the stress dependence on the flow state well. More importantly, the granular rheology is found to be frictionally dominated under weak shear and collisionally dominated under strong shear. The results presented thus provide direct experimental evidence on a possible frictional-collisional closure model for the granular phase. The data indicates that both frictional stresses exist over a wide range of the volume fraction, though traditional theory believes it vanishes below a critical volume fraction. Based on the findings, a two-phase model is used to simulate the chute flow. Both phases are modelled as continuum media, and the inter-phase interactions, such as drag force and pressure gradient force, are considered. The frictional-collisional model is used for the closure of the solid phase stress. The profiles of the kinematic properties agree well with the experiments. This model is further used to simulate immersed granular collapse, which is unsteady in nature, to study the applicability of this model, which is derived from steady flow.Keywords: closure model, collision, friction, granular flow, two-phase model
Procedia PDF Downloads 5926381 Calibration and Validation of the Aquacrop Model for Simulating Growth and Yield of Rain-Fed Sesame (Sesamum Indicum L.) Under Different Soil Fertility Levels in the Semi-arid Areas of Tigray, Ethiopia
Authors: Abadi Berhane, Walelign Worku, Berhanu Abrha, Gebre Hadgu
Abstract:
Sesame is an important oilseed crop in Ethiopia, which is the second most exported agricultural commodity next to coffee. However, there is poor soil fertility management and a research-led farming system for the crop. The AquaCrop model was applied as a decision-support tool, which performs a semi-quantitative approach to simulate the yield of crops under different soil fertility levels. The objective of this experiment was to calibrate and validate the AquaCrop model for simulating the growth and yield of sesame under different nitrogen fertilizer levels and to test the performance of the model as a decision-support tool for improved sesame cultivation in the study area. The experiment was laid out as a randomized complete block design (RCBD) in a factorial arrangement in the 2016, 2017, and 2018 main cropping seasons. In this experiment, four nitrogen fertilizer rates, 0, 23, 46, and 69 Kg/ha nitrogen, and three improved varieties (Setit-1, Setit-2, and Humera-1). In the meantime, growth, yield, and yield components of sesame were collected from each treatment. Coefficient of determination (R2), Root mean square error (RMSE), Normalized root mean square error (N-RMSE), Model efficiency (E), and Degree of agreement (D) were used to test the performance of the model. The results indicated that the AquaCrop model successfully simulated soil water content with R2 varying from 0.92 to 0.98, RMSE 6.5 to 13.9 mm, E 0.78 to 0.94, and D 0.95 to 0.99, and the corresponding values for AB also varied from 0.92 to 0.98, 0.33 to 0.54 tons/ha, 0.74 to 0.93, and 0.9 to 0.98, respectively. The results on the canopy cover of sesame also showed that the model acceptably simulated canopy cover with R2 varying from 0.95 to 0.99 and a RMSE of 5.3 to 8.6%. The AquaCrop model was appropriately calibrated to simulate soil water content, canopy cover, aboveground biomass, and sesame yield; the results indicated that the model adequately simulated the growth and yield of sesame under the different nitrogen fertilizer levels. The AquaCrop model might be an important tool for improved soil fertility management and yield enhancement strategies of sesame. Hence, the model might be applied as a decision-support tool in soil fertility management in sesame production.Keywords: aquacrop model, normalized water productivity, nitrogen fertilizer, canopy cover, sesame
Procedia PDF Downloads 7926380 A Collaborative Learning Model in Engineering Science Based on a Cyber-Physical Production Line
Authors: Yosr Ghozzi
Abstract:
The Cyber-Physical Systems terminology has been well received by the industrial community and specifically appropriated in educational settings. Indeed, our latest educational activities are based on the development of experimental platforms on an industrial scale. In fact, we built a collaborative learning model because of an international market study that led us to place ourselves at the heart of this technology. To align with these findings, a competency-based approach study was conducted, and program content was revised by reflecting the projectbased approach. Thus, this article deals with the development of educational devices according to a generated curriculum and specific educational activities while respecting the repository of skills adopted from what constitutes the educational cyber-physical production systems and the laboratories that are compliant and adapted to them. The implementation of these platforms was systematically carried out in the school's workshops spaces. The objective has been twofold, both research and teaching for the students in mechatronics and logistics of the electromechanical department. We act as trainers and industrial experts to involve students in the implementation of possible extension systems around multidisciplinary projects and reconnect with industrial projects for better professional integration.Keywords: education 4.0, competency-based learning, teaching factory, project-based learning, cyber-physical systems, industry 4.0
Procedia PDF Downloads 10726379 A Mathematical Programming Model for Lot Sizing and Production Planning in Multi-Product Companies: A Case Study of Azar Battery Company
Authors: Farzad Jafarpour Taher, Maghsud Solimanpur
Abstract:
Production planning is one of the complex tasks in multi-product firms that produce a wide range of products. Since resources in mass production companies are limited and different products use common resources, there must be a careful plan so that firms can respond to customer needs efficiently. Azar-battery Company is a firm that provides twenty types of products for its customers. Therefore, careful planning must be performed in this company. In this research, the current conditions of Azar-battery Company were investigated to provide a mathematical programming model to determine the optimum production rate of the products in this company. The production system of this company is multi-stage, multi-product and multi-period. This system is studied in terms of a one-year planning horizon regarding the capacity of machines and warehouse space limitation. The problem has been modeled as a linear programming model with deterministic demand in which shortage is not allowed. The objective function of this model is to minimize costs (including raw materials, assembly stage, energy costs, packaging, and holding). Finally, this model has been solved by Lingo software using the branch and bound approach. Since the computation time was very long, the solver interrupted, and the obtained feasible solution was used for comparison. The proposed model's solution costs have been compared to the company’s real data. This non-optimal solution reduces the total production costs of the company by about %35.Keywords: multi-period, multi-product production, multi-stage, production planning
Procedia PDF Downloads 9826378 Hearing Conservation Program for Vector Control Workers: Short-Term Outcomes from a Cluster-Randomized Controlled Trial
Authors: Rama Krishna Supramanian, Marzuki Isahak, Noran Naqiah Hairi
Abstract:
Noise-induced hearing loss (NIHL) is one of the highest recorded occupational diseases, despite being preventable. Hearing Conservation Program (HCP) is designed to protect workers hearing and prevent them from developing hearing impairment due to occupational noise exposures. However, there is still a lack of evidence regarding the effectiveness of this program. The purpose of this study was to determine the effectiveness of a Hearing Conservation Program (HCP) in preventing or reducing audiometric threshold changes among vector control workers. This study adopts a cluster randomized controlled trial study design, with district health offices as the unit of randomization. Nine district health offices were randomly selected and 183 vector control workers were randomized to intervention or control group. The intervention included a safety and health policy, noise exposure assessment, noise control, distribution of appropriate hearing protection devices, training and education program and audiometric testing. The control group only underwent audiometric testing. Audiometric threshold changes observed in the intervention group showed improvement in the hearing threshold level for all frequencies except 500 Hz and 8000 Hz for the left ear. The hearing threshold changes range from 1.4 dB to 5.2 dB with largest improvement at higher frequencies mainly 4000 Hz and 6000 Hz. Meanwhile for the right ear, the mean hearing threshold level remained similar at 4000 Hz and 6000 Hz after 3 months of intervention. The Hearing Conservation Program (HCP) is effective in preserving the hearing of vector control workers involved in fogging activity as well as increasing their knowledge, attitude and practice towards noise-induced hearing loss (NIHL).Keywords: adult, hearing conservation program, noise-induced hearing loss, vector control worker
Procedia PDF Downloads 16726377 Investigation of the Physical Computing in Computational Thinking Practices, Computer Programming Concepts and Self-Efficacy for Crosscutting Ideas in STEM Content Environments
Authors: Sarantos Psycharis
Abstract:
Physical Computing, as an instructional model, is applied in the framework of the Engineering Pedagogy to teach “transversal/cross-cutting ideas” in a STEM content approach. Labview and Arduino were used in order to connect the physical world with real data in the framework of the so called Computational Experiment. Tertiary prospective engineering educators were engaged during their course and Computational Thinking (CT) concepts were registered before and after the intervention across didactic activities using validated questionnaires for the relationship between self-efficacy, computer programming, and CT concepts when STEM content epistemology is implemented in alignment with the Computational Pedagogy model. Results show a significant change in students’ responses for self-efficacy for CT before and after the instruction. Results also indicate a significant relation between the responses in the different CT concepts/practices. According to the findings, STEM content epistemology combined with Physical Computing should be a good candidate as a learning and teaching approach in university settings that enhances students’ engagement in CT concepts/practices.Keywords: arduino, computational thinking, computer programming, Labview, self-efficacy, STEM
Procedia PDF Downloads 11326376 The Social Change Leadership Model for Administrators and Teachers Development in Northeast Thailand
Authors: D. Thawinkarn, S. Wongbutlee
Abstract:
The Social Change Leadership model is strongly aligned with administration’s mission. This research aims to examine the elements of social change leadership, build and develop leadership for social change, and evaluate effectiveness of leadership development model for social change. The research operation has 3 phases: model studies by in-depth interviews and survey research; drafting and creating model which verified by the experts; and trial of model in schools. The results showed that administrators and teachers have the elements of leadership for social change in moderate level. These elements are ranged descending from consciousness of self, common purpose, congruence, collaboration, commitment, citizenship, and controversy with civility. Model of leadership for social change is included the principles, objectives, content, process. Workshop process: Results show that the model of leadership development for social change in administrators and teachers leads to higher score in leadership evaluation prior to administering the operation.Keywords: leadership, social change model, organization, administrators
Procedia PDF Downloads 41826375 The Data Quality Model for the IoT based Real-time Water Quality Monitoring Sensors
Authors: Rabbia Idrees, Ananda Maiti, Saurabh Garg, Muhammad Bilal Amin
Abstract:
IoT devices are the basic building blocks of IoT network that generate enormous volume of real-time and high-speed data to help organizations and companies to take intelligent decisions. To integrate this enormous data from multisource and transfer it to the appropriate client is the fundamental of IoT development. The handling of this huge quantity of devices along with the huge volume of data is very challenging. The IoT devices are battery-powered and resource-constrained and to provide energy efficient communication, these IoT devices go sleep or online/wakeup periodically and a-periodically depending on the traffic loads to reduce energy consumption. Sometime these devices get disconnected due to device battery depletion. If the node is not available in the network, then the IoT network provides incomplete, missing, and inaccurate data. Moreover, many IoT applications, like vehicle tracking and patient tracking require the IoT devices to be mobile. Due to this mobility, If the distance of the device from the sink node become greater than required, the connection is lost. Due to this disconnection other devices join the network for replacing the broken-down and left devices. This make IoT devices dynamic in nature which brings uncertainty and unreliability in the IoT network and hence produce bad quality of data. Due to this dynamic nature of IoT devices we do not know the actual reason of abnormal data. If data are of poor-quality decisions are likely to be unsound. It is highly important to process data and estimate data quality before bringing it to use in IoT applications. In the past many researchers tried to estimate data quality and provided several Machine Learning (ML), stochastic and statistical methods to perform analysis on stored data in the data processing layer, without focusing the challenges and issues arises from the dynamic nature of IoT devices and how it is impacting data quality. A comprehensive review on determining the impact of dynamic nature of IoT devices on data quality is done in this research and presented a data quality model that can deal with this challenge and produce good quality of data. This research presents the data quality model for the sensors monitoring water quality. DBSCAN clustering and weather sensors are used in this research to make data quality model for the sensors monitoring water quality. An extensive study has been done in this research on finding the relationship between the data of weather sensors and sensors monitoring water quality of the lakes and beaches. The detailed theoretical analysis has been presented in this research mentioning correlation between independent data streams of the two sets of sensors. With the help of the analysis and DBSCAN, a data quality model is prepared. This model encompasses five dimensions of data quality: outliers’ detection and removal, completeness, patterns of missing values and checks the accuracy of the data with the help of cluster’s position. At the end, the statistical analysis has been done on the clusters formed as the result of DBSCAN, and consistency is evaluated through Coefficient of Variation (CoV).Keywords: clustering, data quality, DBSCAN, and Internet of things (IoT)
Procedia PDF Downloads 13926374 Urban Security and Social Sustainability in Cities of Developing Countries
Authors: Taimaz Larimian, Negin Sadeghi
Abstract:
Very little is known about the impacts of urban security on the level of social sustainability within the cities of developing countries. Urban security is still struggling to find its position in the social sustainability agenda, despite the significant role of safety and security on different aspects of peoples’ lives. This paper argues that urban safety and security should be better integrated within the social sustainability framework. With this aim, this study investigates the hypothesized relationship between social sustainability and Crime Prevention through Environmental Design (CPTED) approach at the neighborhood scale. This study proposes a model of key influential dimensions of CPTED analyzed into localized factors and sub-factors. These factors are then prioritized using pairwise comparison logic and fuzzy group Analytic Hierarchy Process (AHP) method in order to determine the relative importance of each factor on achieving social sustainability. The proposed model then investigates social sustainability in six case study neighborhoods of Isfahan city based on residents’ perceptions of safety within their neighborhood. Mixed method of data collection is used by using a self-administered questionnaire to explore the residents’ perceptions of social sustainability in their area of residency followed by an on-site observation to measure the CPTED construct. In all, 150 respondents from selected neighborhoods were involved in this research. The model indicates that CPTED approach has a significant direct influence on increasing social sustainability in neighborhood scale. According to the findings, among different dimensions of CPTED, ‘activity support’ and ‘image/ management’ have the most influence on people’s feeling of safety within studied areas. This model represents a useful designing tool in achieving urban safety and security during the development of more socially sustainable and user-friendly urban areas.Keywords: crime prevention through environmental design (CPTED), developing countries, fuzzy analytic hierarchy process (FAHP), social sustainability
Procedia PDF Downloads 30626373 Competency Based Talent Acquisition: Concept, Practice, and Model, with Reference to Indian Industries
Authors: Manasi V. Shah
Abstract:
Organizations, in the competitive era, are participating in the competency act. They have discerned that, strategically researched and defined competencies when put up on the shelf, can help in achieving business goals. The research focuses on critical elements of competency-based talent acquisition process from practical vantage, with significant experience in a variety of business settings. The research is exploratory and descriptive in nature. The research conduct and outcome is the hinge on with reference to Indian Industries. It elaborates about the concept, practice and a brief model that human resource practitioner can use for effective talent acquisition process, which in turn would be in alignment with business performance. The research helps to present a prudent understanding of recruiting and selecting apt human capital, that can fit in a given job role and has action oriented competency based assessment approach for measuring the probable success of a job incumbent in a given job role.Keywords: competency based talent acquisition, competency model, talent acquisition concept, talent acquisition practice
Procedia PDF Downloads 31126372 Numerical Study on Pretensioned Bridge Girder Using Thermal Strain Technique
Authors: Prashant Motwani, Arghadeep Laskar
Abstract:
The transfer of prestress force from prestressing strands to the surrounding concrete is dependent on the bond between the two materials. It is essential to understand the actual bond stress distribution along the transfer length to determine the transfer zone in pre-tensioned concrete. A 3-D nonlinear finite element model has been developed to simulate the transfer of prestress force from steel to concrete in pre-tensioned bridge girders through thermal strain technique using commercially available package ABAQUS. Full-scale bridge girder has been analyzed with thermal strain approach where the damage plasticity constitutive model has been used to model concrete. Parameters such as concrete strain, effective prestress, upward camber and longitudinal stress have been compared with analytical results. The discrepancy between numerical and analytical values was within 20%. The paper also presents a convergence study on mesh density and aspect ratio of the elements to perform the finite element study.Keywords: aspect ratio, bridge girder, centre of gravity of strand, mesh density, finite element model, pretensioned bridge girder
Procedia PDF Downloads 24226371 A Virtual Grid Based Energy Efficient Data Gathering Scheme for Heterogeneous Sensor Networks
Authors: Siddhartha Chauhan, Nitin Kumar Kotania
Abstract:
Traditional Wireless Sensor Networks (WSNs) generally use static sinks to collect data from the sensor nodes via multiple forwarding. Therefore, network suffers with some problems like long message relay time, bottle neck problem which reduces the performance of the network. Many approaches have been proposed to prevent this problem with the help of mobile sink to collect the data from the sensor nodes, but these approaches still suffer from the buffer overflow problem due to limited memory size of sensor nodes. This paper proposes an energy efficient scheme for data gathering which overcomes the buffer overflow problem. The proposed scheme creates virtual grid structure of heterogeneous nodes. Scheme has been designed for sensor nodes having variable sensing rate. Every node finds out its buffer overflow time and on the basis of this cluster heads are elected. A controlled traversing approach is used by the proposed scheme in order to transmit data to sink. The effectiveness of the proposed scheme is verified by simulation.Keywords: buffer overflow problem, mobile sink, virtual grid, wireless sensor networks
Procedia PDF Downloads 39126370 Analysis on the Need of Engineering Drawing and Feasibility Study on 3D Model Based Engineering Implementation
Authors: Parthasarathy J., Ramshankar C. S.
Abstract:
Engineering drawings these days play an important role in every part of an industry. By and large, Engineering drawings are influential over every phase of the product development process. Traditionally, drawings are used for communication in industry because they are the clearest way to represent the product manufacturing information. Until recently, manufacturing activities were driven by engineering data captured in 2D paper documents or digital representations of those documents. The need of engineering drawing is inevitable. Still Engineering drawings are disadvantageous in re-entry of data throughout manufacturing life cycle. This document based approach is prone to errors and requires costly re-entry of data at every stage in the manufacturing life cycle. So there is a requirement to eliminate Engineering drawings throughout product development process and to implement 3D Model Based Engineering (3D MBE or 3D MBD). Adopting MBD appears to be the next logical step to continue reducing time-to-market and improve product quality. Ideally, by fully applying the MBD concept, the product definition will no longer rely on engineering drawings throughout the product lifecycle. This project addresses the need of Engineering drawing and its influence in various parts of an industry and the need to implement the 3D Model Based Engineering with its advantages and the technical barriers that must be overcome in order to implement 3D Model Based Engineering. This project also addresses the requirements of neutral formats and its realisation in order to implement the digital product definition principles in a light format. In order to prove the concepts of 3D Model Based Engineering, the screw jack body part is also demonstrated. At ZF Windpower Coimbatore Limited, 3D Model Based Definition is implemented to Torque Arm (Machining and Casting), Steel tube, Pinion shaft, Cover, Energy tube.Keywords: engineering drawing, model based engineering MBE, MBD, CAD
Procedia PDF Downloads 43526369 Flood Hazard Impact Based on Simulation Model of Potential Flood Inundation in Lamong River, Gresik Regency
Authors: Yunita Ratih Wijayanti, Dwi Rahmawati, Turniningtyas Ayu Rahmawati
Abstract:
Gresik is one of the districts in East Java Province, Indonesia. Gresik Regency has three major rivers, namely Bengawan Solo River, Brantas River, and Lamong River. Lamong River is a tributary of Bengawan Solo River. Flood disasters that occur in Gresik Regency are often caused by the overflow of the Lamong River. The losses caused by the flood were very large and certainly detrimental to the affected people. Therefore, to be able to minimize the impact caused by the flood, it is necessary to take preventive action. However, before taking preventive action, it is necessary to have information regarding potential inundation areas and water levels at various points. For this reason, a flood simulation model is needed. In this study, the simulation was carried out using the Geographic Information System (GIS) method with the help of Global Mapper software. The approach used in this simulation is to use a topographical approach with Digital Elevation Models (DEMs) data. DEMs data have been widely used for various researches to analyze hydrology. The results obtained from this flood simulation are the distribution of flood inundation and water level. The location of the inundation serves to determine the extent of the flooding that occurs by referring to the 50-100 year flood plan, while the water level serves to provide early warning information. Both will be very useful to find out how much loss will be caused in the future due to flooding in Gresik Regency so that the Gresik Regency Regional Disaster Management Agency can take precautions before the flood disaster strikes.Keywords: flood hazard, simulation model, potential inundation, global mapper, Gresik Regency
Procedia PDF Downloads 8426368 Model-Independent Price Bounds for the Swiss Re Mortality Bond 2003
Authors: Raj Kumari Bahl, Sotirios Sabanis
Abstract:
In this paper, we are concerned with the valuation of the first Catastrophic Mortality Bond that was launched in the market namely the Swiss Re Mortality Bond 2003. This bond encapsulates the behavior of a well-defined mortality index to generate payoffs for the bondholders. Pricing this bond is a challenging task. We adapt the payoff of the terminal principal of the bond in terms of the payoff of an Asian put option and present an approach to derive model-independent bounds exploiting comonotonic theory. We invoke Jensen’s inequality for the computation of lower bounds and employ Lagrange optimization technique to achieve the upper bound. The success of these bounds is based on the availability of compatible European mortality options in the market. We carry out Monte Carlo simulations to estimate the bond price and illustrate the strength of these bounds across a variety of models. The fact that our bounds are model-independent is a crucial breakthrough in the pricing of catastrophic mortality bonds.Keywords: mortality bond, Swiss Re Bond, mortality index, comonotonicity
Procedia PDF Downloads 25026367 A Flipped Classroom Approach for Non Science Majors
Authors: Nidhi Gadura
Abstract:
To ensure student success in a non majors biology course, a flipped classroom pedagogical approach is developed and implemented. All students are assigned online lectures to listen to before they come to class. A three hour lecture is split into one hour of online component, one hour of in class lecture and one hour of worksheets done by students in the classroom. This deviation from a traditional 3 hour in class lecture has resulted in increased student interest in science as well as better understanding of difficult scientific concepts. A pre and post survey was given to measure the interest rates and grades were used to measure the success rates. While the overall grade average did not change dramatically, students reported a better appreciation of biology. Also, students overwhelmingly like the use of worksheets in class to help them understand the concepts. They liked the fact that they could listen to lectures at their own pace on line and even repeat if needed. The flipped classroom approach turned out to work really well our non science majors and the author is ready to implement this in other classrooms.Keywords: flipped classroom, non science majors, pedagogy, technological pedagogical model
Procedia PDF Downloads 41826366 Review on Quaternion Gradient Operator with Marginal and Vector Approaches for Colour Edge Detection
Authors: Nadia Ben Youssef, Aicha Bouzid
Abstract:
Gradient estimation is one of the most fundamental tasks in the field of image processing in general, and more particularly for color images since that the research in color image gradient remains limited. The widely used gradient method is Di Zenzo’s gradient operator, which is based on the measure of squared local contrast of color images. The proposed gradient mechanism, presented in this paper, is based on the principle of the Di Zenzo’s approach using quaternion representation. This edge detector is compared to a marginal approach based on multiscale product of wavelet transform and another vector approach based on quaternion convolution and vector gradient approach. The experimental results indicate that the proposed color gradient operator outperforms marginal approach, however, it is less efficient then the second vector approach.Keywords: gradient, edge detection, color image, quaternion
Procedia PDF Downloads 23426365 SiC Merged PiN and Schottky (MPS) Power Diodes Electrothermal Modeling in SPICE
Abstract:
This paper sets out a behavioral macro-model of a Merged PiN and Schottky (MPS) diode based on silicon carbide (SiC). This model holds good for both static and dynamic electrothermal simulations for industrial applications. Its parameters have been worked out from datasheets curves by drawing on the optimization method: Simulated Annealing (SA) for the SiC MPS diodes made available in the industry. The model also adopts the Analog Behavioral Model (ABM) of PSPICE in which it has been implemented. The thermal behavior of the devices was also taken into consideration by making use of Foster’ canonical network as figured out from electro-thermal measurement provided by the manufacturer of the device.Keywords: SiC MPS diode, electro-thermal, SPICE model, behavioral macro-model
Procedia PDF Downloads 40726364 An Interpretable Data-Driven Approach for the Stratification of the Cardiorespiratory Fitness
Authors: D.Mendes, J. Henriques, P. Carvalho, T. Rocha, S. Paredes, R. Cabiddu, R. Trimer, R. Mendes, A. Borghi-Silva, L. Kaminsky, E. Ashley, R. Arena, J. Myers
Abstract:
The continued exploration of clinically relevant predictive models continues to be an important pursuit. Cardiorespiratory fitness (CRF) portends clinical vital information and as such its accurate prediction is of high importance. Therefore, the aim of the current study was to develop a data-driven model, based on computational intelligence techniques and, in particular, clustering approaches, to predict CRF. Two prediction models were implemented and compared: 1) the traditional Wasserman/Hansen Equations; and 2) an interpretable clustering approach. Data used for this analysis were from the 'FRIEND - Fitness Registry and the Importance of Exercise: The National Data Base'; in the present study a subset of 10690 apparently healthy individuals were utilized. The accuracy of the models was performed through the computation of sensitivity, specificity, and geometric mean values. The results show the superiority of the clustering approach in the accurate estimation of CRF (i.e., maximal oxygen consumption).Keywords: cardiorespiratory fitness, data-driven models, knowledge extraction, machine learning
Procedia PDF Downloads 28626363 Energy Efficient Assessment of Energy Internet Based on Data-Driven Fuzzy Integrated Cloud Evaluation Algorithm
Authors: Chuanbo Xu, Xinying Li, Gejirifu De, Yunna Wu
Abstract:
Energy Internet (EI) is a new form that deeply integrates the Internet and the entire energy process from production to consumption. The assessment of energy efficient performance is of vital importance for the long-term sustainable development of EI project. Although the newly proposed fuzzy integrated cloud evaluation algorithm considers the randomness of uncertainty, it relies too much on the experience and knowledge of experts. Fortunately, the enrichment of EI data has enabled the utilization of data-driven methods. Therefore, the main purpose of this work is to assess the energy efficient of park-level EI by using a combination of a data-driven method with the fuzzy integrated cloud evaluation algorithm. Firstly, the indicators for the energy efficient are identified through literature review. Secondly, the artificial neural network (ANN)-based data-driven method is employed to cluster the values of indicators. Thirdly, the energy efficient of EI project is calculated through the fuzzy integrated cloud evaluation algorithm. Finally, the applicability of the proposed method is demonstrated by a case study.Keywords: energy efficient, energy internet, data-driven, fuzzy integrated evaluation, cloud model
Procedia PDF Downloads 20226362 Numerical Modelling of Surface Waves Generated by Low Frequency Electromagnetic Field for Silicon Refinement Process
Authors: V. Geza, J. Vencels, G. Zageris, S. Pavlovs
Abstract:
One of the most perspective methods to produce SoG-Si is refinement via metallurgical route. The most critical part of this route is refinement from boron and phosphorus. Therefore, a new approach could address this problem. We propose an approach of creating surface waves on silicon melt’s surface in order to enlarge its area and accelerate removal of boron via chemical reactions and evaporation of phosphorus. A two dimensional numerical model is created which includes coupling of electromagnetic and fluid dynamic simulations with free surface dynamics. First results show behaviour similar to experimental results from literature.Keywords: numerical modelling, silicon refinement, surface waves, VOF method
Procedia PDF Downloads 252