Search results for: network survey vehicle
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10824

Search results for: network survey vehicle

54 Influence of Atmospheric Pollutants on Child Respiratory Disease in Cartagena De Indias, Colombia

Authors: Jose A. Alvarez Aldegunde, Adrian Fernandez Sanchez, Matthew D. Menden, Bernardo Vila Rodriguez

Abstract:

Up to five statistical pre-processings have been carried out considering the pollutant records of the stations present in Cartagena de Indias, Colombia, also taking into account the childhood asthma incidence surveys conducted in hospitals in the city by the Health Ministry of Colombia for this study. These pre-processings have consisted of different techniques such as the determination of the quality of data collection, determination of the quality of the registration network, identification and debugging of errors in data collection, completion of missing data and purified data, as well as the improvement of the time scale of records. The characterization of the quality of the data has been conducted by means of density analysis of the pollutant registration stations using ArcGis Software and through mass balance techniques, making it possible to determine inconsistencies in the records relating the registration data between stations following the linear regression. The results obtained in this process have highlighted the positive quality in the pollutant registration process. Consequently, debugging of errors has allowed us to identify certain data as statistically non-significant in the incidence and series of contamination. This data, together with certain missing records in the series recorded by the measuring stations, have been completed by statistical imputation equations. Following the application of these prior processes, the basic series of incidence data for respiratory disease and pollutant records have allowed the characterization of the influence of pollutants on respiratory diseases such as, for example, childhood asthma. This characterization has been carried out using statistical correlation methods, including visual correlation, simple linear regression correlation and spectral analysis with PAST Software which identifies maximum periodicity cycles and minimums under the formula of the Lomb periodgram. In relation to part of the results obtained, up to eleven maximums and minimums considered contemporary between the incidence records and the particles have been identified taking into account the visual comparison. The spectral analyses that have been performed on the incidence and the PM2.5 have returned a series of similar maximum periods in both registers, which are at a maximum during a period of one year and another every 25 days (0.9 and 0.07 years). The bivariate analysis has managed to characterize the variable "Daily Vehicular Flow" in the ninth position of importance of a total of 55 variables. However, the statistical correlation has not obtained a favorable result, having obtained a low value of the R2 coefficient. The series of analyses conducted has demonstrated the importance of the influence of pollutants such as PM2.5 in the development of childhood asthma in Cartagena. The quantification of the influence of the variables has been able to determine that there is a 56% probability of dependence between PM2.5 and childhood respiratory asthma in Cartagena. Considering this justification, the study could be completed through the application of the BenMap Software, throwing a series of spatial results of interpolated values of the pollutant contamination records that exceeded the established legal limits (represented by homogeneous units up to the neighborhood level) and results of the impact on the exacerbation of pediatric asthma. As a final result, an economic estimate (in Colombian Pesos) of the monthly and individual savings derived from the percentage reduction of the influence of pollutants in relation to visits to the Hospital Emergency Room due to asthma exacerbation in pediatric patients has been granted.

Keywords: Asthma Incidence, BenMap, PM2.5, Statistical Analysis

Procedia PDF Downloads 115
53 Mapping Iron Content in the Brain with Magnetic Resonance Imaging and Machine Learning

Authors: Gabrielle Robertson, Matthew Downs, Joseph Dagher

Abstract:

Iron deposition in the brain has been linked with a host of neurological disorders such as Alzheimer’s, Parkinson’s, and Multiple Sclerosis. While some treatment options exist, there are no objective measurement tools that allow for the monitoring of iron levels in the brain in vivo. An emerging Magnetic Resonance Imaging (MRI) method has been recently proposed to deduce iron concentration through quantitative measurement of magnetic susceptibility. This is a multi-step process that involves repeated modeling of physical processes via approximate numerical solutions. For example, the last two steps of this Quantitative Susceptibility Mapping (QSM) method involve I) mapping magnetic field into magnetic susceptibility and II) mapping magnetic susceptibility into iron concentration. Process I involves solving an ill-posed inverse problem by using regularization via injection of prior belief. The end result from Process II highly depends on the model used to describe the molecular content of each voxel (type of iron, water fraction, etc.) Due to these factors, the accuracy and repeatability of QSM have been an active area of research in the MRI and medical imaging community. This work aims to estimate iron concentration in the brain via a single step. A synthetic numerical model of the human head was created by automatically and manually segmenting the human head on a high-resolution grid (640x640x640, 0.4mm³) yielding detailed structures such as microvasculature and subcortical regions as well as bone, soft tissue, Cerebral Spinal Fluid, sinuses, arteries, and eyes. Each segmented region was then assigned tissue properties such as relaxation rates, proton density, electromagnetic tissue properties and iron concentration. These tissue property values were randomly selected from a Probability Distribution Function derived from a thorough literature review. In addition to having unique tissue property values, different synthetic head realizations also possess unique structural geometry created by morphing the boundary regions of different areas within normal physical constraints. This model of the human brain is then used to create synthetic MRI measurements. This is repeated thousands of times, for different head shapes, volume, tissue properties and noise realizations. Collectively, this constitutes a training-set that is similar to in vivo data, but larger than datasets available from clinical measurements. This 3D convolutional U-Net neural network architecture was used to train data-driven Deep Learning models to solve for iron concentrations from raw MRI measurements. The performance was then tested on both synthetic data not used in training as well as real in vivo data. Results showed that the model trained on synthetic MRI measurements is able to directly learn iron concentrations in areas of interest more effectively than other existing QSM reconstruction methods. For comparison, models trained on random geometric shapes (as proposed in the Deep QSM method) are less effective than models trained on realistic synthetic head models. Such an accurate method for the quantitative measurement of iron deposits in the brain would be of important value in clinical studies aiming to understand the role of iron in neurological disease.

Keywords: magnetic resonance imaging, MRI, iron deposition, machine learning, quantitative susceptibility mapping

Procedia PDF Downloads 135
52 Microstructural Characterization of Bitumen/Montmorillonite/Isocyanate Composites by Atomic Force Microscopy

Authors: Francisco J. Ortega, Claudia Roman, Moisés García-Morales, Francisco J. Navarro

Abstract:

Asphaltic bitumen has been largely used in both industrial and civil engineering, mostly in pavement construction and roofing membrane manufacture. However, bitumen as such is greatly susceptible to temperature variations, and dramatically changes its in-service behavior from a viscoelastic liquid, at medium-high temperatures, to a brittle solid at low temperatures. Bitumen modification prevents these problems and imparts improved performance. Isocyanates like polymeric MDI (mixture of 4,4′-diphenylmethane di-isocyanate, 2,4’ and 2,2’ isomers, and higher homologues) have shown to remarkably enhance bitumen properties at the highest in-service temperatures expected. This comes from the reaction between the –NCO pendant groups of the oligomer and the most polar groups of asphaltenes and resins in bitumen. In addition, oxygen diffusion and/or UV radiation may provoke bitumen hardening and ageing. With the purpose of minimizing these effects, nano-layered-silicates (nanoclays) are increasingly being added to bitumen formulations. Montmorillonites, a type of naturally occurring mineral, may produce a nanometer scale dispersion which improves bitumen thermal, mechanical and barrier properties. In order to increase their lipophilicity, these nanoclays are normally treated so that organic cations substitute the inorganic cations located in their intergallery spacing. In the present work, the combined effect of polymeric MDI and the commercial montmorillonite Cloisite® 20A was evaluated. A selected bitumen with penetration within the range 160/220 was modified with 10 wt.% Cloisite® 20A and 2 wt.% polymeric MDI, and the resulting ternary composites were characterized by linear rheology, X-ray diffraction (XRD) and Atomic Force Microscopy (AFM). The rheological tests evidenced a notable solid-like behavior at the highest temperatures studied when bitumen was just loaded with 10 wt.% Cloisite® 20A and high-shear blended for 20 minutes. However, if polymeric MDI was involved, the sequence of addition exerted a decisive control on the linear rheology of the final ternary composites. Hence, in bitumen/Cloisite® 20A/polymeric MDI formulations, the previous solid-like behavior disappeared. By contrast, an inversion in the order of addition (bitumen/polymeric MDI/ Cloisite® 20A) enhanced further the solid-like behavior imparted by the nanoclay. In order to gain a better understanding of the factors that govern the linear rheology of these ternary composites, a morphological and microstructural characterization based on XRD and AFM was conducted. XRD demonstrated the existence of clay stacks intercalated by bitumen molecules to some degree. However, the XRD technique cannot provide detailed information on the extent of nanoclay delamination, unless the entire fraction has effectively been fully delaminated (situation in which no peak is observed). Furthermore, XRD was unable to provide precise knowledge neither about the spatial distribution of the intercalated/exfoliated platelets nor about the presence of other structures at larger length scales. In contrast, AFM proved its power at providing conclusive information on the morphology of the composites at the nanometer scale and at revealing the structural modification that yielded the rheological properties observed. It was concluded that high-shear blending brought about a nanoclay-reinforced network. As for the bitumen/Cloisite® 20A/polymeric MDI formulations, the solid-like behavior was destroyed as a result of the agglomeration of the nanoclay platelets promoted by chemical reactions.

Keywords: Atomic Force Microscopy, bitumen, composite, isocyanate, montmorillonite.

Procedia PDF Downloads 260
51 An Intelligence-Led Methodologly for Detecting Dark Actors in Human Trafficking Networks

Authors: Andrew D. Henshaw, James M. Austin

Abstract:

Introduction: Human trafficking is an increasingly serious transnational criminal enterprise and social security issue. Despite ongoing efforts to mitigate the phenomenon and a significant expansion of security scrutiny over past decades, it is not receding. This is true for many nations in Southeast Asia, widely recognized as the global hub for trafficked persons, including men, women, and children. Clearly, human trafficking is difficult to address because there are numerous drivers, causes, and motivators for it to persist, such as non-military and non-traditional security challenges, i.e., climate change, global warming displacement, and natural disasters. These make displaced persons and refugees particularly vulnerable. The issue is so large conservative estimates put a dollar value at around $150 billion-plus per year (Niethammer, 2020) spanning sexual slavery and exploitation, forced labor, construction, mining and in conflict roles, and forced marriages of girls and women. Coupled with corruption throughout military, police, and civil authorities around the world, and the active hands of powerful transnational criminal organizations, it is likely that such figures are grossly underestimated as human trafficking is misreported, under-detected, and deliberately obfuscated to protect those profiting from it. For example, the 2022 UN report on human trafficking shows a 56% reduction in convictions in that year alone (UNODC, 2022). Our Approach: To better understand this, our research utilizes a bespoke methodology. Applying a JAM (Juxtaposition Assessment Matrix), which we previously developed to detect flows of dark money around the globe (Henshaw, A & Austin, J, 2021), we now focus on the human trafficking paradigm. Indeed, utilizing a JAM methodology has identified key indicators of human trafficking not previously explored in depth. Being a set of structured analytical techniques that provide panoramic interpretations of the subject matter, this iteration of the JAM further incorporates behavioral and driver indicators, including the employment of Open-Source Artificial Intelligence (OS-AI) across multiple collection points. The extracted behavioral data was then applied to identify non-traditional indicators as they contribute to human trafficking. Furthermore, as the JAM OS-AI analyses data from the inverted position, i.e., the viewpoint of the traffickers, it examines the behavioral and physical traits required to succeed. This transposed examination of the requirements of success delivers potential leverage points for exploitation in the fight against human trafficking in a new and novel way. Findings: Our approach identified new innovative datasets that have previously been overlooked or, at best, undervalued. For example, the JAM OS-AI approach identified critical 'dark agent' lynchpins within human trafficking that are difficult to detect and harder to connect to actors and agents within a network. Our preliminary data suggests this is in part due to the fact that ‘dark agents’ in extant research have been difficult to detect and potentially much harder to directly connect to the actors and organizations in human trafficking networks. Our research demonstrates that using new investigative techniques such as OS-AI-aided JAM introduces a powerful toolset to increase understanding of human trafficking and transnational crime and illuminate networks that, to date, avoid global law enforcement scrutiny.

Keywords: human trafficking, open-source intelligence, transnational crime, human security, international human rights, intelligence analysis, JAM OS-AI, Dark Money

Procedia PDF Downloads 90
50 Harnessing the Power of Artificial Intelligence: Advancements and Ethical Considerations in Psychological and Behavioral Sciences

Authors: Nayer Mofidtabatabaei

Abstract:

Advancements in artificial intelligence (AI) have transformed various fields, including psychology and behavioral sciences. This paper explores the diverse ways in which AI is applied to enhance research, diagnosis, therapy, and understanding of human behavior and mental health. We discuss the potential benefits and challenges associated with AI in these fields, emphasizing the ethical considerations and the need for collaboration between AI researchers and psychological and behavioral science experts. Artificial Intelligence (AI) has gained prominence in recent years, revolutionizing multiple industries, including healthcare, finance, and entertainment. One area where AI holds significant promise is the field of psychology and behavioral sciences. AI applications in this domain range from improving the accuracy of diagnosis and treatment to understanding complex human behavior patterns. This paper aims to provide an overview of the various AI applications in psychological and behavioral sciences, highlighting their potential impact, challenges, and ethical considerations. Mental Health Diagnosis AI-driven tools, such as natural language processing and sentiment analysis, can analyze large datasets of text and speech to detect signs of mental health issues. For example, chatbots and virtual therapists can provide initial assessments and support to individuals suffering from anxiety or depression. Autism Spectrum Disorder (ASD) Diagnosis AI algorithms can assist in early ASD diagnosis by analyzing video and audio recordings of children's behavior. These tools help identify subtle behavioral markers, enabling earlier intervention and treatment. Personalized Therapy AI-based therapy platforms use personalized algorithms to adapt therapeutic interventions based on an individual's progress and needs. These platforms can provide continuous support and resources for patients, making therapy more accessible and effective. Virtual Reality Therapy Virtual reality (VR) combined with AI can create immersive therapeutic environments for treating phobias, PTSD, and social anxiety. AI algorithms can adapt VR scenarios in real-time to suit the patient's progress and comfort level. Data Analysis AI aids researchers in processing vast amounts of data, including survey responses, brain imaging, and genetic information. Privacy Concerns Collecting and analyzing personal data for AI applications in psychology and behavioral sciences raise significant privacy concerns. Researchers must ensure the ethical use and protection of sensitive information. Bias and Fairness AI algorithms can inherit biases present in training data, potentially leading to biased assessments or recommendations. Efforts to mitigate bias and ensure fairness in AI applications are crucial. Transparency and Accountability AI-driven decisions in psychology and behavioral sciences should be transparent and subject to accountability. Patients and practitioners should understand how AI algorithms operate and make decisions. AI applications in psychological and behavioral sciences have the potential to transform the field by enhancing diagnosis, therapy, and research. However, these advancements come with ethical challenges that require careful consideration. Collaboration between AI researchers and psychological and behavioral science experts is essential to harness AI's full potential while upholding ethical standards and privacy protections. The future of AI in psychology and behavioral sciences holds great promise, but it must be navigated with caution and responsibility.

Keywords: artificial intelligence, psychological sciences, behavioral sciences, diagnosis and therapy, ethical considerations

Procedia PDF Downloads 69
49 Leveraging Information for Building Supply Chain Competitiveness

Authors: Deepika Joshi

Abstract:

Operations in automotive industry rely greatly on information shared between Supply Chain (SC) partners. This leads to efficient and effective management of SC activity. Automotive sector in India is growing at 14.2 percent per annum and has huge economic importance. We find that no study has been carried out on the role of information sharing in SC management of Indian automotive manufacturers. Considering this research gap, the present study is planned to establish the significance of information sharing in Indian auto-component supply chain activity. An empirical research was conducted for large scale auto component manufacturers from India. Twenty four Supply Chain Performance Indicators (SCPIs) were collected from existing literature. These elements belong to eight diverse but internally related areas of SC management viz., demand management, cost, technology, delivery, quality, flexibility, buyer-supplier relationship, and operational factors. A pair-wise comparison and an open ended questionnaire were designed using these twenty four SCPIs. The questionnaire was then administered among managerial level employees of twenty-five auto-component manufacturing firms. Analytic Network Process (ANP) technique was used to analyze the response of pair-wise questionnaire. Finally, twenty-five priority indexes are developed, one for each respondent. These were averaged to generate an industry specific priority index. The open-ended questions depicted strategies related to information sharing between buyers and suppliers and their influence on supply chain performance. Results show that the impact of information sharing on certain performance indicators is relatively greater than their corresponding variables. For example, flexibility, delivery, demand and cost related elements have massive impact on information sharing. Technology is relatively less influenced by information sharing but it immensely influence the quality of information shared. Responses obtained from managers reveal that timely and accurate information sharing lowers the cost, increases flexibility and on-time delivery of auto parts, therefore, enhancing the competitiveness of Indian automotive industry. Any flaw in dissemination of information can disturb the cycle time of both the parties and thus increases the opportunity cost. Due to supplier’s involvement in decisions related to design of auto parts, quality conformance is found to improve, leading to reduction in rejection rate. Similarly, mutual commitment to share right information at right time between all levels of SC enhances trust level. SC partners share information to perform comprehensive quality planning to ingrain total quality management. This study contributes to operations management literature which faces scarcity of empirical examination on this subject. It views information sharing as a building block which firms can promote and evolve to leverage the operational capability of all SC members. It will provide insights for Indian managers and researchers as every market is unique and suppliers and buyers are driven by local laws, industry status and future vision. While major emphasis in this paper is given to SC operations happening between domestic partners, placing more focus on international SC can bring in distinguished results.

Keywords: Indian auto component industry, information sharing, operations management, supply chain performance indicators

Procedia PDF Downloads 548
48 Optimizing Machine Learning Algorithms for Defect Characterization and Elimination in Liquids Manufacturing

Authors: Tolulope Aremu

Abstract:

The key process steps to produce liquid detergent products will introduce potential defects, such as formulation, mixing, filling, and packaging, which might compromise product quality, consumer safety, and operational efficiency. Real-time identification and characterization of such defects are of prime importance for maintaining high standards and reducing waste and costs. Usually, defect detection is performed by human inspection or rule-based systems, which is very time-consuming, inconsistent, and error-prone. The present study overcomes these limitations in dealing with optimization in defect characterization within the process for making liquid detergents using Machine Learning algorithms. Performance testing of various machine learning models was carried out: Support Vector Machine, Decision Trees, Random Forest, and Convolutional Neural Network on defect detection and classification of those defects like wrong viscosity, color deviations, improper filling of a bottle, packaging anomalies. These algorithms have significantly benefited from a variety of optimization techniques, including hyperparameter tuning and ensemble learning, in order to greatly improve detection accuracy while minimizing false positives. Equipped with a rich dataset of defect types and production parameters consisting of more than 100,000 samples, our study further includes information from real-time sensor data, imaging technologies, and historic production records. The results are that optimized machine learning models significantly improve defect detection compared to traditional methods. Take, for instance, the CNNs, which run at 98% and 96% accuracy in detecting packaging anomaly detection and bottle filling inconsistency, respectively, by fine-tuning the model with real-time imaging data, through which there was a reduction in false positives of about 30%. The optimized SVM model on detecting formulation defects gave 94% in viscosity variation detection and color variation. These values of performance metrics correspond to a giant leap in defect detection accuracy compared to the usual 80% level achieved up to now by rule-based systems. Moreover, this optimization with models can hasten defect characterization, allowing for detection time to be below 15 seconds from an average of 3 minutes using manual inspections with real-time processing of data. With this, the reduction in time will be combined with a 25% reduction in production downtime because of proactive defect identification, which can save millions annually in recall and rework costs. Integrating real-time machine learning-driven monitoring drives predictive maintenance and corrective measures for a 20% improvement in overall production efficiency. Therefore, the optimization of machine learning algorithms in defect characterization optimum scalability and efficiency for liquid detergent companies gives improved operational performance to higher levels of product quality. In general, this method could be conducted in several industries within the Fast moving consumer Goods industry, which would lead to an improved quality control process.

Keywords: liquid detergent manufacturing, defect detection, machine learning, support vector machines, convolutional neural networks, defect characterization, predictive maintenance, quality control, fast-moving consumer goods

Procedia PDF Downloads 16
47 The Impact of β Nucleating Agents and Carbon-Based Nanomaterials on Water Vapor Permeability of Polypropylene Composite Films

Authors: Glykeria A. Visvini, George Ν. Mathioudakis, Amaia Soto Beobide, George A. Voyiatzis

Abstract:

Polymer nanocomposites are materials in which a polymer matrix is reinforced with nanoscale inclusions, such as nanoparticles, nanoplates, or nanofibers. These nanoscale inclusions can significantly enhance the mechanical, thermal, electrical, and other properties of the polymer matrix, making them attractive for a wide range of industrial applications. These properties can be tailored by adjusting the type and the concentration of the nanoinclusions, which provides a high degree of flexibility in their design and development. An important property that polymeric membranes can exhibit is water vapor permeability (WVP). This can be accomplished by various methods, including the incorporation of micro/nano-fillers into the polymer matrix. In this way, a micro/nano-pore network can be formed, allowing water vapor to permeate through the membrane. At the same time, the membrane can be stretched uni- or bi-axially, creating aligned or cross-linked micropores in the composite, respectively, which can also increase the WVP. Nowadays, in industry, stretched films reinforced with CaCO3 develop micro-porosity sufficient to give them breathability characteristics. Carbon-based nanomaterials, such as graphene oxide (GO), are tentatively expected to be able to effectively improve the WVP of corresponding composite polymer films. The presence in the GO structure of various functional oxidizing groups enhances its ability to attract and channel water molecules, exploiting the unique large surface area of graphene that allows the rapid transport of water molecules. Polypropylene (PP) is widely used in various industrial applications due to its desirable properties, including good chemical resistance, excellent thermal stability, low cost, and easy processability. The specific properties of PP are highly influenced by its crystalline behavior, which is determined by its processing conditions. The development of the β-crystalline phase in PP, in combination with stretching, is anticipating improving the microporosity of the polymer matrix, thereby enhancing its WVP. The aim of present study is to create breathable PP composite membranes using carbon-based nanomaterials, such as graphene oxide (GO), reduced graphene oxide (rGO), and graphene nanoplatelets (GNPs). Unlike traditional methods that rely on the drawing process to enhance the WVP of PP, this study intents to develop a low-cost approach using melt mixing with β-nucleating agents and carbon fillers to create highly breathable PP composite membranes. The study aims to investigate how the concentration of these additives affects the water vapor transport properties of the resulting PP films/membranes. The presence of β-nucleating agents and carbon fillers is expected to enhance β-phase growth in PP, while an alternation between β- and α-phase is expected to lead to improved microporosity and WVP. Our ambition is to develop highly breathable PP composite films with superior performance and at a lower cost compared to the benchmark. Acknowledgment: This research has been co‐financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call «Special Actions "AQUACULTURE"-"INDUSTRIAL MATERIALS"-"OPEN INNOVATION IN CULTURE"» (project code: Τ6YBP-00337)

Keywords: carbon based nanomaterials, nanocomposites, nucleating agent, polypropylene, water vapor permeability

Procedia PDF Downloads 85
46 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques

Authors: Chandu Rathnayake, Isuri Anuradha

Abstract:

Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.

Keywords: CNN, random forest, decision tree, machine learning, deep learning

Procedia PDF Downloads 72
45 Remote BioMonitoring of Mothers and Newborns for Temperature Surveillance Using a Smart Wearable Sensor: Techno-Feasibility Study and Clinical Trial in Southern India

Authors: Prem K. Mony, Bharadwaj Amrutur, Prashanth Thankachan, Swarnarekha Bhat, Suman Rao, Maryann Washington, Annamma Thomas, N. Sheela, Hiteshwar Rao, Sumi Antony

Abstract:

The disease burden among mothers and newborns is caused mostly by a handful of avoidable conditions occurring around the time of childbirth and within the first month following delivery. Real-time monitoring of vital parameters of mothers and neonates offers a potential opportunity to impact access as well as the quality of care in vulnerable populations. We describe the design, development and testing of an innovative wearable device for remote biomonitoring (RBM) of body temperatures in mothers and neonates in a hospital in southern India. The architecture consists of: [1] a low-cost, wearable sensor tag; [2] a gateway device for ‘real-time’ communication link; [3] piggy-backing on a commercial GSM communication network; and [4] an algorithm-based data analytics system. Requirements for the device were: long battery-life upto 28 days (with sampling frequency 5/hr); robustness; IP 68 hermetic sealing; and human-centric design. We undertook pre-clinical laboratory testing followed by clinical trial phases I & IIa for evaluation of safety and efficacy in the following sequence: seven healthy adult volunteers; 18 healthy mothers; and three sets of babies – 3 healthy babies; 10 stable babies in the Neonatal Intensive Care Unit (NICU) and 1 baby with hypoxic ischaemic encephalopathy (HIE). The 3-coin thickness, pebble-design sensor weighing about 8 gms was secured onto the abdomen for the baby and over the upper arm for adults. In the laboratory setting, the response-time of the sensor device to attain thermal equilibrium with the surroundings was 4 minutes vis-a-vis 3 minutes observed with a precision-grade digital thermometer used as a reference standard. The accuracy was ±0.1°C of the reference standard within the temperature range of 25-40°C. The adult volunteers, aged 20 to 45 years, contributed a total of 345 hours of readings over a 7-day period and the postnatal mothers provided a total of 403 paired readings. The mean skin temperatures measured in the adults by the sensor were about 2°C lower than the axillary temperature readings (sensor =34.1 vs digital = 36.1); this difference was statistically significant (t-test=13.8; p<0.001). The healthy neonates provided a total of 39 paired readings; the mean difference in temperature was 0.13°C (sensor =36.9 vs digital = 36.7; p=0.2). The neonates in the NICU provided a total of 130 paired readings. Their mean skin temperature measured by the sensor was 0.6°C lower than that measured by the radiant warmer probe (sensor =35.9 vs warmer probe = 36.5; p < 0.001). The neonate with HIE provided a total of 25 paired readings with the mean sensor reading being not different from the radian warmer probe reading (sensor =33.5 vs warmer probe = 33.5; p=0.8). No major adverse events were noted in both the adults and neonates; four adult volunteers reported mild sweating under the device/arm band and one volunteer developed mild skin allergy. This proof-of-concept study shows that real-time monitoring of temperatures is technically feasible and that this innovation appears to be promising in terms of both safety and accuracy (with appropriate calibration) for improved maternal and neonatal health.

Keywords: public health, remote biomonitoring, temperature surveillance, wearable sensors, mothers and newborns

Procedia PDF Downloads 208
44 Quasi-Photon Monte Carlo on Radiative Heat Transfer: An Importance Sampling and Learning Approach

Authors: Utkarsh A. Mishra, Ankit Bansal

Abstract:

At high temperature, radiative heat transfer is the dominant mode of heat transfer. It is governed by various phenomena such as photon emission, absorption, and scattering. The solution of the governing integrodifferential equation of radiative transfer is a complex process, more when the effect of participating medium and wavelength properties are taken into consideration. Although a generic formulation of such radiative transport problem can be modeled for a wide variety of problems with non-gray, non-diffusive surfaces, there is always a trade-off between simplicity and accuracy of the problem. Recently, solutions of complicated mathematical problems with statistical methods based on randomization of naturally occurring phenomena have gained significant importance. Photon bundles with discrete energy can be replicated with random numbers describing the emission, absorption, and scattering processes. Photon Monte Carlo (PMC) is a simple, yet powerful technique, to solve radiative transfer problems in complicated geometries with arbitrary participating medium. The method, on the one hand, increases the accuracy of estimation, and on the other hand, increases the computational cost. The participating media -generally a gas, such as CO₂, CO, and H₂O- present complex emission and absorption spectra. To model the emission/absorption accurately with random numbers requires a weighted sampling as different sections of the spectrum carries different importance. Importance sampling (IS) was implemented to sample random photon of arbitrary wavelength, and the sampled data provided unbiased training of MC estimators for better results. A better replacement to uniform random numbers is using deterministic, quasi-random sequences. Halton, Sobol, and Faure Low-Discrepancy Sequences are used in this study. They possess better space-filling performance than the uniform random number generator and gives rise to a low variance, stable Quasi-Monte Carlo (QMC) estimators with faster convergence. An optimal supervised learning scheme was further considered to reduce the computation costs of the PMC simulation. A one-dimensional plane-parallel slab problem with participating media was formulated. The history of some randomly sampled photon bundles is recorded to train an Artificial Neural Network (ANN), back-propagation model. The flux was calculated using the standard quasi PMC and was considered to be the training target. Results obtained with the proposed model for the one-dimensional problem are compared with the exact analytical and PMC model with the Line by Line (LBL) spectral model. The approximate variance obtained was around 3.14%. Results were analyzed with respect to time and the total flux in both cases. A significant reduction in variance as well a faster rate of convergence was observed in the case of the QMC method over the standard PMC method. However, the results obtained with the ANN method resulted in greater variance (around 25-28%) as compared to the other cases. There is a great scope of machine learning models to help in further reduction of computation cost once trained successfully. Multiple ways of selecting the input data as well as various architectures will be tried such that the concerned environment can be fully addressed to the ANN model. Better results can be achieved in this unexplored domain.

Keywords: radiative heat transfer, Monte Carlo Method, pseudo-random numbers, low discrepancy sequences, artificial neural networks

Procedia PDF Downloads 223
43 Metal-Organic Frameworks-Based Materials for Volatile Organic Compounds Sensing Applications: Strategies to Improve Sensing Performances

Authors: Claudio Clemente, Valentina Gargiulo, Alessio Occhicone, Giovanni Piero Pepe, Giovanni Ausanio, Michela Alfè

Abstract:

Volatile organic compound (VOC) emissions represent a serious risk to human health and the integrity of the ecosystems, especially at high concentrations. For this reason, it is very important to continuously monitor environmental quality and develop fast and reliable portable sensors to allow analysis on site. Chemiresistors have become promising candidates for VOC sensing as their ease of fabrication, variety of suitable sensitive materials, and simple sensing data. A chemoresistive gas sensor is a transducer that allows to measure the concentration of an analyte in the gas phase because the changes in resistance are proportional to the amount of the analyte present. The selection of the sensitive material, which interacts with the target analyte, is very important for the sensor performance. The most used VOC detection materials are metal oxides (MOx) for their rapid recovery, high sensitivity to various gas molecules, easy fabrication. Their sensing performance can be improved in terms of operating temperature, selectivity, and detection limit. Metal-organic frameworks (MOFs) have attracted a lot of attention also in the field of gas sensing due to their high porosity, high surface area, tunable morphologies, structural variety. MOFs are generated by the self-assembly of multidentate organic ligands connecting with adjacent multivalent metal nodes via strong coordination interactions, producing stable and highly ordered crystalline porous materials with well-designed structures. However, most MOFs intrinsically exhibit low electrical conductivity. To improve this property, MOFs can be combined with organic and inorganic materials in a hybrid fashion to produce composite materials or can be transformed into more stable structures. MOFs, indeed, can be employed as the precursors of metal oxides with well-designed architectures via the calcination method. The MOF-derived MOx partially preserved the original structure with high surface area and intrinsic open pores, which act as trapping centers for gas molecules, and showed a higher electrical conductivity. Core-shell heterostructures, in which the surface of a metal oxide core is completely coated by a MOF shell, forming a junction at the core-shell heterointerface, can also be synthesized. Also, nanocomposite in which MOF structures are intercalated with graphene related materials can also be produced, and the conductivity increases thanks to the high mobility of electrons of carbon materials. As MOF structures, zinc-based MOFs belonging to the ZIF family were selected in this work. Several Zn-based materials based and/or derived from MOFs were produced, structurally characterized, and arranged in a chemo resistive architecture, also exploring the potentiality of different approaches of sensing layer deposition based on PLD (pulsed laser deposition) and, in case of thermally labile materials, MAPLE (Matrix Assisted Pulsed Laser Evaporation) to enhance the adhesion to the support. The sensors were tested in a controlled humidity chamber, allowing for the possibility of varying the concentration of ethanol, a typical analyte chosen among the VOCs for a first survey. The effect of heating the chemiresistor to improve sensing performances was also explored. Future research will focus on exploring new manufacturing processes for MOF-based gas sensors with the aim to improve sensitivity, selectivity and reduce operating temperatures.

Keywords: chemiresistors, gas sensors, graphene related materials, laser deposition, MAPLE, metal-organic frameworks, metal oxides, nanocomposites, sensing performance, transduction mechanism, volatile organic compounds

Procedia PDF Downloads 60
42 Resilience in the Face of Environmental Extremes through Networking and Resource Mobilization

Authors: Abdullah Al Mohiuddin

Abstract:

Bangladesh is one of the poorest countries in the world, and ranks low on almost all measures of economic development, thus leaving the population extremely vulnerable to natural disasters and climate events. 20% of GDP come from agriculture but more than 60% of the population relies on agriculture as their main source of income making the entire economy vulnerable to climate change and natural disasters. High population density exacerbates the exposure to and effect of climate events, and increases the levels of vulnerability, as does the poor institutional development of the country. The most vulnerable sectors to climate change impacts in Bangladesh are agriculture, coastal zones, water resources, forestry, fishery, health, biomass, and energy. High temperatures, heavy rainfall, high humidity and fairly marked seasonal variations characterize the climate in Bangladesh: Mild winter, hot humid summer and humid, warm rainy monsoon. Much of the country is flooded during the summer monsoon. The Department of Environment (DOE) under the Ministry of Environment and Forestry (MoEF) is the focal point for the United Nations Framework Convention on Climate Change (UNFCCC) and coordinates climate related activities in the country. Recently, a Climate Change Cell (CCC) has been established to address several issues including adaptation to climate change. The climate change focus started with The National Environmental Management Action Plan (NEMAP) which was prepared in 1995 in order to initiate the process to address environmental and climate change issues as long-term environmental problems for Bangladesh. Bangladesh was one of the first countries to finalise a NAPA (Preparation of a National Adaptation Plan of Action) which addresses climate change issues. The NAPA was completed in 2005, and is the first official initiative for mainstreaming adaptation to national policies and actions to cope with climate change and vulnerability. The NAPA suggests a number of adaptation strategies, for example: - Providing drinking water to coastal communities to fight the enhanced salinity caused by sea level rise, - Integrating climate change in planning and design of infrastructure, - Including climate change issues in education, - Supporting adaptation of agricultural systems to new weather extremes, - Mainstreaming CCA into policies and programmes in different sectors, e.g. disaster management, water and health, - Dissemination of CCA information and awareness raising on enhanced climate disasters, especially in vulnerable communities. Bangladesh has geared up its environment conservation steps to save the world’s poorest countries from the adverse effects of global warming. Now it is turning towards green economy policies to save the degrading ecosystem. Bangladesh is a developing country and always fights against Natural Disaster. At the same time we also fight for establishing ecological environment through promoting Green Economy/Energy by Youth Networking. ANTAR is coordinating a big Youth Network in the southern part of Bangladesh where 30 Youth group involved. It can be explained as the economic development based on sustainable development which generates growth and improvement in human’s lives while significantly reducing environmental risks and ecological scarcities. Green economy in Bangladesh promotes three bottom lines – sustaining economic, environment and social well-being.

Keywords: resilience, networking, mobilizing, resource

Procedia PDF Downloads 308
41 Implementation of Building Information Modelling to Monitor, Assess, and Control the Indoor Environmental Quality of Higher Education Buildings

Authors: Mukhtar Maigari

Abstract:

The landscape of Higher Education (HE) institutions, especially following the CVID-19 pandemic, necessitates advanced approaches to manage Indoor Environmental Quality (IEQ) which is crucial for the comfort, health, and productivity of students and staff. This study investigates the application of Building Information Modelling (BIM) as a multifaceted tool for monitoring, assessing, and controlling IEQ in HE buildings aiming to bridge the gap between traditional management practices and the innovative capabilities of BIM. Central to the study is a comprehensive literature review, which lays the foundation by examining current knowledge and technological advancements in both IEQ and BIM. This review sets the stage for a deeper investigation into the practical application of BIM in IEQ management. The methodology consists of Post-Occupancy Evaluation (POE) which encompasses physical monitoring, questionnaire surveys, and interviews under the umbrella of case studies. The physical data collection focuses on vital IEQ parameters such as temperature, humidity, CO2 levels etc, conducted by using different equipment including dataloggers to ensure accurate data. Complementing this, questionnaire surveys gather perceptions and satisfaction levels from students, providing valuable insights into the subjective aspects of IEQ. The interview component, targeting facilities management teams, offers an in-depth perspective on IEQ management challenges and strategies. The research delves deeper into the development of a conceptual BIM-based framework, informed by the insight findings from case studies and empirical data. This framework is designed to demonstrate the critical functions necessary for effective IEQ monitoring, assessment, control and automation with real time data handling capabilities. This BIM-based framework leads to the developing and testing a BIM-based prototype tool. This prototype leverages on software such as Autodesk Revit with its visual programming tool i.e., Dynamo and an Arduino-based sensor network thereby allowing for real-time flow of IEQ data for monitoring, control and even automation. By harnessing the capabilities of BIM technology, the study presents a forward-thinking approach that aligns with current sustainability and wellness goals, particularly vital in the post-COVID-19 era. The integration of BIM in IEQ management promises not only to enhance the health, comfort, and energy efficiency of educational environments but also to transform them into more conducive spaces for teaching and learning. Furthermore, this research could influence the future of HE buildings by prompting universities and government bodies to revaluate and improve teaching and learning environments. It demonstrates how the synergy between IEQ and BIM can empower stakeholders to monitor IEQ conditions more effectively and make informed decisions in real-time. Moreover, the developed framework has broader applications as well; it can serve as a tool for other sustainability assessments, like energy analysis in HE buildings, leveraging measured data synchronized with the BIM model. In conclusion, this study bridges the gap between theoretical research and real-world application by practicalizing how advanced technologies like BIM can be effectively integrated to enhance environmental quality in educational institutions. It portrays the potential of integrating advanced technologies like BIM in the pursuit of improved environmental conditions in educational institutions.

Keywords: BIM, POE, IEQ, HE-buildings

Procedia PDF Downloads 47
40 Bridging the Communication Gap in Emergency Care: How Informational Pamphlet Enhance Satisfaction for Patients with Distal Radius Fractures

Authors: Amr Mansour, Boaz Granot, Amani Tatar, Assil Mahamid, Mohammad Haj Yahia, Fairoz Jayyusi, Eyal Behrbalk

Abstract:

INTRODUCTION: Distal radius fractures are common orthopedic injuries often treated in the fast-paced, high-stress environment of emergency departments (EDs). In such settings, patient satisfaction can be significantly influenced by the clarity of communication and the accessibility of information This study explores the impact of providing an informational pamphlet that outlines ED processes, treatment expectations, and follow-up instructions on patient satisfaction across key domains, including trust, communication, organization, responsiveness, and overall experience. We hypothesize that a structured informational pamphlet will enhance patient satisfaction by fostering better understanding and aligning patient expectations with the realities of the ED visit. METHODS: A total of 100 adult patients treated for distal radius fractures between January and August 2024 participated in this survey-based study. Patients were randomized into two equal groups: one group received an informational pamphlet detailing their condition and treatment, while the other did not. Satisfaction levels were assessed using a structured questionnaire addressing five domains. Fisher's exact test was used to compare satisfaction measures between the two groups, and multivariate logistic regression analysis was conducted to evaluate the association between receiving an information sheet and high satisfaction. The study was approved by the Institutional Review Board. RESULTS SECTION: Patients who received an informational pamphlet reported significantly higher satisfaction across all five domains (p < .001). In Trust and Understanding, 82% of info-sheet recipients felt “in good hands,” compared to 10% of non-recipients. For Communication, 86% rated doctor explanations as “very clear,” versus 16% among non-recipients. Logistic regression showed that receiving an informational pamphlet was a significant predictor of high satisfaction with Discharge Explanation—clarity on condition, treatment, and follow-up (OR = 17.65, 95% CI: 4.74 - 65.77, p < .001) and Reasonable Solution—feeling their primary concern was resolved (OR = 37.82, 95% CI: 8.75 - 163.42, p < .001). Other predictors, including fracture reduction, gender, and age, were not significant. DISCUSSION: This study highlights the substantial role that simple, cost-effective interventions like informational pamphlets can play in enhancing patient satisfaction in emergency care. By improving communication, fostering trust, and promoting a patient-centered approach, informational pamphlets offer a valuable tool for healthcare providers seeking to enhance the quality of care and patient experience in high-pressure emergency environments. However, the study's limitations, including its single-center design and reliance on self-reported satisfaction scores, may affect the generalizability of the results. Future research should consider a multi-center approach and explore long-term outcomes to further validate the efficacy of informational pamphlets in diverse ED settings. Ultimately, sustained improvement in patient satisfaction is a complex and dynamic issue necessitating a multifactorial approach, and other methods should also be explored to complement this strategy. SIGNIFICANCE/CLINICAL RELEVANCE: This study demonstrates that providing an informational pamphlet in the ED setting can significantly improve patient satisfaction across multiple domains, emphasizing its potential as a simple, cost-effective tool to enhance communication, trust, and overall patient experience during emergency care for distal radius fractures. Integrating such interventions into standard ED protocols may foster a more patient-centered approach, improving both patient outcomes and healthcare efficiency.

Keywords: distal radius fracture, quality care, patient satisfaction, emergency medicine, patient-centered care, communication

Procedia PDF Downloads 16
39 Anajaa-Visual Substitution System: A Navigation Assistive Device for the Visually Impaired

Authors: Juan Pablo Botero Torres, Alba Avila, Luis Felipe Giraldo

Abstract:

Independent navigation and mobility through unknown spaces pose a challenge for the autonomy of visually impaired people (VIP), who have relied on the use of traditional assistive tools like the white cane and trained dogs. However, emerging visually assistive technologies (VAT) have proposed several human-machine interfaces (HMIs) that could improve VIP’s ability for self-guidance. Hereby, we introduce the design and implementation of a visually assistive device, Anajaa – Visual Substitution System (AVSS). This system integrates ultrasonic sensors with custom electronics, and computer vision models (convolutional neural networks), in order to achieve a robust system that acquires information of the surrounding space and transmits it to the user in an intuitive and efficient manner. AVSS consists of two modules: the sensing and the actuation module, which are fitted to a chest mount and belt that communicate via Bluetooth. The sensing module was designed for the acquisition and processing of proximity signals provided by an array of ultrasonic sensors. The distribution of these within the chest mount allows an accurate representation of the surrounding space, discretized in three different levels of proximity, ranging from 0 to 6 meters. Additionally, this module is fitted with an RGB-D camera used to detect potentially threatening obstacles, like staircases, using a convolutional neural network specifically trained for this purpose. Posteriorly, the depth data is used to estimate the distance between the stairs and the user. The information gathered from this module is then sent to the actuation module that creates an HMI, by the means of a 3x2 array of vibration motors that make up the tactile display and allow the system to deliver haptic feedback. The actuation module uses vibrational messages (tactones); changing both in amplitude and frequency to deliver different awareness levels according to the proximity of the obstacle. This enables the system to deliver an intuitive interface. Both modules were tested under lab conditions, and the HMI was additionally tested with a focal group of VIP. The lab testing was conducted in order to establish the processing speed of the computer vision algorithms. This experimentation determined that the model can process 0.59 frames per second (FPS); this is considered as an adequate processing speed taking into account that the walking speed of VIP is 1.439 m/s. In order to test the HMI, we conducted a focal group composed of two females and two males between the ages of 35-65 years. The subject selection was aided by the Colombian Cooperative of Work and Services for the Sightless (COOTRASIN). We analyzed the learning process of the haptic messages throughout five experimentation sessions using two metrics: message discrimination and localization success. These correspond to the ability of the subjects to recognize different tactones and locate them within the tactile display. Both were calculated as the mean across all subjects. Results show that the focal group achieved message discrimination of 70% and a localization success of 80%, demonstrating how the proposed HMI leads to the appropriation and understanding of the feedback messages, enabling the user’s awareness of its surrounding space.

Keywords: computer vision on embedded systems, electronic trave aids, human-machine interface, haptic feedback, visual assistive technologies, vision substitution systems

Procedia PDF Downloads 80
38 Renewable Energy Micro-Grid Control Using Microcontroller in LabVIEW

Authors: Meena Agrawal, Chaitanya P. Agrawal

Abstract:

The power systems are transforming and becoming smarter with innovations in technologies to enable embark simultaneously upon the sustainable energy needs, rising environmental concerns, economic benefits and quality requirements. The advantages provided by inter-connection of renewable energy resources are becoming more viable and dependable with the smart controlling technologies. The limitation of most renewable resources have their diversity and intermittency causing problems in power quality, grid stability, reliability, security etc. is being cured by these efforts. A necessitate of optimal energy management by intelligent Micro-Grids at the distribution end of the power system has been accredited to accommodate sustainable renewable Distributed Energy Resources on large scale across the power grid. All over the world Smart Grids are emerging now as foremost concern infrastructure upgrade programs. The hardware setup includes NI cRIO 9022, Compact Reconfigurable Input Output microcontroller board connected to the PC on a LAN router with three hardware modules. The Real-Time Embedded Controller is reconfigurable controller device consisting of an embedded real-time processor controller for communication and processing, a reconfigurable chassis housing the user-programmable FPGA, Eight hot-swappable I/O modules, and graphical LabVIEW system design software. It has been employed for signal analysis, controls and acquisition and logging of the renewable sources with the LabVIEW Real-Time applications. The employed cRIO chassis controls the timing for the module and handles communication with the PC over the USB, Ethernet, or 802.11 Wi-Fi buses. It combines modular I/O, real-time processing, and NI LabVIEW programmable. In the presented setup, the Analog Input Module NI 9205 five channels have been used for input analog voltage signals from renewable energy sources and NI 9227 four channels have been used for input analog current signals of the renewable sources. For switching actions based on the programming logic developed in software, a module having Electromechanical Relays (single-pole single throw) with 4-Channels, electrically isolated and LED indicating the state of that channel have been used for isolating the renewable Sources on fault occurrence, which is decided by the logic in the program. The module for Ethernet based Data Acquisition Interface ENET 9163 Ethernet Carrier, which is connected on the LAN Router for data acquisition from a remote source over Ethernet also has the module NI 9229 installed. The LabVIEW platform has been employed for efficient data acquisition, monitoring and control. Control logic utilized in program for operation of the hardware switching Related to Fault Relays has been portrayed as a flowchart. A communication system has been successfully developed amongst the sources and loads connected on different computers using Hypertext transfer protocol, HTTP or Ethernet Local Stacked area Network TCP/IP protocol. There are two main I/O interfacing clients controlling the operation of the switching control of the renewable energy sources over internet or intranet. The paper presents experimental results of the briefed setup for intelligent control of the micro-grid for renewable energy sources, besides the control of Micro-Grid with data acquisition and control hardware based on a microcontroller with visual program developed in LabVIEW.

Keywords: data acquisition and control, LabVIEW, microcontroller cRIO, Smart Micro-Grid

Procedia PDF Downloads 333
37 Interference of Polymers Addition in Wastewaters Microbial Survey: Case Study of Viral Retention in Sludges

Authors: Doriane Delafosse, Dominique Fontvieille

Abstract:

Background: Wastewater treatment plants (WWTPs) generally display significant efficacy in virus retention yet, are sometimes highly variable, partly in relation to large fluctuating loads at the head of the plant and partly because of episodic dysfunctions in some treatment processes. The problem is especially sensitive when human enteric viruses, such as human Noroviruses Genogroup I or Adenoviruses, are in concern: their release downstream WWTP, in environments often interconnected to recreational areas, may be very harmful to human communities even at low concentrations. It points out the importance of WWTP permanent monitoring from which their internal treatment processes could be adjusted. One way to adjust primary treatments is to add coagulants and flocculants to sewage ahead settling tanks to improve decantation. In this work, sludge produced by three coagulants (two organics, one mineral), four flocculants (three cationic, one anionic), and their combinations were studied for their efficacy in human enteric virus retention. Sewage samples were coming from a WWTP in the vicinity of the laboratory. All experiments were performed three times and in triplicates in laboratory pilots, using Murine Norovirus (MNV-1), a surrogate of human Norovirus, as an internal control (spiking). Viruses were quantified by (RT-)qPCR after nucleic acid extraction from both treated water and sediment. Results: Low values of sludge virus retention (from 4 to 8% of the initial sewage concentration) were observed with each cationic organic flocculant added to wastewater and no coagulant. The largest part of the virus load was detected in the treated water (48 to 90%). However, it was not counterbalancing the amount of the introduced virus (MNV-1). The results pertained to two types of cationic flocculants, branched and linear, and in the last case, to two percentages of cations. Results were quite similar to the association of a linear cationic organic coagulant and an anionic flocculant, though suggesting that differences between water and sludges would sometimes be related to virus size or virus origins (autochthonous/allochthonous). FeCl₃, as a mineral coagulant associated with an anionic flocculant, significantly increased both auto- and allochthonous virus retention in the sediments (15 to 34%). Accordingly, virus load in treated water was lower (14 to 48%) but with a total that still does not reach the amount of the introduced virus (MNV-1). It also appeared that the virus retrieval in a bare 0.1M NaCl suspension varied rather strongly according to the FeCl₃ concentration, suggesting an inhibiting effect on the molecular analysis used to detect the virus. Finally, no viruses were detected in both phases (sediment and water) with the combination branched cationic coagulant-linear anionic flocculant, which was later demonstrated as an effect, here also, of polymers on the virus detection-molecular analysis. Conclusions: The combination of FeCl₃-anionic flocculant gave its highest performance to the decantation-based virus removal process. However, large unbalanced values in spiking experiments were observed, suggesting that polymers cast additional obstacles to both elution buffer and lysis buffer on their way to reach the virus. The situation was probably even worse with autochthonous viruses already embedded into sewage's particulate matter. Polymers and FeCl₃ also appeared to interfere in some steps of molecular analyses. More attention should be paid to such impediments wherever chemical additives are considered to be used to enhance WWTP processes. Acknowledgments: This research was supported by the ABIOLAB laboratory (Montbonnot Saint-Martin, France) and by the ASPOSAN association. Field experiments were possible thanks to the Grand Chambéry WWTP authorities (Chambéry, France).

Keywords: flocculants-coagulants, polymers, enteric viruses, wastewater sedimentation treatment plant

Procedia PDF Downloads 123
36 Sustainable Urban Regenaration the New Vocabulary and the Timless Grammar of the Urban Tissue

Authors: Ruth Shapira

Abstract:

Introduction: The rapid urbanization of the last century confronts planners, regulatory bodies, developers and most of all the public with seemingly unsolved conflicts regarding values, capital, and wellbeing of the built and un-built urban space. There is an out of control change of scale of the urban form and of the rhythm of the urban life which has known no significant progress in the last 2-3 decades despite the on-growing urban population. It is the objective of this paper to analyze some of these fundamental issues through the case study of a relatively small town in the center of Israel (Kiryat-Ono, 36,000 inhabitants), unfold the deep structure of qualities versus disruptors, present some cure that we have developed to bridge over and humbly suggest a practice that may bring about a sustainable new urban environment based on timeless values of the past, an approach that can be generic for similar cases. Basic Methodologies:The object, the town of Kiryat Ono, shall be experimented upon in a series of four action processes: De-composition, Re-composition, the Centering process and, finally, Controlled Structural Disintegration. Each stage will be based on facts, analysis of previous multidisciplinary interventions on various layers – and the inevitable reaction of the OBJECT, leading to the conclusion based on innovative theoretical and practical methods that we have developed and that we believe are proper for the open ended network, setting the rules for the contemporary urban society to cluster by – thus – a new urban vocabulary based on the old structure of times passed. The Study: Kiryat Ono, was founded 70 years ago as an agricultural settlement and rapidly turned into an urban entity. In spite the massive intensification, the original DNA of the old small town was still deeply embedded, mostly in the quality of the public space and in the sense of clustered communities. In the past 20 years, the recent demand for housing has been addressed to on the national level with recent master plans and urban regeneration policies mostly encouraging individual economic initiatives. Unfortunately, due to the obsolete existing planning platform the present urban renewal is characterized by pressure of developers, a dramatic change in building scale and widespread disintegration of the existing urban and social tissue.Our office was commissioned to conceptualize two master plans for the two contradictory processes of Kiryat Ono’s future: intensification and conservation. Following a comprehensive investigation into the deep structures and qualities of the existing town, we developed a new vocabulary of conservation terms thus redefying the sense of PLACE. The main challenge was to create master plans that should offer a regulatory basis to the accelerated and sporadic development providing for the public good and preserving the characteristics of the place consisting of a tool box of design guidelines that will have the ability to reorganize space along the time axis in a sustainable way. In conclusion: The system of rules that we have developed can generate endless possible patterns making sure that at each implementation fragment an event is created, and a better place is revealed. It takes time and perseverance but it seems to be the way to provide a healthy and sustainable framework for the accelerated urbanization of our chaotic present.

Keywords: sustainable urban design, intensification, emergent urban patterns, sustainable housing, compact urban neighborhoods, sustainable regeneration, restoration, complexity, uncertainty, need for change, implications of legislation on local planning

Procedia PDF Downloads 388
35 Source of Professionalism and Knowledge among Sport Industry Professionals in India with Limited Sport Management Higher Education

Authors: Sandhya Manjunath

Abstract:

The World Association for Sport Management (WASM) was established in 2012, and its mission is "to facilitate sport management research, teaching, and learning excellence and professional practice worldwide". As the field of sport management evolves, it have seen increasing globalization of not only the sport product but many educators have also internationalized courses and curriculums. Curricula should reflect globally recognized issues and disseminate specific intercultural knowledge, skills, and practices, but regional disparities still exist. For example, while India has some of the most ardent sports fans and events in the world, sport management education programs and the development of a proper curriculum in India are still in their nascent stages, especially in comparison to the United States and Europe. Using the extant literature on professionalization and institutional theory, this study aims to investigate the source of knowledge and professionalism of sports managers in India with limited sport management education programs and to subsequently develop a conceptual framework that addresses any gaps or disparities across regions. This study will contribute to WASM's (2022) mission statement of research practice worldwide, specifically to fill the existing disparities between regions. Additionally, this study may emphasize the value of higher education among professionals entering the workforce in the sport industry. Most importantly, this will be a pioneer study highlighting the social issue of limited sport management higher education programs in India and improving professional research practices. Sport management became a field of study in the 1980s, and scholars have studied its professionalization since this time. Dowling, Edwards, & Washington (2013) suggest that professionalization can be categorized into three broad categories of organizational, systemic, and occupational professionalization. However, scant research has integrated the concept of professionalization with institutional theory. A comprehensive review of the literature reveals that sports industry research is progressing in every country worldwide at its own pace. However, there is very little research evidence about the Indian sports industry and the country's limited higher education sport management programs. A growing need exists for sports scholars to pursue research in developing countries like India to develop theoretical frameworks and academic instruments to evaluate the current standards of qualified professionals in sport management, sport marketing, venue and facilities management, sport governance, and development-related activities. This study may postulate a model highlighting the value of higher education in sports management. Education stakeholders include governments, sports organizations and their representatives, educational institutions, and accrediting bodies. As these stakeholders work collaboratively in developed countries like the United States and Europe and developing countries like India, they simultaneously influence the professionalization (i.e., organizational, systemic, and occupational) of sport management education globally. The results of this quantitative study will investigate the current standards of education in India and the source of knowledge among industry professionals. Sports industry professionals will be randomly selected to complete the COSM survey on PsychData and rate their perceived knowledge and professionalism on a Likert scale. Additionally, they will answer questions involving their competencies, experience, or challenges in contributing to Indian sports management research. Multivariate regression will be used to measure the degree to which the various independent variables impact the current knowledge, contribution to research, and professionalism of India's sports industry professionals. This quantitative study will contribute to the limited academic literature available to Indian sports practitioners. Additionally, it shall synthesize knowledge from previous work on professionalism and institutional knowledge, providing a springboard for new research that will fill the existing knowledge gaps. While a further empirical investigation is warranted, our conceptualization contributes to and highlights India's burgeoning sport management industry.

Keywords: sport management, professionalism, source of knowledge, higher education, India

Procedia PDF Downloads 69
34 Exploring Symptoms, Causes and Treatments of Feline Pruritus Using Thematic Analysis of Pet Owner Social Media Posts

Authors: Sitira Williams, Georgina Cherry, Andrea Wright, Kevin Wells, Taran Rai, Richard Brown, Travis Street, Alasdair Cook

Abstract:

Social media sources (50) were identified, keywords defined by veterinarians and organised into 6 topics known to be indicative of feline pruritus: body areas, behaviors, symptoms, diagnosis, and treatments. These were augmented using academic literature, a cat owner survey, synonyms, and Google Trends. The content was collected using a social intelligence solution, with keywords tagged and filtered. Data were aggregated and de-duplicated. SL content matching body areas, behaviors and symptoms were reviewed manually, and posts were marked relevant if: posted by a pet owner, identifying an itchy cat and not duplicated. A sub-set of 493 posts published from 2009-2022 was used for reflexive thematic analysis in NVIVO (Burlington, MA) to identify themes. Five themes were identified: allergy, pruritus, additional behaviors, unusual or undesirable behaviors, diagnosis, and treatment. Most (258) posts reported the cat was excessively licking, itching, and scratching. The majority were indoor cats and were less playful and friendly when itchy. Half of these posts did not indicate a known cause of pruritus. Bald spots and scabs (123) were reported, often causing swelling and fur loss, and 56 reported bumps, lumps, and dry patches. Other impacts on the cat’s quality of life were ear mites, cat self-trauma and stress. Seven posts reported their cats’ symptoms caused them ongoing anxiety and depression. Cats with food allergies to poultry (often chicken and beef) causing bald spots featured in 23 posts. Veterinarians advised switching to a raw food diet and/or changing their bowls. Some cats got worse after switching, leaving owners’ needs unmet. Allergic reactions to flea bites causing excessive itching, red spots, scabs, and fur loss were reported in 13 posts. Some (3) posts indicated allergic reactions to medication. Cats with seasonal and skin allergies, causing sneezing, scratching, headshaking, watery eyes, and nasal discharge, were reported 17 times. Eighty-five posts identified additional behaviors. Of these, 13 reported their cat’s burst pimple or insect bite. Common behaviors were headshaking, rubbing, pawing at their ears, and aggressively chewing. In some cases, bites or pimples triggered previously unseen itchiness, making the cat irritable. Twenty-four reported their cat had anxiety: overgrooming, itching, losing fur, hiding, freaking out, breathing quickly, sleeplessness, hissing and vocalising. Most reported these cats as having itchy skin, fleas, and bumps. Cats were commonly diagnosed with an ear infection, ringworm, acne, or kidney disease. Acne was diagnosed in cats with an allergy flare-up or overgrooming. Ear infections were diagnosed in itchy cats with mites or other parasites. Of the treatments mentioned, steroids were most frequently used, then anti-parasitics, including flea treatments and oral medication (steroids, antibiotics). Forty-six posts reported distress following poor outcomes after medication or additional vet consultations. SL provides veterinarians with unique insights. Verbatim comments highlight the detrimental effects of pruritus on pets and owner quality of life. This study demonstrates the need for veterinarians to communicate management and treatment options more effectively to relieve owner frustrations. Data analysis could be scaled up using machine learning for topic modeling.

Keywords: content analysis, feline, itch, pruritus, social media, thematic analysis, veterinary dermatology

Procedia PDF Downloads 188
33 Development of a Core Set of Clinical Indicators to Measure Quality of Care for Thyroid Cancer: A Modified-Delphi Approach

Authors: Liane J. Ioannou, Jonathan Serpell, Cino Bendinelli, David Walters, Jenny Gough, Dean Lisewski, Win Meyer-Rochow, Julie Miller, Duncan Topliss, Bill Fleming, Stephen Farrell, Andrew Kiu, James Kollias, Mark Sywak, Adam Aniss, Linda Fenton, Danielle Ghusn, Simon Harper, Aleksandra Popadich, Kate Stringer, David Watters, Susannah Ahern

Abstract:

BACKGROUND: There are significant variations in the management, treatment and outcomes of thyroid cancer, particularly in the role of: diagnostic investigation and pre-treatment scanning; optimal extent of surgery (total or hemi-thyroidectomy); use of active surveillance for small low-risk cancers; central lymph node dissections (therapeutic or prophylactic); outcomes following surgery (e.g. recurrent laryngeal nerve palsy, hypocalcaemia, hypoparathyroidism); post-surgical hormone, calcium and vitamin D therapy; and provision and dosage of radioactive iodine treatment. A proven strategy to reduce variations in the outcome and to improve survival is to measure and compare it using high-quality clinical registry data. Clinical registries provide the most effective means of collecting high-quality data and are a tool for quality improvement. Where they have been introduced at a state or national level, registries have become one of the most clinically valued tools for quality improvement. To benchmark clinical care, clinical quality registries require systematic measurement at predefined intervals and the capacity to report back information to participating clinical units. OBJECTIVE: The aim of this study was to develop a core set clinical indicators that enable measurement and reporting of quality of care for patients with thyroid cancer. We hypothesise that measuring clinical quality indicators, developed to identify differences in quality of care across sites, will reduce variation and improve patient outcomes and survival, thereby lessening costs and healthcare burden to the Australian community. METHOD: Preparatory work and scoping was conducted to identify existing high quality, clinical guidelines and best practice for thyroid cancer both nationally and internationally, as well as relevant literature. A bi-national panel was invited to participate in a modified Delphi process. Panelists were asked to rate each proposed indicator on a Likert scale of 1–9 in a three-round iterative process. RESULTS: A total of 236 potential quality indicators were identified. One hundred and ninety-two indicators were removed to reflect the data capture by the Australian and New Zealand Thyroid Cancer Registry (ANZTCR) (from diagnosis to 90-days post-surgery). The remaining 44 indicators were presented to the panelists for voting. A further 21 indicators were later added by the panelists bringing the total potential quality indicators to 65. Of these, 21 were considered the most important and feasible indicators to measure quality of care in thyroid cancer, of which 12 were recommended for inclusion in the final set. The consensus indicator set spans the spectrum of care, including: preoperative; surgery; surgical complications; staging and post-surgical treatment planning; and post-surgical treatment. CONCLUSIONS: This study provides a core set of quality indicators to measure quality of care in thyroid cancer. This indicator set can be applied as a tool for internal quality improvement, comparative quality reporting, public reporting and research. Inclusion of these quality indicators into monitoring databases such as clinical quality registries will enable opportunities for benchmarking and feedback on best practice care to clinicians involved in the management of thyroid cancer.

Keywords: clinical registry, Delphi survey, quality indicators, quality of care

Procedia PDF Downloads 179
32 Feasibility and Acceptability of an Emergency Department Digital Pain Self-Management Intervention: An Randomized Controlled Trial Pilot Study

Authors: Alexandria Carey, Angela Starkweather, Ann Horgas, Hwayoung Cho, Jason Beneciuk

Abstract:

Background/Significance: Over 3.4 million acute axial low back pain (aLBP) cases are treated annually in the United States (US) emergency departments (ED). ED patients with aLBP receive varying verbal and written discharge routine care (RC), leading to ineffective patient self-management. Ineffective self-management increase chronic low back pain (cLPB) transition risks, a chief cause of worldwide disability, with associated costs >$60 million annually. This research addresses this significant problem by evaluating an ED digital pain self-management intervention (EDPSI) focused on improving self-management through improved knowledge retainment, skills, and self-efficacy (confidence) (KSC) thus reducing aLBP to cLBP transition in ED patients discharged with aLBP. The research has significant potential to increase self-efficacy, one of the most potent mechanisms of behavior change and improve health outcomes. Focusing on accessibility and usability, the intervention may reduce discharge disparities in aLBP self-management, especially with low health literacy. Study Questions: This research will answer the following questions: 1) Will an EDPSI focused on improving KSC progress patient self-management behaviors and health status?; 2) Is the EDPSI sustainable to improve pain severity, interference, and pain recurrence?; 3) Will an EDPSI reduce aLBP to cLBP transition in patients discharged with aLBP? Aims: The pilot randomized-controlled trial (RCT) study’s objectives assess the effects of a 12-week digital self-management discharge tool in patients with aLBP. We aim to 1) Primarily assess the feasibility [recruitment, enrollment, and retention], and [intervention] acceptability, and sustainability of EDPSI on participant’s pain self-management; 2) Determine the effectiveness and sustainability of EDPSI on pain severity/interference among participants. 3) Explore patient preferences, health literacy, and changes among participants experiencing the transition to cLBP. We anticipate that EDPSI intervention will increase likelihood of achieving self-management milestones and significantly improve pain-related symptoms in aLBP. Methods: The study uses a two-group pilot RCT to enroll 30 individuals who have been seen in the ED with aLBP. Participants are randomized into RC (n=15) or RC + EDPSI (n=15) and receive follow-up surveys for 12-weeks post-intervention. EDPSI innovative content focuses on 1) highlighting discharge education; 2) provides self-management treatment options; 3) actor demonstration of ergonomics, range of motion movements, safety, and sleep; 4) complementary alternative medicine (CAM) options including acupuncture, yoga, and Pilates; 5) combination therapies including thermal application, spinal manipulation, and PT treatments. The intervention group receives Booster sessions via Zoom to assess and reinforce their knowledge retention of techniques and provide return demonstration reinforcing ergonomics, in weeks two and eight. Outcome Measures: All participants are followed for 12-weeks, assessing pain severity/ interference using the Brief Pain Inventory short-form (BPI-sf) survey, self-management (measuring KSC) using the short 13-item Patient Activation Measure (PAM), and self-efficacy using the Pain Self-Efficacy Questionnaire (PSEQ) weeks 1, 6, and 12. Feasibility is measured by recruitment, enrollment, and retention percentages. Acceptability and education satisfaction are measured using the Education-Preference and Satisfaction Questionnaire (EPSQ) post-intervention. Self-management sustainment is measured including PSEQ, PAM, and patient satisfaction and healthcare utilization (PSHU) requesting patient overall satisfaction, additional healthcare utilization, and pain management related to continued back pain or complications post-injury.

Keywords: digital, pain self-management, education, tool

Procedia PDF Downloads 48
31 The Routes of Human Suffering: How Point-Source and Destination-Source Mapping Can Help Victim Services Providers and Law Enforcement Agencies Effectively Combat Human Trafficking

Authors: Benjamin Thomas Greer, Grace Cotulla, Mandy Johnson

Abstract:

Human trafficking is one of the fastest growing international crimes and human rights violations in the world. The United States Department of State (State Department) approximates some 800,000 to 900,000 people are annually trafficked across sovereign borders, with approximately 14,000 to 17,500 of these people coming into the United States. Today’s slavery is conducted by unscrupulous individuals who are often connected to organized criminal enterprises and transnational gangs, extracting huge monetary sums. According to the International Labour Organization (ILO), human traffickers collect approximately $32 billion worldwide annually. Surpassed only by narcotics dealing, trafficking of humans is tied with illegal arms sales as the second largest criminal industry in the world and is the fastest growing field in the 21st century. Perpetrators of this heinous crime abound. They are not limited to single or “sole practitioners” of human trafficking, but rather, often include Transnational Criminal Organizations (TCO), domestic street gangs, labor contractors, and otherwise seemingly ordinary citizens. Monetary gain is being elevated over territorial disputes and street gangs are increasingly operating in a collaborative effort with TCOs to further disguise their criminal activity; to utilizing their vast networks, in an attempt to avoid detection. Traffickers rely on a network of clandestine routes to sell their commodities with impunity. As law enforcement agencies seek to retard the expansion of transnational criminal organization’s entry into human trafficking, it is imperative that they develop reliable trafficking mapping of known exploitative routes. In a recent report given to the Mexican Congress, The Procuraduría General de la República (PGR) disclosed, from 2008 to 2010 they had identified at least 47 unique criminal networking routes used to traffic victims and that Mexico’s estimated domestic victims number between 800,000 adults and 20,000 children annually. Designing a reliable mapping system is a crucial step to effective law enforcement response and deploying a successful victim support system. Creating this mapping analytic is exceedingly difficult. Traffickers are constantly changing the way they traffic and exploit their victims. They swiftly adapt to local environmental factors and react remarkably well to market demands, exploiting limitations in the prevailing laws. This article will highlight how human trafficking has become one of the fastest growing and most high profile human rights violations in the world today; compile current efforts to map and illustrate trafficking routes; and will demonstrate how the proprietary analytical mapping analysis of point-source and destination-source mapping can help local law enforcement, governmental agencies and victim services providers effectively respond to the type and nature of trafficking to their specific geographical locale. Trafficking transcends state and international borders. It demands an effective and consistent cooperation between local, state, and federal authorities. Each region of the world has different impact factors which create distinct challenges for law enforcement and victim services. Our mapping system lays the groundwork for a targeted anti-trafficking response.

Keywords: human trafficking, mapping, routes, law enforcement intelligence

Procedia PDF Downloads 381
30 Geological, Geochronological, Geochemical, and Geophysical Characteristics of the Dalli Porphyry Cu-Au Deposit in Central Iran; Implications for Exploration

Authors: Hooshag Asadi Haroni, Maryam Veiskarami, Yongjun Lu

Abstract:

The Dalli gold-rich porphyry deposit (17 Mt @ 0.5% Cu and 0.65 g/t Au) is located in the Urumieh-Dokhtar Magmatic Arc (UDMA), a small segment of the Tethyan metallogenic belt, hosting several porphyry Cu (Mo-Au) systems in Iran. This research characterizes the Dalli deposit to define exploration criteria in advanced exploration such as the drilling of possible blind porphyry centers. Geological map, trench/drill hole geochemical and ground magnetic data, and age dating and isotope trace element analyses, carried out at the John De Laeter Research Center of Curtin University, were used to characterize the Delli deposit. Mineralization at Dalli is hosted by NE-trending quartz-diorite porphyry stocks (~ 200m in diameter) intruded by a wall-rock andesite porphyry. Disseminated and stockwork Cu-Au mineralization is related to potassic alteration, comprising magnetite, late K-feldspar and biotite, and quartz-sericite-specularite overprint, surrounded by extensive barren argillic and propylitic alterations. In the peripheries of the porphyry centers, there are N-trending vuggy quartz veins, hosting epithermal Au-Ag-As-Sb mineralization. Geochemical analyses of drill core samples showed that the core of the porphyry stocks is low-grade, whereas the high-grade disseminated and stockwork mineralization (~ 1% Cu and ~ 1.2 g/t Au) occurred at the contact of the porphyry stocks and andesite porphyry. Geochemical studies of the drill hole and trench samples showed a strong correlation between Cu and Au and both show a second-order correlation with Fe and As. Magnetic survey revealed two significant magnetic anomalies, associated with intensive potassic alteration, in the reduced-to-the-pole magnetic map of the area. A relatively weaker magnetic anomaly, showing no surface porphyry expressions, is located on a lithocap, consisting of advanced argillic alteration, vuggy quartz veins, and surface expressions of epithermal geochemical signatures. The association of the lithocap and the weak magnetic anomaly could be indicative of a hidden mineralized porphyry center. Litho-geochemical analyses of the least altered Dalli intrusions and volcanic rocks indicated high Sr/Y (49-61) and Eu/Eu* (0.89-0.92), features typical of Cu porphyries. The U-Pb dating of zircons of the mineralized quartz diorite and andesite porphyry, carried out by laser ablation inductively coupled plasma mass spectrometry, yielded magmatic crystallization ages of 15.4-16.0 Ma (Middle Miocene). The zircon trace element concentrations of Dalli are characterized by high Eu/Eu* (0.3-0.8), (Ce/Nd)/Y (0.01-0.3), and 10000*(Eu/Eu*)/Y (2-15) ratios, similar to fertile porphyry suites such as the giant Sar-Cheshmeh and Qulong porphyry Cu deposits along the Tethyan belt. This suggests that the Middle Miocene Dalli intrusions are fertile and require extensive deep drillings to define their potential. Chondrite-normalized rare earth element (REE) patterns show no significant Eu anomalies, and are characterized by light-REE enrichments (La/Sm)n = 2.57–6.40). In normalized multi-element diagrams, analyzed rocks are characterized by enrichments in large ion lithophile elements (LILE) and depletions in high field strength elements (HFSE), and display typical features of subduction-related calc-alkaline magmas. The characteristics of the Dalli deposit provided several recognition criteria for detailed exploration of Cu-Au porphyry deposits and highlighted the importance of the UDMA as a potentially significant, economically important, but relatively underexplored porphyry province.

Keywords: porphyry, gold, geochronology, magnetic, exploration

Procedia PDF Downloads 60
29 Case Study about Women Driving in Saudi Arabia Announced in 2018: Netnographic and Data Mining Study

Authors: Majdah Alnefaie

Abstract:

The ‘netnographic study’ and data mining have been used to monitor the public interaction on Social Media Sites (SMSs) to understand what the motivational factors influence the Saudi intentions regarding allowing women driving in Saudi Arabia in 2018. The netnographic study monitored the publics’ textual and visual communications in Twitter, Snapchat, and YouTube. SMSs users’ communications method is also known as electronic word of mouth (eWOM). Netnography methodology is still in its initial stages as it depends on manual extraction, reading and classification of SMSs users text. On the other hand, data mining is come from the computer and physical sciences background, therefore it is much harder to extract meaning from unstructured qualitative data. In addition, the new development in data mining software does not support the Arabic text, especially local slang in Saudi Arabia. Therefore, collaborations between social and computer scientists such as ‘netnographic study’ and data mining will enhance the efficiency of this study methodology leading to comprehensive research outcome. The eWOM communications between individuals on SMSs can promote a sense that sharing their preferences and experiences regarding politics and social government regulations is a part of their daily life, highlighting the importance of using SMSs as assistance in promoting participation in political and social. Therefore, public interactions on SMSs are important tools to comprehend people’s intentions regarding the new government regulations in the country. This study aims to answer this question, "What factors influence the Saudi Arabians' intentions of Saudi female's car-driving in 2018". The study utilized qualitative method known as netnographic study. The study used R studio to collect and analyses 27000 Saudi users’ comments from 25th May until 25th June 2018. The study has developed data collection model that support importing and analysing the Arabic text in the local slang. The data collection model in this study has been clustered based on different type of social networks, gender and the study main factors. The social network analysis was employed to collect comments from SMSs owned by governments’ originations, celebrities, vloggers, social activist and news SMSs accounts. The comments were collected from both males and females SMSs users. The sentiment analysis shows that the total number of positive comments Saudi females car driving was higher than negative comments. The data have provided the most important factors influenced the Saudi Arabians’ intention of Saudi females car driving including, culture and environment, freedom of choice, equal opportunities, security and safety. The most interesting finding indicted that women driving would play a role in increasing the individual freedom of choice. Saudi female will be able to drive cars to fulfill her daily life and family needs without being stressed due to the lack of transportation. The study outcome will help Saudi government to improve woman quality of life by increasing the ability to find more jobs and studies, increasing income through decreasing the spending on transport means such as taxi and having more freedom of choice in woman daily life needs. The study enhances the importance of using use marketing research to measure the public opinions on the new government regulations in the country. The study has explained the limitations and suggestions for future research.

Keywords: netnographic study, data mining, social media, Saudi Arabia, female driving

Procedia PDF Downloads 151
28 Urban Ecosystem Health and Urban Agriculture

Authors: Mahbuba Kaneez Hasna

Abstract:

Introductory Statement outlining the background: Little has been written about political ecology of urban gardening, such as a network of knowledge generation, technologies of food production and distribution, food consumption practices, and the regulation of ‘agricultural activities. For urban food gardens to sustain as a long-term food security enterprise, we will need to better understand the anthropological, ecological, political, and institutional factors influencing their development, management, and ongoing viability. Significance of the study: Dhaka as one of the fastest growing city. There are currently no studies regards to Bangladesh on how urban slum dwellerscope with the changing urban environment in the city, where they overcome challenges, and how they cope with the urban ecological cycle of food and vegetable production. It is also essential to understand the importance of their access to confined spaces in the slums they apply their indigenous knowledge. These relationships in nature are important factors in community and conservation ecology. Until now, there has been no significant published academic work on relationships between urban and environmental anthropology, urban planning, geography, ecology, and social anthropology with a focus on urban agriculture and how this contributes to the moral economies, indigenous knowledge, and government policies in order to improve the lives and livelihoods of slum dwellers surrounding parks and open spaces in Dhaka, Bangladesh. Methodology: it have applied participant observation, semi-structured questionnaire-based interviews, and focus group discussions to collect social data. Interviews were conducted with the urban agriculture practitioners who are slum dwellers who carry out their urban agriculture activities. Some of the interviews were conducted with non-government organisations (NGOs) and local and state government officials, using semi-structured interviews. Using these methods developed a clearer understanding of how green space cultivation, local economic self-reliance, and urban gardening are producing distinctive urban ecologies in Dhaka and their policy-implications on urban sustainability. Major findings of the study: The research provided an in-depth knowledge on the challenges that slum dwellers encounter in establishing and maintaining urban gardens, such as the economic development of the city, conflicting political agendas, and environmental constraints in areas within which gardening activities take place. The research investigated (i) How do slum dwellers perform gardening practices from rural areas to open spaces in the city? (ii) How do men and women’s ethno-botanical knowledge contribute to urban biodiversity; (iii) And how do slum dwellers navigate complex constellations of land use policy, competing political agendas, and conflicting land and water tenures to meet livelihood functions provided by their gardens. Concluding statement: Lack of infrastructure facilities such as water supply and sanitation, micro-drains and waste disposal areas, and poor access to basic health care services increase the misery of people in the slum areas. Lack of environmental health awareness information for farmers, such as the risks from the use of chemical pesticides in gardens and from grazing animals in contaminated fields or cropping and planting trees or vegetable in contaminated dumping grounds, can all cause high health risk to humans and their environment.

Keywords: gender, urban agriculture, ecosystem health, urban slum systems

Procedia PDF Downloads 80
27 Wellbeing Effects from Family Literacy Education: An Ecological Study

Authors: Jane Furness, Neville Robertson, Judy Hunter, Darrin Hodgetts, Linda Nikora

Abstract:

Background and significance: This paper describes the first use of community psychology theories to investigate family-focused literacy education programmes, enabling a wide range of wellbeing effects of such programmes to be identified for the first time. Evaluations of family literacy programmes usually focus on the economic advantage of gains in literacy skills. By identifying other effects on aspects of participants’ lives that are important to them, and how they occur, understanding of how such programmes contribute to wellbeing and social justice is augmented. Drawn from community psychology, an ecological systems-based, culturally adaptive framework for personal, relational and collective wellbeing illuminated outcomes of family literacy programmes that enhanced wellbeing and quality of life for adult participants, their families and their communities. All programmes, irrespective of their institutional location, could be similarly scrutinized. Methodology: The study traced the experiences of nineteen adult participants in four family-focused literacy programmes located in geographically and culturally different communities throughout New Zealand. A critical social constructionist paradigm framed this interpretive study. Participants were mainly Māori, Pacific islands, or European New Zealanders. Seventy-nine repeated conversational interviews were conducted over 18 months with the adult participants, programme staff and people who knew the participants well. Twelve participant observations of programme sessions were conducted, and programme documentation was reviewed. Latent theoretical thematic analysis of data drew on broad perspectives of literacy and ecological systems theory, network theory and holistic, integrative theories of wellbeing. Steps taken to co-construct meaning with participants included the repeated conversational interviews and participant checking of interview transcripts and section drafts. The researcher (this paper’s first author) followed methodological guidelines developed by indigenous peoples for non-indigenous researchers. Findings: The study found that the four family literacy programmes, differing in structure, content, aims and foci, nevertheless shared common principles and practices that reflected programme staff’s overarching concern for people’s wellbeing along with their desire to enhance literacy abilities. A human rights and strengths-based based view of people based on respect for diverse culturally based values and practices were evident in staff expression of their values and beliefs and in their practices. This enacted stance influenced the outcomes of programme participation for the adult participants, their families and their communities. Alongside the literacy and learning gains identified, participants experienced positive social and relational events and changes, affirmation and strengthening of their culturally based values, and affirmation and building of positive identity. Systemically, interconnectedness of programme effects with participants’ personal histories and circumstances; the flow on of effects to other aspects of people’s lives and to their families and communities; and the personalised character of the pathways people journeyed towards enhanced wellbeing were identified. Concluding statement: This paper demonstrates the critical contribution of community psychology to a fuller understanding of family-focused educational programme outcomes than has been previously attainable, the meaning of these broader outcomes to people in their lives, and their role in wellbeing and social justice.

Keywords: community psychology, ecological theory, family literacy education, flow on effects, holistic wellbeing

Procedia PDF Downloads 254
26 Optimal Pressure Control and Burst Detection for Sustainable Water Management

Authors: G. K. Viswanadh, B. Rajasekhar, G. Venkata Ramana

Abstract:

Water distribution networks play a vital role in ensuring a reliable supply of clean water to urban areas. However, they face several challenges, including pressure control, pump speed optimization, and burst event detection. This paper combines insights from two studies to address these critical issues in Water distribution networks, focusing on the specific context of Kapra Municipality, India. The first part of this research concentrates on optimizing pressure control and pump speed in complex Water distribution networks. It utilizes the EPANET- MATLAB Toolkit to integrate EPANET functionalities into the MATLAB environment, offering a comprehensive approach to network analysis. By optimizing Pressure Reduce Valves (PRVs) and variable speed pumps (VSPs), this study achieves remarkable results. In the Benchmark Water Distribution System (WDS), the proposed PRV optimization algorithm reduces average leakage by 20.64%, surpassing the previous achievement of 16.07%. When applied to the South-Central and East zone WDS of Kapra Municipality, it identifies PRV locations that were previously missed by existing algorithms, resulting in average leakage reductions of 22.04% and 10.47%. These reductions translate to significant daily Water savings, enhancing Water supply reliability and reducing energy consumption. The second part of this research addresses the pressing issue of burst event detection and localization within the Water Distribution System. Burst events are a major contributor to Water losses and repair expenses. The study employs wireless sensor technology to monitor pressure and flow rate in real time, enabling the detection of pipeline abnormalities, particularly burst events. The methodology relies on transient analysis of pressure signals, utilizing Cumulative Sum and Wavelet analysis techniques to robustly identify burst occurrences. To enhance precision, burst event localization is achieved through meticulous analysis of time differentials in the arrival of negative pressure waveforms across distinct pressure sensing points, aided by nodal matrix analysis. To evaluate the effectiveness of this methodology, a PVC Water pipeline test bed is employed, demonstrating the algorithm's success in detecting pipeline burst events at flow rates of 2-3 l/s. Remarkably, the algorithm achieves a localization error of merely 3 meters, outperforming previously established algorithms. This research presents a significant advancement in efficient burst event detection and localization within Water pipelines, holding the potential to markedly curtail Water losses and the concomitant financial implications. In conclusion, this combined research addresses critical challenges in Water distribution networks, offering solutions for optimizing pressure control, pump speed, burst event detection, and localization. These findings contribute to the enhancement of Water Distribution System, resulting in improved Water supply reliability, reduced Water losses, and substantial cost savings. The integrated approach presented in this paper holds promise for municipalities and utilities seeking to improve the efficiency and sustainability of their Water distribution networks.

Keywords: pressure reduce valve, complex networks, variable speed pump, wavelet transform, burst detection, CUSUM (Cumulative Sum), water pipeline monitoring

Procedia PDF Downloads 84
25 Predicting Acceptance and Adoption of Renewable Energy Community solutions: The Prosumer Psychology

Authors: Francois Brambati, Daniele Ruscio, Federica Biassoni, Rebecca Hueting, Alessandra Tedeschi

Abstract:

This research, in the frame of social acceptance of renewable energies and community-based production and consumption models, aims at (1) supporting a data-driven approachable to dealing with climate change and (2) identifying & quantifying the psycho-sociological dimensions and factors that could support the transition from a technology-driven approach to a consumer-driven approach throughout the emerging “prosumer business models.” In addition to the existing Social Acceptance dimensions, this research tries to identify a purely individual psychological fourth dimension to understand processes and factors underling individual acceptance and adoption of renewable energy business models, realizing a Prosumer Acceptance Index. Questionnaire data collection has been performed throughout an online survey platform, combining standardized and ad-hoc questions adapted for the research purposes. To identify the main factors (individual/social) influencing the relation with renewable energy technology (RET) adoption, a Factorial Analysis has been conducted to identify the latent variables that are related to each other, revealing 5 latent psychological factors: Factor 1. Concern about environmental issues: global environmental issues awareness, strong beliefs and pro-environmental attitudes rising concern on environmental issues. Factor 2. Interest in energy sharing: attentiveness to solutions for local community’s collective consumption, to reduce individual environmental impact, sustainably improve the local community, and sell extra energy to the general electricity grid. Factor 3. Concern on climate change: environmental issues consequences on climate change awareness, especially on a global scale level, developing pro-environmental attitudes on global climate change course and sensitivity about behaviours aimed at mitigating such human impact. Factor 4. Social influence: social support seeking from peers. With RET, advice from significant others is looked for internalizing common perceived social norms of the national/geographical region. Factor 5. Impact on bill cost: inclination to adopt a RET when economic incentives from the behaviour perception affect the decision-making process could result in less expensive or unvaried bills. Linear regression has been conducted to identify and quantify the factors that could better predict behavioural intention to become a prosumer. An overall scale measuring “acceptance of a renewable energy solution” was used as the dependent variable, allowing us to quantify the five factors that contribute to measuring: awareness of environmental issues and climate change; environmental attitudes; social influence; and environmental risk perception. Three variables can significantly measure and predict the scores of the “Acceptance in becoming a prosumer” ad hoc scale. Variable 1. Attitude: the agreement to specific environmental issues and global climate change issues of concerns and evaluations towards a behavioural intention. Variable 2. Economic incentive: the perceived behavioural control and its related environmental risk perception, in terms of perceived short-term benefits and long-term costs, both part of the decision-making process as expected outcomes of the behaviour itself. Variable 3. Age: despite fewer economic possibilities, younger adults seem to be more sensitive to environmental dimensions and issues as opposed to older adults. This research can facilitate policymakers and relevant stakeholders to better understand which relevant psycho-sociological factors are intervening in these processes and what and how specifically target when proposing change towards sustainable energy production and consumption.

Keywords: behavioural intention, environmental risk perception, prosumer, renewable energy technology, social acceptance

Procedia PDF Downloads 129