Search results for: 99.95% IoT data transmission savings
15810 A Parallel Computation Based on GPU Programming for a 3D Compressible Fluid Flow Simulation
Authors: Sugeng Rianto, P.W. Arinto Yudi, Soemarno Muhammad Nurhuda
Abstract:
A computation of a 3D compressible fluid flow for virtual environment with haptic interaction can be a non-trivial issue. This is especially how to reach good performances and balancing between visualization, tactile feedback interaction, and computations. In this paper, we describe our approach of computation methods based on parallel programming on a GPU. The 3D fluid flow solvers have been developed for smoke dispersion simulation by using combinations of the cubic interpolated propagation (CIP) based fluid flow solvers and the advantages of the parallelism and programmability of the GPU. The fluid flow solver is generated in the GPU-CPU message passing scheme to get rapid development of haptic feedback modes for fluid dynamic data. A rapid solution in fluid flow solvers is developed by applying cubic interpolated propagation (CIP) fluid flow solvers. From this scheme, multiphase fluid flow equations can be solved simultaneously. To get more acceleration in the computation, the Navier-Stoke Equations (NSEs) is packed into channels of texel, where computation models are performed on pixels that can be considered to be a grid of cells. Therefore, despite of the complexity of the obstacle geometry, processing on multiple vertices and pixels can be done simultaneously in parallel. The data are also shared in global memory for CPU to control the haptic in providing kinaesthetic interaction and felling. The results show that GPU based parallel computation approaches provide effective simulation of compressible fluid flow model for real-time interaction in 3D computer graphic for PC platform. This report has shown the feasibility of a new approach of solving the compressible fluid flow equations on the GPU. The experimental tests proved that the compressible fluid flowing on various obstacles with haptic interactions on the few model obstacles can be effectively and efficiently simulated on the reasonable frame rate with a realistic visualization. These results confirm that good performances and balancing between visualization, tactile feedback interaction, and computations can be applied successfully.Keywords: CIP, compressible fluid, GPU programming, parallel computation, real-time visualisation
Procedia PDF Downloads 43215809 ANDASA: A Web Environment for Artistic and Cultural Data Representation
Authors: Carole Salis, Marie F. Wilson, Fabrizio Murgia, Cristian Lai, Franco Atzori, Giulia M. Orrù
Abstract:
ANDASA is a knowledge management platform for the capitalization of knowledge and cultural assets for the artistic and cultural sectors. It was built based on the priorities expressed by the participating artists. Through mapping artistic activities and specificities, it enables to highlight various aspects of the artistic research and production. Such instrument will contribute to create networks and partnerships, as it enables to evidentiate who does what, in what field, using which methodology. The platform is accessible to network participants and to the general public.Keywords: cultural promotion, knowledge representation, cultural maping, ICT
Procedia PDF Downloads 42615808 Measures of Corporate Governance Efficiency on the Quality Level of Value Relevance Using IFRS and Corporate Governance Acts: Evidence from African Stock Exchanges
Authors: Tchapo Tchaga Sophia, Cai Chun
Abstract:
This study measures the efficiency level of corporate governance to improve the quality level of value relevance in the resolution of market value efficiency increase issues, transparency problems, risk frauds, agency problems, investors' confidence, and decision-making issues using IFRS and Corporate Governance Acts (CGA). The final sample of this study contains 3660 firms from ten countries' stock markets from 2010 to 2020. Based on the efficiency market theory and the positive accounting theory, this paper uses multiple econometrical methods (DID method, multivariate and univariate regression methods) and models (Ohlson model and compliance index model) regression to see the incidence results of corporate governance mechanisms on the value relevance level under the influence of IFRS and corporate governance regulations act framework in Africa's stock exchanges for non-financial firms. The results on value relevance show that the corporate governance system, strengthened by the adoption of IFRS and enforcement of new corporate governance regulations, produces better financial statement information when its compliance level is high. And that is both value-relevant and comparable to results in more developed markets. Similar positive and significant results were obtained when predicting future book value per share and earnings per share through the determination of stock price and stock return. The findings of this study have important implications for regulators, academics, investors, and other users regarding the effects of IFRS and the Corporate Governance Act (CGA) on the relationship between corporate governance and accounting information relevance in the African stock market. The contributions of this paper are also based on the uniqueness of the data used in this study. The unique data is from Africa, and not all existing findings provide evidence for Africa and of the DID method used to examine the relationship between corporate governance and value relevance on African stock exchanges.Keywords: corporate governance value, market efficiency value, value relevance, African stock market, stock return-stock price
Procedia PDF Downloads 5715807 Factors Affecting Online Tourism Services in Israel
Authors: Shlomit Hon-Snir, Shosh Shahrabai, Sharon Teitler Regev, Anabel Friedlander-Lifszyc
Abstract:
Today, online travel sites account for a large share of the orders for tourism services, leading to the expectation that many traditional travel agencies will become redundant in the future. Technological changes are offering customers a wider variety and better prices, and the improved competition in the industry has increased customer well-being significantly. Therefore, the question is whether all customers can enjoy this change, specifically whether different groups in the Israeli population enjoy the changes similarly. The purpose of this study is to identify the factors that affect the collection of data and the purchase of tourism products online and in particular to identify the barriers and limitations of technology usage among the population. The results of the current research are of great importance both economically and socially. The theory of Reasoned Action assumes that actual behavior is based on intention. Volitional behavior is predicted by individuals' attitudes to that behavior and by the way they think other people will look at them. Two cognitive variables regarding the use of technology are: perceived usefulness and perceived ease-of-use. Moreover, early adopters of innovations have different characteristics than people that adopt an innovation at a later stage. In the study, we analyze four groups of factors: Customer characteristics, internet usage, technology acceptance and product characteristics. Some of the parameters are gender, age, income level, frequency and type of internet use, proficiency in English, traveler type, number of trips abroad, perceived ease of use, perceived usefulness, perceived risk, perceived trust and product type. We investigate online purchasing and online information search separately. Data will be collected using an online questionnaire distributed among a representative sample of 600 citizens in Israel. Some of the research questions will be based on previous research studies (that underwent reliability and validity testing). Those questions will be translated into Hebrew and adjusted for the tested population.Keywords: customer characteristics, online travel sites, technology acceptance, tourism
Procedia PDF Downloads 20015806 Climate Change Scenario Phenomenon in Malaysia: A Case Study in MADA Area
Authors: Shaidatul Azdawiyah Abdul Talib, Wan Mohd Razi Idris, Liew Ju Neng, Tukimat Lihan, Muhammad Zamir Abdul Rasid
Abstract:
Climate change has received great attention worldwide due to the impact of weather causing extreme events. Rainfall and temperature are crucial weather components associated with climate change. In Malaysia, increasing temperatures and changes in rainfall distribution patterns lead to drought and flood events involving agricultural areas, especially rice fields. Muda Agricultural Development Authority (MADA) is the largest rice growing area among the 10 granary areas in Malaysia and has faced floods and droughts in the past due to changing climate. Changes in rainfall and temperature patter affect rice yield. Therefore, trend analysis is important to identify changes in temperature and rainfall patterns as it gives an initial overview for further analysis. Six locations across the MADA area were selected based on the availability of meteorological station (MetMalaysia) data. Historical data (1991 to 2020) collected from MetMalaysia and future climate projection by multi-model ensemble of climate model from CMIP5 (CNRM-CM5, GFDL-CM3, MRI-CGCM3, NorESM1-M and IPSL-CM5A-LR) have been analyzed using Mann-Kendall test to detect the time series trend, together with standardized precipitation anomaly, rainfall anomaly index, precipitation concentration index and temperature anomaly. Future projection data were analyzed based on 3 different periods; early century (2020 – 2046), middle century (2047 – 2073) and late-century (2074 – 2099). Results indicate that the MADA area does encounter extremely wet and dry conditions, leading to drought and flood events in the past. The Mann-Kendall (MK) trend analysis test discovered a significant increasing trend (p < 0.05) in annual rainfall (z = 0.40; s = 15.12) and temperature (z = 0.61; s = 0.04) during the historical period. Similarly, for both RCP 4.5 and RCP 8.5 scenarios, a significant increasing trend (p < 0.05) was found for rainfall (RCP 4.5: z = 0.15; s = 2.55; RCP 8.5: z = 0.41; s = 8.05;) and temperature (RCP 4.5: z = 0.84; s = 0.02; RCP 8.5: z = 0.94; s = 0.05). Under the RCP 4.5 scenario, the average temperature is projected to increase up to 1.6 °C in early century, 2.0 °C in the middle century and 2.4 °C in the late century. In contrast, under RCP 8.5 scenario, the average temperature is projected to increase up to 1.8 °C in the early century, 3.1 °C in the middle century and 4.3 °C in late century. Drought is projected to occur in 2038 and 2043 (early century); 2052 and 2069 (middle century); and 2095, 2097 to 2099 (late century) under RCP 4.5 scenario. As for RCP 8.5 scenario, drought is projected to occur in 2021, 2031 and 2034 (early century); and 2069 (middle century). No drought is projected to occur in the late century under the RCP 8.5 scenario. Thus, this information can be used for the analysis of the impact of climate change scenarios on rice growth and yield besides other crops found in MADA area. Additionally, this study, it would be helpful for researchers and decision-makers in developing applicable adaptation and mitigation strategies to reduce the impact of climate change.Keywords: climate projection, drought, flood, rainfall, RCP 4.5, RCP 8.5, temperature
Procedia PDF Downloads 7715805 A Computerized Tool for Predicting Future Reading Abilities in Pre-Readers Children
Authors: Stephanie Ducrot, Marie Vernet, Eve Meiss, Yves Chaix
Abstract:
Learning to read is a key topic of debate today, both in terms of its implications on school failure and illiteracy and regarding what are the best teaching methods to develop. It is estimated today that four to six percent of school-age children suffer from specific developmental disorders that impair learning. The findings from people with dyslexia and typically developing readers suggest that the problems children experience in learning to read are related to the preliteracy skills that they bring with them from kindergarten. Most tools available to professionals are designed for the evaluation of child language problems. In comparison, there are very few tools for assessing the relations between visual skills and the process of learning to read. Recent literature reports that visual-motor skills and visual-spatial attention in preschoolers are important predictors of reading development — the main goal of this study aimed at improving screening for future reading difficulties in preschool children. We used a prospective, longitudinal approach where oculomotor processes (assessed with the DiagLECT test) were measured in pre-readers, and the impact of these skills on future reading development was explored. The dialect test specifically measures the online time taken to name numbers arranged irregularly in horizontal rows (horizontal time, HT), and the time taken to name numbers arranged in vertical columns (vertical time, VT). A total of 131 preschoolers took part in this study. At Time 0 (kindergarten), the mean VT, HT, errors were recorded. One year later, at Time 1, the reading level of the same children was evaluated. Firstly, this study allowed us to provide normative data for a standardized evaluation of the oculomotor skills in 5- and 6-year-old children. The data also revealed that 25% of our sample of preschoolers showed oculomotor impairments (without any clinical complaints). Finally, the results of this study assessed the validity of the DiagLECT test for predicting reading outcomes; the better a child's oculomotor skills are, the better his/her reading abilities will be.Keywords: vision, attention, oculomotor processes, reading, preschoolers
Procedia PDF Downloads 14715804 Research on Teachers’ Perceptions on the Usability of Classroom Space: Analysis of a Nation-Wide Questionnaire Survey in Japan
Authors: Masayuki Mori
Abstract:
This study investigates the relationship between teachers’ perceptions of the usability of classroom space and various elements, including both physical and non-physical, of classroom environments. With the introduction of the GIGA School funding program in Japan in 2019, understanding its impact on learning in classroom space is crucial. The program enabled local educational authorities (LEA) to make it possible to provide one PC/tablet for each student of both elementary and junior high schools. Moreover, at the same time, the program also supported LEA to purchase other electronic devices for educational purposes such as electronic whiteboards, large displays, and real image projectors. A nationwide survey was conducted using random sampling methodology among 100 junior high schools to collect data on classroom space. Of those, 60 schools responded to the survey. The survey covered approximately fifty items, including classroom space size, class size, and educational electronic devices owned. After the data compilation, statistical analysis was used to identify correlations between the variables and to explore the extent to which classroom environment elements influenced teachers’ perceptions. Furthermore, decision tree analysis was applied to visualize the causal relationships between the variables. The findings indicate a significant negative correlation between class size and teachers’ evaluation of usability. In addition to the class size, the way students stored their belongings also influenced teachers’ perceptions. As for the placement of educational electronic devices, the installation of a projector produced a small negative correlation with teachers’ perceptions. The study suggests that while the GIGA School funding program is not significantly influential, traditional educational conditions such as class size have a greater impact on teachers’ perceptions of the usability of classroom space. These results highlight the need for awareness and strategies to integrate various elements in designing the learning environment of the classroom for teachers and students to improve their learning experience.Keywords: classroom space, GIGA School, questionnaire survey, teachers’ perceptions
Procedia PDF Downloads 2115803 Roots of Terror in Pakistan: Analyzing the Effects of Education and Economic Deprivation on Incidences of Terrorism
Authors: Laraib Niaz
Abstract:
This paper analyzes the ways in which education and economic deprivation are linked to terrorism in Pakistan using data for terrorist incidents from the Global Terrorism Database (GTD). It employs the technique of negative binomial regression for the years between 1990 and 2013, presenting evidence for a positive association between education and terrorism. Conversely, a negative correlation with economic deprivation is signified in the results. The study highlights the element of radicalization as witnessed in the curriculum and textbooks of public schools as a possible reason for extremism, which in turn may lead to terrorism.Keywords: education, Pakistan, terrorism, poverty
Procedia PDF Downloads 38815802 Physics Informed Deep Residual Networks Based Type-A Aortic Dissection Prediction
Abstract:
Purpose: Acute Type A aortic dissection is a well-known cause of extremely high mortality rate. A highly accurate and cost-effective non-invasive predictor is critically needed so that the patient can be treated at earlier stage. Although various CFD approaches have been tried to establish some prediction frameworks, they are sensitive to uncertainty in both image segmentation and boundary conditions. Tedious pre-processing and demanding calibration procedures requirement further compound the issue, thus hampering their clinical applicability. Using the latest physics informed deep learning methods to establish an accurate and cost-effective predictor framework are amongst the main goals for a better Type A aortic dissection treatment. Methods: Via training a novel physics-informed deep residual network, with non-invasive 4D MRI displacement vectors as inputs, the trained model can cost-effectively calculate all these biomarkers: aortic blood pressure, WSS, and OSI, which are used to predict potential type A aortic dissection to avoid the high mortality events down the road. Results: The proposed deep learning method has been successfully trained and tested with both synthetic 3D aneurysm dataset and a clinical dataset in the aortic dissection context using Google colab environment. In both cases, the model has generated aortic blood pressure, WSS, and OSI results matching the expected patient’s health status. Conclusion: The proposed novel physics-informed deep residual network shows great potential to create a cost-effective, non-invasive predictor framework. Additional physics-based de-noising algorithm will be added to make the model more robust to clinical data noises. Further studies will be conducted in collaboration with big institutions such as Cleveland Clinic with more clinical samples to further improve the model’s clinical applicability.Keywords: type-a aortic dissection, deep residual networks, blood flow modeling, data-driven modeling, non-invasive diagnostics, deep learning, artificial intelligence.
Procedia PDF Downloads 8915801 Investigating University Students' Attitudes towards Infertility in Terms of Socio-Demographic Variables
Authors: Yelda Kağnıcı, Seçil Seymenler, Bahar Baran, Erol Esen, Barışcan Öztürk, Ender Siyez, Diğdem M. Siyez
Abstract:
Infertility is the inability to reproduce after twelve months or longer unprotected sexual relationship. Although infertility is not a life threatening illness, it is considered as a serious problem for both the individual and the society. At this point, the importance of examining attitudes towards infertility is critical. Negative attitudes towards infertility may postpone individuals’ help seeking behaviors. The aim of this study is to investigate university students’ attitudes towards infertility in terms of socio-demographic variables (gender, age, taking sexual health education, existence of an infertile individual in the social network, plans about having child and behaviors about health). The sample of the study was 9693 university students attending to 21 universities in Turkey. Of the 9693 students, % 51.6 (n = 5002) were female, % 48.4 (n = 4691) were male. The data was collected by Attitudes toward Infertility Scale developed by researchers and Personal Information Form. In data analysis first frequencies were calculated, then in order to test whether there were significant differences in attitudes towards infertility scores of university students in terms of socio-demographic variables, one way ANOVA was conducted. According to the results, it was found that female students, students who had sexual health education, who have sexual relationship experience, who have an infertile individual in their social networks, who have child plans, who have high caffeine usage and who use alcohol regularly have more positive attitudes towards infertility. On the other hand, attitudes towards infidelity did not show significant differences in terms of age and cigarette usage. When the results of the study were evaluated in general, it was seen that university students’ attitudes towards infertility were negative. The attitudes of students who have high caffeine and alcohols usage were high. It can be considered that these students are aware that their social habits are risky. Female students’ positive attitudes might be explained by their gender role. The results point out that in order to decrease university students’ negative attitudes towards infertility, there is a necessity to develop preventive programs in universities.Keywords: infertility, attitudes, sex, university students
Procedia PDF Downloads 24715800 Computer Software for Calculating Electron Mobility of Semiconductors Compounds; Case Study for N-Gan
Authors: Emad A. Ahmed
Abstract:
Computer software to calculate electron mobility with respect to different scattering mechanism has been developed. This software is adopted completely Graphical User Interface (GUI) technique and its interface has been designed by Microsoft Visual Basic 6.0. As a case study the electron mobility of n-GaN was performed using this software. The behaviour of the mobility for n-GaN due to elastic scattering processes and its relation to temperature and doping concentration were discussed. The results agree with other available theoretical and experimental data.Keywords: electron mobility, relaxation time, GaN, scattering, computer software, computation physics
Procedia PDF Downloads 67115799 Assessment of the Masticatory Muscle Function in Young Adults Following SARS-CoV-2 Infection
Authors: Mimoza Canga, Edit Xhajanka, Irene Malagnino
Abstract:
The COVID-19 pandemic has had a significant influence on the lives of millions of people and is a threat to public health. SARS-CoV-2 infection has been associated with a number of health problems, including damage to the lungs and central nervous system damage. Additionally, it can also cause oral health problems, such as pain and weakening of the chewing muscles. The purpose of the study is the assessment of the masticatory muscle function in young adults between 18 and 29 years old following SARS-CoV-2 infection. Materials and methods: This study is quantitative cross-sectional research conducted in Albania between March 2023 and September 2023. Our research involved a total of 104 students who participated in our research, of which 64 were female (61.5%) and 40 were male (38.5%). They were divided into four age groups: 18-20, 21-23, 24-26, and 27-29 years old. In this study, the students willingly consented to take part in this study and were guaranteed that their participation would remain anonymous. The study recorded no dropouts, and it was carried out in compliance with the Declaration of Helsinki. Statistical analysis was conducted using IBM SPSS Statistics Version 23.0 on Microsoft Windows Linux, Chicago, IL, USA. Data were evaluated utilizing analysis of variance (ANOVA), with a significance level set at P ≤ 0.05. Results: 80 (76.9%) of the participants who had passed COVID-19 reported chronic masticatory muscle pain (P < 0.0001) and masticatory muscle spasms (P = 0.002). According to data analysis, 70 (67.3%) of the participants had a sore throat (P=0.007). 74% of the students reported experiencing weakness in their chewing muscles (P=0.003). The participants reported having undergone the following treatments: azithromycin (500 mg daily), prednisolone sodium phosphate (15 mg/5 mL daily), Augmentin tablets (625 mg), vitamin C (1000 mg), magnesium sulfate (4 g/100 mL), oral vitamin D3 supplementation of 5000 IU daily, ibuprofen (400 mg every 6 hours), and tizanidine (2 mg every 6 hours). Conclusion: This study, conducted in Albania, has limitations, but it can be concluded that COVID-19 directly affects the functioning of the masticatory muscles.Keywords: Albania, chronic pain, COVID-19, cross-sectional study, masticatory muscles, spasm
Procedia PDF Downloads 2715798 The Decision to Remit is a Matter of Interpersonal Trust
Authors: Kamal Kasmaoui, Farid Makhlouf
Abstract:
This article seeks to assess the role of the level of interpersonal trust in a country in the remittance landscape. Using historical data from the 2010-2014 wave of the World Value Survey (WVS) for interpersonal trust, our findings underline the substitution role played by the interpersonal trust with remittances. More accurately, remittances tend to drop when the rate of interpersonal trust in the country of origin is high. Overall, a rise in trust is likely to underpin social cohesion, limiting, therefore, the need for remittances. These results are still fairly solid and unambiguous after controlling for confounding factors and possible reverse causality.Keywords: interpersonal trust, social capital, remittances, 2SLS
Procedia PDF Downloads 17415797 Kidney Stones in Individuals Living with Diabetes Mellitus at King Abdul-Aziz Medical City - Tertiary Care Center, Jeddah, Saudi Arabia: A Retrospective Cohort Study
Authors: Suhaib Radi, Ibrahim Basem Nafadi, Abdullah Ahmed Alsulami, Nawaf Faisal Halabi, Abdulrhman Abdullah Alsubhi, Sami Wesam Maghrabi, Waleed Saad Alshehri
Abstract:
Background: Kidney stones greatly affect individuals. The range of these effects regarding multiple kidney stone factors (size, presence of obstruction, and modality of treatment) in stone formers with and without diabetes has not been well explored in the literature to the best of the author's knowledge. Our goal is to investigate this unexplored correlation between diabetes and kidney stones by conducting a Cohort retrospective study to precisely evaluate the effects of this condition and the existence of complications in adult individuals with diabetes in Saudi Arabia in comparison to a non-diabetic control group. Methodology: This is a retrospective cohort study aiming to evaluate the range of effects of kidney stones in stone formers in a group of adults diagnosed with type 2 diabetes mellitus and adults without diabetes between 2017 and 2019 in Jeddah, Saudi Arabia. An IRB approval has been granted for this study. The data was analyzed using SPSS. The data was collected from the 1st of December 2022 until the 1st of March 2023. Results: A total of 254 individuals diagnosed with kidney stones were included, 127 of whom were adult individuals with type 2 diabetes, and 127 were non-diabetics. Our study shows that the individuals affected with diabetes were more likely to have larger kidney stones in comparison to individuals without diabetes (13.12 mm vs. 10.53 mm, p-value = 0.03). Moreover, individuals with hypertension and dyslipidemia also had significantly larger stones. On the other hand, no significant difference was found in the presence of obstruction and modality of treatment between the two groups. Conclusion: This study done in Saudi Arabia found that individuals with kidney stones who concurrently had diabetes formed larger kidney stones, and they were also found to have other comorbidities such as HTN, dyslipidemia, obesity, and renal disease. The significance of these findings could assist in the future of primary and secondary prevention of renal stones.Keywords: kidney stone, type 2 DM, metabolic syndrome, lithotripsy
Procedia PDF Downloads 11115796 The Role of Gender in Influencing Public Speaking Anxiety
Authors: Fadil Elmenfi, Ahmed Gaibani
Abstract:
This study investigates the role of gender in influencing public speaking anxiety. Questionnaire survey was administered to the samples of the study. Technique of correlation and descriptive analysis will be further applied to the data collected to determine the relationship between gender and public speaking anxiety. This study could serve as a guide to identify the effects of gender differences on public speaking anxiety and provide necessary advice on how to design a way of coping with or overcoming public speaking anxiety.Keywords: across culture, communication, English language competence, gender, postgraduate students, speaking anxiety
Procedia PDF Downloads 56115795 Beyond Information Failure and Misleading Beliefs in Conditional Cash Transfer Programs: A Qualitative Account of Structural Barriers Explaining Why the Poor Do Not Invest in Human Capital in Northern Mexico
Authors: Francisco Fernandez de Castro
Abstract:
The Conditional Cash Transfer (CCT) model gives monetary transfers to beneficiary families on the condition that they take specific education and health actions. According to the economic rationale of CCTs the poor need incentives to invest in their human capital because they are trapped by a lack of information and misleading beliefs. If left to their own decision, the poor will not be able to choose what is in their best interests. The basic assumption of the CCT model is that the poor need incentives to take care of their own education and health-nutrition. Due to the incentives (income cash transfers and conditionalities), beneficiary families are supposed to attend doctor visits and health talks. Children would stay in the school. These incentivized behaviors would produce outcomes such as better health and higher level of education, which in turn will reduce poverty. Based on a grounded theory approach to conduct a two-year period of qualitative data collection in northern Mexico, this study shows that this explanation is incomplete. In addition to the information failure and inadequate beliefs, there are structural barriers in everyday life of households that make health-nutrition and education investments difficult. In-depth interviews and observation work showed that the program takes for granted local conditions in which beneficiary families should fulfill their co-responsibilities. Data challenged the program’s assumptions and unveiled local obstacles not contemplated in the program’s design. These findings have policy and research implications for the CCT agenda. They bring elements for late programming due to the gap between the CCT strategy as envisioned by policy designers, and the program that beneficiary families experience on the ground. As for research consequences, these findings suggest new avenues for scholarly work regarding the causal mechanisms and social processes explaining CCT outcomes.Keywords: conditional cash transfers, incentives, poverty, structural barriers
Procedia PDF Downloads 11315794 An Artificial Intelligence Framework to Forecast Air Quality
Authors: Richard Ren
Abstract:
Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms
Procedia PDF Downloads 12715793 Drawbacks of Second Generation Urban Re-Development in Addis Ababa
Authors: Ezana Haddis Weldeghebrael
Abstract:
Addis Ababa City Administration is engaged in a massive facelift of the inner-city. The paper, therefore, aims to analyze the challenges of the current urban regeneration effort by paying special attention to Lideta and Basha Wolde Chilot projects. To this end, the paper has adopted a documentary research strategy to collect the data and Institutionalist perspective as well as the concept of urban regeneration to analyze the data. The sources were selected based on relevance and recency. Academic research outputs were used primarily. However, where much scholastic publications are not available institutional reports, newspaper articles, and expert presentations were used. The major findings of the research revealed that although the second generation of urban redevelopment projects have attempted to involve affected groups and succeeded in designing better neighborhoods, they are riddled with three major drawbacks. The first one is institutional constraints, i.e. absence of urban redevelopment strategy as well as housing policy, broad definition of ‘public purpose’, little regard for informal businesses, limitation on rights groups, negotiation power not devolved at sub-city level and no plan for groups that cannot afford to pay the down payment for low-cost apartments. The second one is planning limitation, i.e. absence of genuine affected group participation as well as consultative level of public engagement. The third one is implementation failure, i.e. no regard to maintaining social bond, non-participatory and ill-informed resettlement, interference from senior government officials, failure to protect the poor from speculators, corruption and disregard to heritage buildings. Based on the findings, the paper concluded that the current inner-city redevelopment has failed to be socially sustainable and calls for enactment of housing policy as well as redevelopment strategy, affected group participation, on-site resettlement, empowering the Sub-city to manage the project and allowing housing rights groups to advocate for the poor slum dwellers.Keywords: participation, redevelopment, planning, implementation, consultation
Procedia PDF Downloads 42715792 Identification of Shark Species off The Nigerian Coast Using DNA Barcoding
Authors: O. O. Fola-Matthews, O. O. Soyinka, D. N. Bitalo
Abstract:
Nigeria is one of the major shark fishing nations in Africa, but its fisheries managers still record catch data in aggregates ‘sharks’ with no species-specific details. This is because most of the shark specimens look identical in morphology, and field identification of some closely related species is tricky. This study uses DNA barcoding as a method to identify shark species from five different landing areas off the Nigerian Coast. 100 dorsal fins were sampled in order to provide a Chondrichthyan sequence that would be matched to reference specimens in a DNA barcode databaseKeywords: BOLD, DNA barcoding, nigeria, sharks
Procedia PDF Downloads 16815791 Improving the Management of Delirium of Surgical Inpatients
Authors: Shammael Selorfia
Abstract:
The Quality improvement project aimed to improve junior doctors and nurses’ knowledge and confidence in diagnosing and managing delirium on inpatient surgical wards in a tertiary hospital. The study aimed to develop a standardised assessment and management checklist for all staff working with patients who were presenting with signs of delirium. The aim of the study was to increase confidence of staff at dealing with delirium and improve the quality of referrals that were being sent to the Mental Health Liaison team over a 6-month period. A significant proportion of time was being spent by the Mental Health Liaison triage nurses on referrals for delirium. Data showed 28% of all delirium referrals from surgical teams were being closed at triage reflecting a poor standard of quality of those referrals. A qualitative survey of junior doctors in 6 surgical specialties in a UK tertiary hospital was conducted. These specialties include general surgery, vascular, plastic, urology, neurosurgery, and orthopaedics. The standardised checklist was distributed to all surgical wards. A comparison was made between the Mental health team caseload of delirium before intervention was compared and after. A Qualitative survey at end of 3-month cycle and compare overall caseload on Mental Health Liaison team to pre-QIP data with aim to improve quality of referrals and reduce workload on Mental Health Liaison team. At the end of the project cycle, we demonstrated an improvement in the quality of referrals with a decrease in the percentage of referrals being closed at triage by 8%. Our surveys also indicated an increase in the knowledge of official trust delirium guidelines and confidence at managing the patients. This project highlights that a new approach to delirium using multi-component interventions is needed, where the diagnosis of delirium is shared amongst medical and nursing staff, and everyone plays role in management. The key is improving awareness of delirium and encouraging the use of recognized diagnostic tools and official guidelines. Recommendations were made to the trust on how to implement a long-lasting change.Keywords: delirium, surgery, quality, improvement
Procedia PDF Downloads 8115790 Clinical Empathy: The Opportunity to Offer Optimal Treatment to People with Serious Illness
Authors: Leonore Robieux, Franck Zenasni, Marc Pocard, Clarisse Eveno
Abstract:
Empirical data in health psychology studies show the necessity to consider the doctor-patient communication and its positive impact on outcomes such as patients’ satisfaction, treatment adherence, physical and psychological wellbeing. In this line, the present research aims to define the role and determinants of an effective doctor–patient communication during the treatment of patients with serious illness (peritoneal carcinomatosis). We carried out a prospective longitudinal study including patients treated for peritoneal carcinomatosis of various origins. From November 2016, to date, data were collected using validated questionnaires at two times of evaluation: one month before the surgery (T0) and one month after (T1). Thus, patients reported their (a) anxiety and depression levels, (b) standardized and individualized quality of life and (c) how they perceived communication, attitude and empathy of the surgeon. 105 volunteer patients (Mean age = 58.18 years, SD = 10.24, 62.2% female) participated to the study. PC arose from rare diseases (14%), colorectal (38%), eso-gastric (24%) and ovarian (8%) cancer. Three groups are defined according to the severity of their pathology and the treatment offered to them: (1) important surgical treatment with the goal of healing (53%), (2) repeated palliative surgical treatment (17%), and (3) the patients recused for surgical treatment, only palliative approach (30%). Results are presented according to Baron and Kenny recommendations. The regressions analyses show that only depression and anxiety are sensitive to the communication and empathy of surgeon. The main results show that a good communication and high level of empathy at T0 and T1 limit depression and anxiety of the patients in T1. Results also indicate that the severity of the disease modulates this positive impact of communication: better is the communication the less are the level of depression and anxiety of the patients. This effect is higher for patients treated for the more severe disease. These results confirm that, even in the case severe disease a good communication between patient and physician remains a significant factor in promoting the well-being of patients. More specific training need to be developed to promote empathic care.Keywords: clinical empathy, determinants, healthcare, psychological wellbeing
Procedia PDF Downloads 12215789 Language Skills in the Emergent Literacy of Spanish-Speaking Children with Autism Spectrum Disorders
Authors: Adriana Salgado, Sandra Castaneda, Ivan Perez
Abstract:
Learning to read and write is a complex process involving several cognitive skills, contextual, and cultural environments. The basis of this development is linguistic skills, such as the ability to name and understand vocabulary, retell a story, phonological awareness, letter knowledge, among others. In children with autism spectrum disorder (ASD), one of the main concerns is related to language disorders. Nevertheless, most of the children with ASD are able to decode written information but have difficulties in reading comprehension. The research of these processes in the Spanish-speaking population is limited. However, the increasing prevalence of this diagnosis (1 in 115 children) in Mexico has implications at different levels. Educational research is an important area of interest in ASD children, such as emergent literacy. Reading and writing expand the possibilities of academic, cultural, and social information access. Taking this information into account, the objective of this research was to identify the relationship between language skills, alphabet knowledge, phonological awareness, and early reading and writing in ASD Spanish-speaking children. The method used for this research was based on tasks that were selected, adapted and in some cases designed to measure initial reading and writing, as well as language skills (naming, receptive vocabulary, and narrative skills), phonological awareness (similar phonological word pairs, beginning sound awareness and spelling) and letter knowledge, in a sample of 45 children (38 boys and 7 girls) with prior diagnosis of ASD. Descriptive analyses, as well as bivariate correlations, cluster analysis, and canonical correspondence, were obtained for the data results. Results showed that variability was large; however, it was possible to characterize the sample in low, medium, and high score groups regarding children performance. The low score group (46.7% of the sample), had a null or deficient performance in language skills and phonological awareness, some could identify up to five letters of the alphabet, showed no early reading skills but they could scribble. The middle score group was characterized by a highly variable performance in different tasks, with better language skills in receptive and naming vocabulary, some narrative, letter knowledge, and phonological awareness (beginning sound awareness) skills. The high score group, (24.4% of the sample) had the best performance in language skills in relation to the sample data, as well as in the rest of the measured skills. Finally, scores were canonically correlated between naming, receptive vocabulary, narrative, phonological awareness, letter knowledge and initial learning of reading and writing skills for the high score group and letter knowledge, naming and receptive vocabulary for the lower score group, which is consistent with previous research in typical and ASD children. In conclusion, the obtained data is consistent with previous studies. Despite large variability, it was possible to identify performance profiles and relations based on linguistic, phonological awareness, and letter knowledge skills. These skills were predictor variables of the initial development of reading and writing. The above has implications for a future program and strategies development that may benefit the acquisition of reading and writing in ASD children.Keywords: autism, autism spectrum disorders, early literacy, emergent literacy
Procedia PDF Downloads 14415788 COVID-19 in Nigeria: An external Analysis from the perspective of social media
Authors: Huseyin Arasli, Maryam Abdullahi, Tugrul Gunay
Abstract:
One of the prominence elements used by the destination marketing organization (DMO) as a marketing strategy is the application of Social media tools. During the current spread of coronavirus disease (COVID-19), travel restriction was placed in most countries of the world, leading to the closure of borders movement. It should be noted that most tourism travelers depend on social media to obtain and exchange different kinds of information about COVID-19 in an unprecedented scale. The situational information people received is valued, which calls for the response of the tourism industry on the epidemic. Therefore, it is highly important to recognize such situational information and to understand how people spread this propaganda on social media platforms so that suitable information that relates the COVID-19 epidemic is available in a manner that will not tarnish the marketing strategies, festival planners. Data for this research study was collected from the desk review, which is a secondary source data, online blogs, and interview through social media chat. The results of this research show that the widespread of COVID-19 pandemics led to rapid lockdown in states and cities all over Nigeria, causing declining demands in hotels, airlines, recreation, and tourism centers. Additionally, billions of dollars lost has been recorded in the high increase of hotels and travel bookings cancellations which caused hundreds and thousands of job loss in the country. The result of this research also revealed that COVID-19 is causing more havoc on the unemployment rate indices of the country. Similarly, the over-dependence of government on petroleum has further caused considerable revenue loss, thereby raising a high poverty rate among less privileged Nigerians. Based on this result, the study suggested that there is an urgent need for the government to diversify its economy by looking at other different sectors such as tourism and agricultural farm produce to harmonize other commercial trades sectors in the country.Keywords: social media, destination marketing organizations, DMOs, cultural COVID-19, coronavirus, hospitality, travel tour, tourism
Procedia PDF Downloads 9815787 Entrepreneurial Intention and Social Entrepreneurship among Students in Malaysian Higher Education
Authors: Radin Siti Aishah Radin A Rahman, Norasmah Othman, Zaidatol Akmaliah Lope Pihie, Hariyaty Ab. Wahid
Abstract:
The recent instability in economy was found to be influencing the situation in Malaysia whether directly or indirectly. Taking that into consideration, the government needs to find the best approach to balance its citizen’s socio-economic strata level urgently. Through education platform is among the efforts planned and acted upon for the purpose of balancing the effects of the influence, through the exposure of social entrepreneurial activity towards youth especially those in higher institution level. Armed with knowledge and skills that they gained, with the support by entrepreneurial culture and environment while in campus; indirectly, the students will lean more on making social entrepreneurship as a career option when they graduate. Following the issues of marketability and workability of current graduates that are becoming dire, research involving how far the willingness of student to create social innovation that contribute to the society without focusing solely on personal gain is relevant enough to be conducted. With that, this research is conducted with the purpose of identifying the level of entrepreneurial intention and social entrepreneurship among higher institution students in Malaysia. Stratified random sampling involves 355 undergraduate students from five public universities had been made as research respondents and data were collected through surveys. The data was then analyzed descriptively using min score and standard deviation. The study found that the entrepreneurial intention of higher education students are on moderate level, however it is the contrary for social entrepreneurship activities, where it was shown on a high level. This means that while the students only have moderate level of willingness to be a social entrepreneur, they are very committed to created social innovation through the social entrepreneurship activities conducted. The implication from this study can be contributed towards the higher institution authorities in prediction the tendency of student in becoming social entrepreneurs. Thus, the opportunities and facilities for realizing the courses related to social entrepreneurship must be created expansively so that the vision of creating as many social entrepreneurs as possible can be achieved.Keywords: entrepreneurial intention, higher education institutions (HEIs), social entrepreneurship, social entrepreneurial activity, gender
Procedia PDF Downloads 26215786 Tillage and Intercropping Effects on Growth and Yield of Groundnut in Maize/Groundnut Cropping System
Authors: Oyewole Charles Iledun, Shuaib Harira, Ezeogueri-Oyewole Anne Nnenna
Abstract:
Due to high population pressure/human activities competing for agricultural land, the need to maximize the productivity of available land has become necessary; this has not been achievable in the tropics with monoculture systems where a single harvest per season is the practice. Thus, this study evaluates intercropping combination and tillage practice on yield and yield components of groundnut in a mixture with maize. The trial was conducted in the rainy seasons of 2020 and 2021 at the Kogi State University Students’ Research and Demonstration Farm, Latitude 70 301 and Longitude 70 091 E in the Southern Guinea Savannah agro-ecological zone of Nigeria. Treatment consisted of three tillage practices [as main plot factor] and five intercropping combinations [subplot factor] assigned to a 3 x 5 Factorial experiment replicated four times. Data were collected for growth, development, yield components, and yield of groundnut. Data collected were subjected to Statistical Analysis in line with Factorial Experiments. Means found to be statistically significant at 5 % probability were separated using the LSD method. Regarding yield components and yield related parameters in groundnuts, better performance was observed in cole cropped groundnut plots compared to the intercropped plots. However, intercropping groundnut with maize was generally advantageous, with LER greater than unity. Among the intercrops, the highest LERs were observed when one row of maize was cropped with one row of groundnut, with the least LER recorded in intercropping two rows of maize with one row of groundnut. For the tillage operations, zero tillage gave the highest LERs in both seasons, while the least LERs were recorded when the groundnut was planted on ridges. Since the highest LERs were observed when one row of maize was intercropped with one row of groundnut, this level of crop combination is recommended for the study area, while ridging may not be necessary to get good groundnut yield, particularly under similar soil conditions as obtained in the experimental area, and with similar rainfall observed during the experimental period.Keywords: canopy height, leaf number, haulm yield / ha, pod yield / ha, harvest index and shelling percentage
Procedia PDF Downloads 2315785 Impact of Preksha Meditation on Academic Anxiety of Female Teenagers
Authors: Neelam Vats, Madhvi Pathak Pillai, Rajender Lal, Indu Dabas
Abstract:
The pressure of scoring higher marks to be able to get admission in a higher ranked institution has become a social stigma for school students. It leads to various social and academic pressures on them, causing psychological anxiety. This undue stress on students sometimes may even steer to aggressive behavior or suicidal tendencies. Human mind is always surrounded by the some desires, emotions and passions, which usually disturbs our mental peace. In such a scenario, we look for a solution that helps in removing all the obstacles of mind and make us mentally peaceful and strong enough to be able to deal with all kind of pressure. Preksha meditation is one such technique which aims at bringing the positive changes for overall transformation of personality. Hence, the present study was undertaken to assess the impact of Preksha Meditation on the academic anxiety on female teenagers. The study was conducted on 120 high school students from the capital city of India. All students were in the age group of 13-15 years. They also belonged to similar social as well as economic status. The sample was equally divided into two groups i.e. experimental group (N = 60) and control group (N = 60). Subjects of the experimental group were given the intervention of Preksha Meditation practice by the trained instructor for one hour per day, six days a week, for three months for the first experimental stage and another three months for the second experimental stage. The subjects of the control group were not assigned any specific type of activity rather they continued doing their normal official activities as usual. The Academic Anxiety Scale was used to collect data during multi-level stages i.e. pre-experimental stage, post-experimental stage phase-I, and post-experimental stage phase-II. The data were statistically analyzed by computing the two-tailed-‘t’ test for inter group comparison and Sandler’s ‘A’ test with alpha = or p < 0.05 for intra-group comparisons. The study concluded that the practice for longer duration of Preksha Meditation practice brings about very significant and beneficial changes in the pattern of academic anxiety.Keywords: academic anxiety, academic pressure, Preksha, meditation
Procedia PDF Downloads 13115784 Use of Multivariate Statistical Techniques for Water Quality Monitoring Network Assessment, Case of Study: Jequetepeque River Basin
Authors: Jose Flores, Nadia Gamboa
Abstract:
A proper water quality management requires the establishment of a monitoring network. Therefore, evaluation of the efficiency of water quality monitoring networks is needed to ensure high-quality data collection of critical quality chemical parameters. Unfortunately, in some Latin American countries water quality monitoring programs are not sustainable in terms of recording historical data or environmentally representative sites wasting time, money and valuable information. In this study, multivariate statistical techniques, such as principal components analysis (PCA) and hierarchical cluster analysis (HCA), are applied for identifying the most significant monitoring sites as well as critical water quality parameters in the monitoring network of the Jequetepeque River basin, in northern Peru. The Jequetepeque River basin, like others in Peru, shows socio-environmental conflicts due to economical activities developed in this area. Water pollution by trace elements in the upper part of the basin is mainly related with mining activity, and agricultural land lost due to salinization is caused by the extensive use of groundwater in the lower part of the basin. Since the 1980s, the water quality in the basin has been non-continuously assessed by public and private organizations, and recently the National Water Authority had established permanent water quality networks in 45 basins in Peru. Despite many countries use multivariate statistical techniques for assessing water quality monitoring networks, those instruments have never been applied for that purpose in Peru. For this reason, the main contribution of this study is to demonstrate that application of the multivariate statistical techniques could serve as an instrument that allows the optimization of monitoring networks using least number of monitoring sites as well as the most significant water quality parameters, which would reduce costs concerns and improve the water quality management in Peru. Main socio-economical activities developed and the principal stakeholders related to the water management in the basin are also identified. Finally, water quality management programs will also be discussed in terms of their efficiency and sustainability.Keywords: PCA, HCA, Jequetepeque, multivariate statistical
Procedia PDF Downloads 35515783 Prevalence and Risk Factors Associated with Nutrition Related Non-Communicable Diseases in a Cohort of Males in the Central Province of Sri Lanka
Authors: N. W. I. A. Jayawardana, W. A. T. A. Jayalath, W. M. T. Madhujith, U. Ralapanawa, R. S. Jayasekera, S. A. S. B. Alagiyawanna, A. M. K. R. Bandara, N. S. Kalupahana
Abstract:
There is mounting evidence to the effect that dietary and lifestyle changes affect the incidence of non-communicable diseases (NCDs). This study was conducted to investigate the association of diet, physical activity, smoking, alcohol consumption and duration of sleep with overweight, obesity, hypertension and diabetes in a cohort of males from the Central Province of Sri Lanka. A total of 2694 individuals aged between 17 – 68 years (Mean = 31) were included in the study. Body Mass Index cutoff values for Asians were used to categorize the participants as normal, overweight and obese. The dietary data were collected using a food frequency questionnaire [FFQ] and data on the level of physical activity, smoking, alcohol consumption and sleeping hours were obtained using a self-administered validated questionnaire. Systolic and diastolic blood pressure, random blood glucose levels were measured to determine the incidence of hypertension and diabetes. Among the individuals, the prevalence of overweight and obesity were 34% and 16.4% respectively. Approximately 37% of the participants suffered from hypertension. Overweight and obesity were associated with older age men (P<0.0001), frequency of smoking (P=0.0434), alcohol consumption level (P=0.0287) and the quantity of lipid intake (P=0.0081). Consumption of fish (P=0.6983) and salty snacks (P=0.8327), sleeping hours (P=0.6847) and the level of physical activity were not significantly (P=0.3301) associated with the incidence of overweight and obesity. Based on the fitted model, only age was significantly associated with hypertension (P < 0.001). Further, age (P < 0.0001), sleeping hours (P=0.0953) and consumption of fatty foods (P=0.0930) were significantly associated with diabetes. Age was associated with higher odds of pre diabetes (OR:1.089;95% CI:1.053,1.127) and diabetes (OR:1.077;95% CI:1.055,1.1) whereas 7-8 hrs. of sleep per day was associated with lesser odds of diabetes (OR:0.403;95% CI:0.184,0.884). High prevalence of overweight, obesity and hypertension in working-age males is a threatening sign for this area. As this population ages in the future and urbanization continues, the prevalence of above risk factors will likely to escalate.Keywords: age, males, non-communicable diseases, obesity
Procedia PDF Downloads 33715782 Multiscale Analysis of Shale Heterogeneity in Silurian Longmaxi Formation from South China
Authors: Xianglu Tang, Zhenxue Jiang, Zhuo Li
Abstract:
Characterization of shale multi scale heterogeneity is an important part to evaluate size and space distribution of shale gas reservoirs in sedimentary basins. The origin of shale heterogeneity has always been a hot research topic for it determines shale micro characteristics description and macro quality reservoir prediction. Shale multi scale heterogeneity was discussed based on thin section observation, FIB-SEM, QEMSCAN, TOC, XRD, mercury intrusion porosimetry (MIP), and nitrogen adsorption analysis from 30 core samples in Silurian Longmaxi formation. Results show that shale heterogeneity can be characterized by pore structure and mineral composition. The heterogeneity of shale pore is showed by different size pores at nm-μm scale. Macropores (pore diameter > 50 nm) have a large percentage of pore volume than mesopores (pore diameter between 2~ 50 nm) and micropores (pore diameter < 2nm). However, they have a low specific surface area than mesopores and micropores. Fractal dimensions of the pores from nitrogen adsorption data are higher than 2.7, what are higher than 2.8 from MIP data, showing extremely complex pore structure. This complexity in pore structure is mainly due to the organic matter and clay minerals with complex pore network structures, and diagenesis makes it more complicated. The heterogeneity of shale minerals is showed by mineral grains, lamina, and different lithology at nm-km scale under the continuous changing horizon. Through analyzing the change of mineral composition at each scale, random arrangement of mineral equal proportion, seasonal climate changes, large changes of sedimentary environment, and provenance supply are considered to be the main reasons that cause shale minerals heterogeneity from microcosmic to macroscopic. Due to scale effect, the change of shale multi scale heterogeneity is a discontinuous process, and there is a transformation boundary between homogeneous and in homogeneous. Therefore, a shale multi scale heterogeneity changing model is established by defining four types of homogeneous unit at different scales, which can be used to guide the prediction of shale gas distribution from micro scale to macro scale.Keywords: heterogeneity, homogeneous unit, multiscale, shale
Procedia PDF Downloads 45215781 Modeling Biomass and Biodiversity across Environmental and Management Gradients in Temperate Grasslands with Deep Learning and Sentinel-1 and -2
Authors: Javier Muro, Anja Linstadter, Florian Manner, Lisa Schwarz, Stephan Wollauer, Paul Magdon, Gohar Ghazaryan, Olena Dubovyk
Abstract:
Monitoring the trade-off between biomass production and biodiversity in grasslands is critical to evaluate the effects of management practices across environmental gradients. New generations of remote sensing sensors and machine learning approaches can model grasslands’ characteristics with varying accuracies. However, studies often fail to cover a sufficiently broad range of environmental conditions, and evidence suggests that prediction models might be case specific. In this study, biomass production and biodiversity indices (species richness and Fishers’ α) are modeled in 150 grassland plots for three sites across Germany. These sites represent a North-South gradient and are characterized by distinct soil types, topographic properties, climatic conditions, and management intensities. Predictors used are derived from Sentinel-1 & 2 and a set of topoedaphic variables. The transferability of the models is tested by training and validating at different sites. The performance of feed-forward deep neural networks (DNN) is compared to a random forest algorithm. While biomass predictions across gradients and sites were acceptable (r2 0.5), predictions of biodiversity indices were poor (r2 0.14). DNN showed higher generalization capacity than random forest when predicting biomass across gradients and sites (relative root mean squared error of 0.5 for DNN vs. 0.85 for random forest). DNN also achieved high performance when using the Sentinel-2 surface reflectance data rather than different combinations of spectral indices, Sentinel-1 data, or topoedaphic variables, simplifying dimensionality. This study demonstrates the necessity of training biomass and biodiversity models using a broad range of environmental conditions and ensuring spatial independence to have realistic and transferable models where plot level information can be upscaled to landscape scale.Keywords: ecosystem services, grassland management, machine learning, remote sensing
Procedia PDF Downloads 218