Search results for: random intercepts model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18227

Search results for: random intercepts model

17177 Robust Quantum Image Encryption Algorithm Leveraging 3D-BNM Chaotic Maps and Controlled Qubit-Level Operations

Authors: Vivek Verma, Sanjeev Kumar

Abstract:

This study presents a novel quantum image encryption algorithm, using a 3D chaotic map and controlled qubit-level scrambling operations. The newly proposed 3D-BNM chaotic map effectively reduces the degradation of chaotic dynamics resulting from the finite word length effect. It facilitates the generation of highly unpredictable random sequences and enhances chaotic performance. The system’s efficacy is additionally enhanced by the inclusion of a SHA-256 hash function. Initially, classical plain images are converted into their quantum equivalents using the Novel Enhanced Quantum Representation (NEQR) model. The Generalized Quantum Arnold Transformation (GQAT) is then applied to disrupt the coordinate information of the quantum image. Subsequently, to diffuse the pixel values of the scrambled image, XOR operations are performed using pseudorandom sequences generated by the 3D-BNM chaotic map. Furthermore, to enhance the randomness and reduce the correlation among the pixels in the resulting cipher image, a controlled qubit-level scrambling operation is employed. The encryption process utilizes fundamental quantum gates such as C-NOT and CCNOT. Both theoretical and numerical simulations validate the effectiveness of the proposed algorithm against various statistical and differential attacks. Moreover, the proposed encryption algorithm operates with low computational complexity.

Keywords: 3D Chaotic map, SHA-256, quantum image encryption, Qubit level scrambling, NEQR

Procedia PDF Downloads 11
17176 Assessing Firm Readiness to Implement Cloud Computing: Toward a Comprehensive Model

Authors: Seyed Mohammadbagher Jafari, Elahe Mahdizadeh, Masomeh Ghahremani

Abstract:

Nowadays almost all organizations depend on information systems to run their businesses. Investment on information systems and their maintenance to keep them always in best situation to support firm business is one of the main issues for every organization. The new concept of cloud computing was developed as a technical and economic model to address this issue. In cloud computing the computing resources, including networks, applications, hardwares and services are configured as needed and are available at the moment of request. However, migration to cloud is not an easy task and there are many issues that should be taken into account. This study tries to provide a comprehensive model to assess a firm readiness to implement cloud computing. By conducting a systematic literature review, four dimensions of readiness were extracted which include technological, human, organizational and environmental dimensions. Every dimension has various criteria that have been discussed in details. This model provides a framework for cloud computing readiness assessment. Organizations that intend to migrate to cloud can use this model as a tool to assess their firm readiness before making any decision on cloud implementation.

Keywords: cloud computing, human readiness, organizational readiness, readiness assessment model

Procedia PDF Downloads 396
17175 Overview of a Quantum Model for Decision Support in a Sensor Network

Authors: Shahram Payandeh

Abstract:

This paper presents an overview of a model which can be used as a part of a decision support system when fusing information from multiple sensing environment. Data fusion has been widely studied in the past few decades and numerous frameworks have been proposed to facilitate decision making process under uncertainties. Multi-sensor data fusion technology plays an increasingly significant role during people tracking and activity recognition. This paper presents an overview of a quantum model as a part of a decision-making process in the context of multi-sensor data fusion. The paper presents basic definitions and relationships associating the decision-making process and quantum model formulation in the presence of uncertainties.

Keywords: quantum model, sensor space, sensor network, decision support

Procedia PDF Downloads 227
17174 Model Order Reduction for Frequency Response and Effect of Order of Method for Matching Condition

Authors: Aref Ghafouri, Mohammad javad Mollakazemi, Farhad Asadi

Abstract:

In this paper, model order reduction method is used for approximation in linear and nonlinearity aspects in some experimental data. This method can be used for obtaining offline reduced model for approximation of experimental data and can produce and follow the data and order of system and also it can match to experimental data in some frequency ratios. In this study, the method is compared in different experimental data and influence of choosing of order of the model reduction for obtaining the best and sufficient matching condition for following the data is investigated in format of imaginary and reality part of the frequency response curve and finally the effect and important parameter of number of order reduction in nonlinear experimental data is explained further.

Keywords: frequency response, order of model reduction, frequency matching condition, nonlinear experimental data

Procedia PDF Downloads 404
17173 Nonlinear Modeling of the PEMFC Based on NNARX Approach

Authors: Shan-Jen Cheng, Te-Jen Chang, Kuang-Hsiung Tan, Shou-Ling Kuo

Abstract:

Polymer Electrolyte Membrane Fuel Cell (PEMFC) is such a time-vary nonlinear dynamic system. The traditional linear modeling approach is hard to estimate structure correctly of PEMFC system. From this reason, this paper presents a nonlinear modeling of the PEMFC using Neural Network Auto-regressive model with eXogenous inputs (NNARX) approach. The multilayer perception (MLP) network is applied to evaluate the structure of the NNARX model of PEMFC. The validity and accuracy of NNARX model are tested by one step ahead relating output voltage to input current from measured experimental of PEMFC. The results show that the obtained nonlinear NNARX model can efficiently approximate the dynamic mode of the PEMFC and model output and system measured output consistently.

Keywords: PEMFC, neural network, nonlinear modeling, NNARX

Procedia PDF Downloads 381
17172 Association between Job Satisfaction, Motivation and Five Factors of Organizational Citizenship Behavior

Authors: Khadija Mushtaq, Muhammad Umar

Abstract:

The research aims to study the association between job satisfaction, motivation and the five factors of organizational citizenship behavior (i.e. Altruism, Conscientiousness, Sportsmanship, Courtesy and Civic virtue) among Public Sector Employees in Pakistan.In this research Structure Equation Modeling with confirmatory factor analysis was used to test the relationship between two independent and five dependent variables. Data was collected through questionnaire survey from 152 Public Servants Working in Gujrat District-Pakistan in different capacities. Stratified Random Sampling Technique was used to conduct this survey. The results of the study indicate that five factors of OCB have positive significant relation with both motivation and job satisfaction except the relationship of Civic Virtue with Motivation.The research findings implicate that factors other than motivation and job satisfaction may also affect OCB. Likewise, all the five factors of OCB may not be present in all populations. Thus, Managers must concentrate on increasing motivation and job satisfaction to increase OCB. Furthermore, the present research gives a direction to future researchers to use more independent variables (e.g. Culture, leadership, workplace environment, various job attitudes, types of motivation, etc.) on different types of populations with larger sample size in order to find the reasons behind insignificant relationship of civic virtue with Motivation in the research in hand and to generalize the tested model.

Keywords: five factors of organizational citizenship behavior (OCB), motivation, job satisfaction, public sector employees in Pakistan

Procedia PDF Downloads 346
17171 The Profit Trend of Cosmetics Products Using Bootstrap Edgeworth Approximation

Authors: Edlira Donefski, Lorenc Ekonomi, Tina Donefski

Abstract:

Edgeworth approximation is one of the most important statistical methods that has a considered contribution in the reduction of the sum of standard deviation of the independent variables’ coefficients in a Quantile Regression Model. This model estimates the conditional median or other quantiles. In this paper, we have applied approximating statistical methods in an economical problem. We have created and generated a quantile regression model to see how the profit gained is connected with the realized sales of the cosmetic products in a real data, taken from a local business. The Linear Regression of the generated profit and the realized sales was not free of autocorrelation and heteroscedasticity, so this is the reason that we have used this model instead of Linear Regression. Our aim is to analyze in more details the relation between the variables taken into study: the profit and the finalized sales and how to minimize the standard errors of the independent variable involved in this study, the level of realized sales. The statistical methods that we have applied in our work are Edgeworth Approximation for Independent and Identical distributed (IID) cases, Bootstrap version of the Model and the Edgeworth approximation for Bootstrap Quantile Regression Model. The graphics and the results that we have presented here identify the best approximating model of our study.

Keywords: bootstrap, edgeworth approximation, IID, quantile

Procedia PDF Downloads 159
17170 A Location-Allocation-Routing Model for a Home Health Care Supply Chain Problem

Authors: Amir Mohammad Fathollahi Fard, Mostafa Hajiaghaei-Keshteli, Mohammad Mahdi Paydar

Abstract:

With increasing life expectancy in developed countries, the role of home care services is highlighted by both academia and industrial contributors in Home Health Care Supply Chain (HHCSC) companies. The main decisions in such supply chain systems are the location of pharmacies, the allocation of patients to these pharmacies and also the routing and scheduling decisions of nurses to visit their patients. In this study, for the first time, an integrated model is proposed to consist of all preliminary and necessary decisions in these companies, namely, location-allocation-routing model. This model is a type of NP-hard one. Therefore, an Imperialist Competitive Algorithm (ICA) is utilized to solve the model, especially in large sizes. Results confirm the efficiency of the developed model for HHCSC companies as well as the performance of employed ICA.

Keywords: home health care supply chain, location-allocation-routing problem, imperialist competitive algorithm, optimization

Procedia PDF Downloads 397
17169 Efficient Frequent Itemset Mining Methods over Real-Time Spatial Big Data

Authors: Hamdi Sana, Emna Bouazizi, Sami Faiz

Abstract:

In recent years, there is a huge increase in the use of spatio-temporal applications where data and queries are continuously moving. As a result, the need to process real-time spatio-temporal data seems clear and real-time stream data management becomes a hot topic. Sliding window model and frequent itemset mining over dynamic data are the most important problems in the context of data mining. Thus, sliding window model for frequent itemset mining is a widely used model for data stream mining due to its emphasis on recent data and its bounded memory requirement. These methods use the traditional transaction-based sliding window model where the window size is based on a fixed number of transactions. Actually, this model supposes that all transactions have a constant rate which is not suited for real-time applications. And the use of this model in such applications endangers their performance. Based on these observations, this paper relaxes the notion of window size and proposes the use of a timestamp-based sliding window model. In our proposed frequent itemset mining algorithm, support conditions are used to differentiate frequents and infrequent patterns. Thereafter, a tree is developed to incrementally maintain the essential information. We evaluate our contribution. The preliminary results are quite promising.

Keywords: real-time spatial big data, frequent itemset, transaction-based sliding window model, timestamp-based sliding window model, weighted frequent patterns, tree, stream query

Procedia PDF Downloads 162
17168 Masked Candlestick Model: A Pre-Trained Model for Trading Prediction

Authors: Ling Qi, Matloob Khushi, Josiah Poon

Abstract:

This paper introduces a pre-trained Masked Candlestick Model (MCM) for trading time-series data. The pre-trained model is based on three core designs. First, we convert trading price data at each data point as a set of normalized elements and produce embeddings of each element. Second, we generate a masked sequence of such embedded elements as inputs for self-supervised learning. Third, we use the encoder mechanism from the transformer to train the inputs. The masked model learns the contextual relations among the sequence of embedded elements, which can aid downstream classification tasks. To evaluate the performance of the pre-trained model, we fine-tune MCM for three different downstream classification tasks to predict future price trends. The fine-tuned models achieved better accuracy rates for all three tasks than the baseline models. To better analyze the effectiveness of MCM, we test the same architecture for three currency pairs, namely EUR/GBP, AUD/USD, and EUR/JPY. The experimentation results demonstrate MCM’s effectiveness on all three currency pairs and indicate the MCM’s capability for signal extraction from trading data.

Keywords: masked language model, transformer, time series prediction, trading prediction, embedding, transfer learning, self-supervised learning

Procedia PDF Downloads 128
17167 Conditions for Model Matching of Switched Asynchronous Sequential Machines with Output Feedback

Authors: Jung–Min Yang

Abstract:

Solvability of the model matching problem for input/output switched asynchronous sequential machines is discussed in this paper. The control objective is to determine the existence condition and design algorithm for a corrective controller that can match the stable-state behavior of the closed-loop system to that of a reference model. Switching operations and correction procedures are incorporated using output feedback so that the controlled switched machine can show the desired input/output behavior. A matrix expression is presented to address reachability of switched asynchronous sequential machines with output equivalence with respect to a model. The presented reachability condition for the controller design is validated in a simple example.

Keywords: asynchronous sequential machines, corrective control, model matching, input/output control

Procedia PDF Downloads 342
17166 Defining a Holistic Approach for Model-Based System Engineering: Paradigm and Modeling Requirements

Authors: Hycham Aboutaleb, Bruno Monsuez

Abstract:

Current systems complexity has reached a degree that requires addressing conception and design issues while taking into account all the necessary aspects. Therefore, one of the main challenges is the way complex systems are specified and designed. The exponential growing effort, cost and time investment of complex systems in modeling phase emphasize the need for a paradigm, a framework and a environment to handle the system model complexity. For that, it is necessary to understand the expectations of the human user of the model and his limits. This paper presents a generic framework for designing complex systems, highlights the requirements a system model needs to fulfill to meet human user expectations, and defines the refined functional as well as non functional requirements modeling tools needs to meet to be useful in model-based system engineering.

Keywords: system modeling, modeling language, modeling requirements, framework

Procedia PDF Downloads 532
17165 The Effects of Vitamin D Supplementation on Anthropometric Indicators of Adiposity and Fat Distribution in Children and Adolescents: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

Authors: Simin Zarea Karizi, Somaye Fatahi, Amirhossein Hosseni

Abstract:

Background: There are conflicting findings regarding the effect of vitamin D supplementation on obesity-related factors. This study aimed to investigate the effect of vitamin D supplementation on changes in anthropometric indicators of adiposity and fat distribution in children and adolescents. Methods: Original databases were searched using standard keywords to identify all controlled trials investigating the effects of vitamin D supplementation on obesity-related factors in children and adolescents. Pooled weighted mean difference and 95% confidence intervals were achieved by random-effects model analysis. Results: Fourteen treatment arms were included in this systematic review and meta-analysis. The quantitative meta-analysis revealed no significant effect of vitamin D supplement on BMI (-0.01 kg/m2; 95% CI: -0.09, 0.12; p= 0.74; I2=0.0%), BMI z score (0.02; 95% CI: -0.04, 0.07; p= 0.53; I2=0.0%) and fat mass (0.07%; 95% CI: -0.09 to 0.24; p= 0.38; I2=31.2%). However, the quantitative meta-analysis displayed a significant effect of vitamin D supplementation on WC compared with the control group (WMD=-1.17 cm, 95% CI: -2.05, -0.29, p=0.009; I2=32.0 %). It seems that this effect was greater in healthy children with duration>12 weeks, dose<=400 IU and baseline less than 50 nmol/l vitamin D than others. Conclusions: Our findings suggest that vitamin D supplementation may be a protective factor of abdominal obesity and should be evaluated on an individual basis in clinical practice.

Keywords: weight loss, vitamin D, anthropometry, children, adolescent

Procedia PDF Downloads 27
17164 A Stochastic Analytic Hierarchy Process Based Weighting Model for Sustainability Measurement in an Organization

Authors: Faramarz Khosravi, Gokhan Izbirak

Abstract:

A weighted statistical stochastic based Analytical Hierarchy Process (AHP) model for modeling the potential barriers and enablers of sustainability for measuring and assessing the sustainability level is proposed. For context-dependent potential barriers and enablers, the proposed model takes the basis of the properties of the variables describing the sustainability functions and was developed into a realistic analytical model for the sustainable behavior of an organization. This thus serves as a means for measuring the sustainability of the organization. The main focus of this paper was the application of the AHP tool in a statistically-based model for measuring sustainability. Hence a strong weighted stochastic AHP based procedure was achieved. A case study scenario of a widely reported major Canadian electric utility was adopted to demonstrate the applicability of the developed model and comparatively examined its results with those of an equal-weighted model method. Variations in the sustainability of a company, as fluctuations, were figured out during the time. In the results obtained, sustainability index for successive years changed form 73.12%, 79.02%, 74.31%, 76.65%, 80.49%, 79.81%, 79.83% to more exact values 73.32%, 77.72%, 76.76%, 79.41%, 81.93%, 79.72%, and 80,45% according to priorities of factors that have found by expert views, respectively. By obtaining relatively necessary informative measurement indicators, the model can practically and effectively evaluate the sustainability extent of any organization and also to determine fluctuations in the organization over time.

Keywords: AHP, sustainability fluctuation, environmental indicators, performance measurement

Procedia PDF Downloads 121
17163 A Robust Theoretical Elastoplastic Continuum Damage T-H-M Model for Rock Surrounding a Wellbore

Authors: Nikolaos Reppas, Yilin Gui, Ben Wetenhall, Colin Davie

Abstract:

Injection of CO2 inside wellbore can induce different kind of loadings that can lead to thermal, hydraulic, and mechanical changes on the surrounding rock. A dual-porosity theoretical constitutive model will be presented for the stability analysis of the wellbore during CO2 injection. An elastoplastic damage response will be considered. A bounding yield surface will be presented considering damage effects on sandstone. The main target of the research paper is to present a theoretical constitutive model that can help industries to safely store CO2 in geological rock formations and forecast any changes on the surrounding rock of the wellbore. The fully coupled elasto-plastic damage Thermo-Hydraulic-Mechanical theoretical model will be validated from existing experimental data for sandstone after simulating some scenarios by using FEM on MATLAB software.

Keywords: carbon capture and storage, rock mechanics, THM effects on rock, constitutive model

Procedia PDF Downloads 153
17162 Hybrid Adaptive Modeling to Enhance Robustness of Real-Time Optimization

Authors: Hussain Syed Asad, Richard Kwok Kit Yuen, Gongsheng Huang

Abstract:

Real-time optimization has been considered an effective approach for improving energy efficient operation of heating, ventilation, and air-conditioning (HVAC) systems. In model-based real-time optimization, model mismatches cannot be avoided. When model mismatches are significant, the performance of the real-time optimization will be impaired and hence the expected energy saving will be reduced. In this paper, the model mismatches for chiller plant on real-time optimization are considered. In the real-time optimization of the chiller plant, simplified semi-physical or grey box model of chiller is always used, which should be identified using available operation data. To overcome the model mismatches associated with the chiller model, hybrid Genetic Algorithms (HGAs) method is used for online real-time training of the chiller model. HGAs combines Genetic Algorithms (GAs) method (for global search) and traditional optimization method (i.e. faster and more efficient for local search) to avoid conventional hit and trial process of GAs. The identification of model parameters is synthesized as an optimization problem; and the objective function is the Least Square Error between the output from the model and the actual output from the chiller plant. A case study is used to illustrate the implementation of the proposed method. It has been shown that the proposed approach is able to provide reliability in decision making, enhance the robustness of the real-time optimization strategy and improve on energy performance.

Keywords: energy performance, hybrid adaptive modeling, hybrid genetic algorithms, real-time optimization, heating, ventilation, and air-conditioning

Procedia PDF Downloads 417
17161 Project Objective Structure Model: An Integrated, Systematic and Balanced Approach in Order to Achieve Project Objectives

Authors: Mohammad Reza Oftadeh

Abstract:

The purpose of the article is to describe project objective structure (POS) concept that was developed on research activities and experiences about project management, Balanced Scorecard (BSC) and European Foundation Quality Management Excellence Model (EFQM Excellence Model). Furthermore, this paper tries to define a balanced, systematic, and integrated measurement approach to meet project objectives and project strategic goals based on a process-oriented model. In this paper, POS is suggested in order to measure project performance in the project life cycle. After using the POS model, the project manager can ensure in order to achieve the project objectives on the project charter. This concept can help project managers to implement integrated and balanced monitoring and control project work.

Keywords: project objectives, project performance management, PMBOK, key performance indicators, integration management

Procedia PDF Downloads 379
17160 PH.WQT as a Web Quality Model for Websites of Government Domain

Authors: Rupinder Pal Kaur, Vishal Goyal

Abstract:

In this research, a systematic and quantitative engineering-based approach is followed by applying well-known international standards and guidelines to develop a web quality model (PH.WQT- Punjabi and Hindi Website Quality Tester) to measure external quality for websites of government domain that are developed in Punjabi and Hindi. Correspondingly, the model can be used for websites developed in other languages also. The research is valuable to researchers and practitioners interested in designing, implementing and managing websites of government domain Also, by implementing PH.WQT analysis and comparisons among web sites of government domain can be performed in a consistent way.

Keywords: external quality, PH.WQT, indian languages, punjabi and hindi, quality model, websites of government

Procedia PDF Downloads 307
17159 A Large-Strain Thermoviscoplastic Damage Model

Authors: João Paulo Pascon

Abstract:

A constitutive model accounting for large strains, thermoviscoplasticity, and ductile damage evolution is proposed in the present work. To this end, a fully Lagrangian framework is employed, considering plane stress conditions and multiplicative split of the deformation gradient. The full model includes Gurson’s void growth, nucleation and coalescence, plastic work heating, strain and strain-rate hardening, thermal softening, and heat conductivity. The contribution of the work is the combination of all the above-mentioned features within the finite-strain setting. The model is implemented in a computer code using triangular finite elements and nonlinear analysis. Two mechanical examples involving ductile damage and finite strain levels are analyzed: an inhomogeneous tension specimen and the necking problem. Results demonstrate the capabilities of the developed formulation regarding ductile fracture and large deformations.

Keywords: ductile damage model, finite element method, large strains, thermoviscoplasticity

Procedia PDF Downloads 86
17158 Significance of Personnel Recruitment in Implementation of Computer Aided Design Curriculum of Architecture Schools

Authors: Kelechi E. Ezeji

Abstract:

The inclusion of relevant content in curricula of architecture schools is vital for attainment of Computer Aided Design (CAD) proficiency by graduates. Implementing this content involves, among other variables, the presence of competent tutors. Consequently, this study sought to investigate the importance of personnel recruitment for inclusion of content vital to the implementation of CAD in the curriculum for architecture education. This was with a view to developing a framework for appropriate implementation of CAD curriculum. It was focused on departments of architecture in universities in south-east Nigeria which have been accredited by National Universities Commission. Survey research design was employed. Data were obtained from sources within the study area using questionnaires, personal interviews, physical observation/enumeration and examination of institutional documents. A multi-stage stratified random sampling method was adopted. The first stage of stratification involved random sampling by balloting of the departments. The second stage involved obtaining respondents’ population from the number of staff and students of sample population. Chi Square analysis tool for nominal variables and Pearson’s product moment correlation test for interval variables were used for data analysis. With ρ < 0.5, the study found significant correlation between the number of CAD literate academic staff and use of CAD in design studio/assignments; that increase in the overall number of teaching staff significantly affected total CAD credit units in the curriculum of the department. The implications of these findings were that for successful implementation leading to attainment of CAD proficiency to occur, CAD-literacy should be a factor in the recruitment of staff and a policy of in-house training should be pursued.

Keywords: computer-aided design, education, personnel recruitment, curriculum

Procedia PDF Downloads 210
17157 The Logistics Collaboration in Supply Chain of Orchid Industry in Thailand

Authors: Chattrarat Hotrawaisaya

Abstract:

This research aims to formulate the logistics collaborative model which is the management tool for orchid flower exporter. The researchers study logistics activities in orchid supply chain that stakeholders can collaborate and develop, including demand forecasting, inventory management, warehouse and storage, order-processing, and transportation management. The research also explores logistics collaboration implementation into orchid’s stakeholders. The researcher collected data before implementation and after model implementation. Consequently, the costs and efficiency were calculated and compared between pre and post period of implementation. The research found that the results of applying the logistics collaborative model to orchid exporter reduces inventory cost and transport cost. The model also improves forecasting accuracy, and synchronizes supply chain of exporter. This research paper contributes the uniqueness logistics collaborative model which value to orchid industry in Thailand. The orchid exporters may use this model as their management tool which aims in competitive advantage.

Keywords: logistics, orchid, supply chain, collaboration

Procedia PDF Downloads 437
17156 Hydro-Gravimetric Ann Model for Prediction of Groundwater Level

Authors: Jayanta Kumar Ghosh, Swastik Sunil Goriwale, Himangshu Sarkar

Abstract:

Groundwater is one of the most valuable natural resources that society consumes for its domestic, industrial, and agricultural water supply. Its bulk and indiscriminate consumption affects the groundwater resource. Often, it has been found that the groundwater recharge rate is much lower than its demand. Thus, to maintain water and food security, it is necessary to monitor and management of groundwater storage. However, it is challenging to estimate groundwater storage (GWS) by making use of existing hydrological models. To overcome the difficulties, machine learning (ML) models are being introduced for the evaluation of groundwater level (GWL). Thus, the objective of this research work is to develop an ML-based model for the prediction of GWL. This objective has been realized through the development of an artificial neural network (ANN) model based on hydro-gravimetry. The model has been developed using training samples from field observations spread over 8 months. The developed model has been tested for the prediction of GWL in an observation well. The root means square error (RMSE) for the test samples has been found to be 0.390 meters. Thus, it can be concluded that the hydro-gravimetric-based ANN model can be used for the prediction of GWL. However, to improve the accuracy, more hydro-gravimetric parameter/s may be considered and tested in future.

Keywords: machine learning, hydro-gravimetry, ground water level, predictive model

Procedia PDF Downloads 127
17155 Design of a Small and Medium Enterprise Growth Prediction Model Based on Web Mining

Authors: Yiea Funk Te, Daniel Mueller, Irena Pletikosa Cvijikj

Abstract:

Small and medium enterprises (SMEs) play an important role in the economy of many countries. When the overall world economy is considered, SMEs represent 95% of all businesses in the world, accounting for 66% of the total employment. Existing studies show that the current business environment is characterized as highly turbulent and strongly influenced by modern information and communication technologies, thus forcing SMEs to experience more severe challenges in maintaining their existence and expanding their business. To support SMEs at improving their competitiveness, researchers recently turned their focus on applying data mining techniques to build risk and growth prediction models. However, data used to assess risk and growth indicators is primarily obtained via questionnaires, which is very laborious and time-consuming, or is provided by financial institutes, thus highly sensitive to privacy issues. Recently, web mining (WM) has emerged as a new approach towards obtaining valuable insights in the business world. WM enables automatic and large scale collection and analysis of potentially valuable data from various online platforms, including companies’ websites. While WM methods have been frequently studied to anticipate growth of sales volume for e-commerce platforms, their application for assessment of SME risk and growth indicators is still scarce. Considering that a vast proportion of SMEs own a website, WM bears a great potential in revealing valuable information hidden in SME websites, which can further be used to understand SME risk and growth indicators, as well as to enhance current SME risk and growth prediction models. This study aims at developing an automated system to collect business-relevant data from the Web and predict future growth trends of SMEs by means of WM and data mining techniques. The envisioned system should serve as an 'early recognition system' for future growth opportunities. In an initial step, we examine how structured and semi-structured Web data in governmental or SME websites can be used to explain the success of SMEs. WM methods are applied to extract Web data in a form of additional input features for the growth prediction model. The data on SMEs provided by a large Swiss insurance company is used as ground truth data (i.e. growth-labeled data) to train the growth prediction model. Different machine learning classification algorithms such as the Support Vector Machine, Random Forest and Artificial Neural Network are applied and compared, with the goal to optimize the prediction performance. The results are compared to those from previous studies, in order to assess the contribution of growth indicators retrieved from the Web for increasing the predictive power of the model.

Keywords: data mining, SME growth, success factors, web mining

Procedia PDF Downloads 267
17154 Study and Analysis of a Susceptible Infective Susceptible Mathematical Model with Density Dependent Migration

Authors: Jitendra Singh, Vivek Kumar

Abstract:

In this paper, a susceptible infective susceptible mathematical model is proposed and analyzed where the migration of human population is given by migration function. It is assumed that the disease is transmitted by direct contact of susceptible and infective populations with constant contact rate. The equilibria and their stability are studied by using the stability theory of ordinary differential equations and computer simulation. The model analysis shows that the spread of infectious disease increases when human population immigration increases in the habitat but it decreases if emigration increases.

Keywords: SIS (Susceptible Infective Susceptible) model, migration function, susceptible, stability

Procedia PDF Downloads 261
17153 Current Situation and Need in Learning Management for Developing the Analytical Thinking of Teachers in Basic Education of Thailand

Authors: S. Art-in

Abstract:

This research was a survey research. The objective of this study was to study current situation and need in learning management for developing the analytical thinking of teachers in basic education of Thailand. The target group consisted of 400 teachers teaching in basic education level. They were selected by multi-stage random sampling. The instrument used in this study was the questionnaire asking current situation and need in learning management for developing the analytical thinking, 5 level rating scale. Data were analyzed by calculating the frequency, mean, standard deviation, percentage and content analysis. The research found that: 1) For current situation, the teachers provided learning management for developing analytical thinking, in overall, in “high” level. The issue with lowest level of practice: the teachers had competency in designing and establishing the learning management plan for developing the students’ analytical thinking. Considering each aspect it was found that: 1.1) the teacher aspect; the issue with lowest level of practice was: the teachers had competency in designing and establishing the learning management plan for developing the students’ analytical thinking, and 1.2) the learning management aspect for developing the students’ analytical thinking, the issue with lowest level of practice was: the learning activities provided opportunity for students to evaluate their analytical thinking process in each learning session. 2) The teachers showed their need in learning management for developing the analytical thinking, in overall, in “the highest” level. The issue with highest level of the need was: to obtain knowledge and competency in model, technique, and method for learning management or steps of learning management for developing the students’ analytical thinking. Considering each aspect it was found that: 2.1) teacher aspect; the issue with highest level of the need was: to obtain knowledge and comprehension in model, technique, and method for learning management or steps of learning management for developing the students’ analytical thinking, and 2.2) learning management aspect for developing the analytical thinking, the issue with highest level of need consisted of the determination of learning activities as problem situation, and the opportunity for students to comprehend the problem situation as well as practice their analytical thinking in order to find the answer.

Keywords: current situation and need, learning management, analytical thinking, teachers in basic education level, Thailand

Procedia PDF Downloads 352
17152 Determination of the Axial-Vector from an Extended Linear Sigma Model

Authors: Tarek Sayed Taha Ali

Abstract:

The dependence of the axial-vector coupling constant gA on the quark masses has been investigated in the frame work of the extended linear sigma model. The field equations have been solved in the mean-field approximation. Our study shows a better fitting to the experimental data compared with the existing models.

Keywords: extended linear sigma model, nucleon properties, axial coupling constant, physic

Procedia PDF Downloads 446
17151 Machine Learning Techniques for COVID-19 Detection: A Comparative Analysis

Authors: Abeer A. Aljohani

Abstract:

COVID-19 virus spread has been one of the extreme pandemics across the globe. It is also referred to as coronavirus, which is a contagious disease that continuously mutates into numerous variants. Currently, the B.1.1.529 variant labeled as omicron is detected in South Africa. The huge spread of COVID-19 disease has affected several lives and has surged exceptional pressure on the healthcare systems worldwide. Also, everyday life and the global economy have been at stake. This research aims to predict COVID-19 disease in its initial stage to reduce the death count. Machine learning (ML) is nowadays used in almost every area. Numerous COVID-19 cases have produced a huge burden on the hospitals as well as health workers. To reduce this burden, this paper predicts COVID-19 disease is based on the symptoms and medical history of the patient. This research presents a unique architecture for COVID-19 detection using ML techniques integrated with feature dimensionality reduction. This paper uses a standard UCI dataset for predicting COVID-19 disease. This dataset comprises symptoms of 5434 patients. This paper also compares several supervised ML techniques to the presented architecture. The architecture has also utilized 10-fold cross validation process for generalization and the principal component analysis (PCA) technique for feature reduction. Standard parameters are used to evaluate the proposed architecture including F1-Score, precision, accuracy, recall, receiver operating characteristic (ROC), and area under curve (AUC). The results depict that decision tree, random forest, and neural networks outperform all other state-of-the-art ML techniques. This achieved result can help effectively in identifying COVID-19 infection cases.

Keywords: supervised machine learning, COVID-19 prediction, healthcare analytics, random forest, neural network

Procedia PDF Downloads 92
17150 The Role of Organizational Trust in the Relationship Between Organizational Justice and Organizational Citizenship Behaviors: A Case Study of Sport Organizations of Tehran Municipality

Authors: Tayebeh Zargar

Abstract:

The aim of the present research is to study the role of organizational trust in the relationship between organizational justice and organizational citizenship behaviors in sport organizations of Tehran Municipality. The method of this study is correlation and it is based on structural equation modeling. Among all staffs of sport organizations of Tehran Municipality, 150 staff members were selected through random sampling. The data gathering instrument of the study incorporated the Moorman’s (1999) Organizational Justice Questionnaire (OJQ), Ruder’s (2003) Trust Organizational Questionnaire (TOQ), and the Organizational Citizenship Behavior Scale (DiPaola, Tarter, & Hoy, 2005). SEM was utilized to analyze the data. Regarding the relationships between the variables presented in the model, the following results were obtained: organizational justice has significant direct positive effect on organizational trust (β=0.82), and organizational trust itself has significant direct positive effect on citizenship behavior (β=0.65). According to the results, making efforts in order to encourage staff members to participate more in organizational decision-making will influence their condition. Furthermore, paying more attention to organizational justice may cause the staff members to accept the organizational structure and respect the rules, volunteer in supporting the organizational resources, and have active participation in managing organization roles.

Keywords: organizational trust, organizational justice, organizational citizenship behaviors, sport organizations

Procedia PDF Downloads 340
17149 The Role of Demographics and Service Quality in the Adoption and Diffusion of E-Government Services: A Study in India

Authors: Sayantan Khanra, Rojers P. Joseph

Abstract:

Background and Significance: This study is aimed at analyzing the role of demographic and service quality variables in the adoption and diffusion of e-government services among the users in India. The study proposes to examine the users' perception about e-Government services and investigate the key variables that are most salient to the Indian populace. Description of the Basic Methodologies: The methodology to be adopted in this study is Hierarchical Regression Analysis, which will help in exploring the impact of the demographic variables and the quality dimensions on the willingness to use e-government services in two steps. First, the impact of demographic variables on the willingness to use e-government services is to be examined. In the second step, quality dimensions would be used as inputs to the model for explaining variance in excess of prior contribution by the demographic variables. Present Status: Our study is in the data collection stage in collaboration with a highly reliable, authentic and adequate source of user data. Assuming that the population of the study comprises all the Internet users in India, a massive sample size of more than 10,000 random respondents is being approached. Data is being collected using an online survey questionnaire. A pilot survey has already been carried out to refine the questionnaire with inputs from an expert in management information systems and a small group of users of e-government services in India. The first three questions in the survey pertain to the Internet usage pattern of a respondent and probe whether the person has used e-government services. If the respondent confirms that he/she has used e-government services, then an aggregate of 15 indicators are used to measure the quality dimensions under consideration and the willingness of the respondent to use e-government services, on a five-point Likert scale. If the respondent reports that he/she has not used e-government services, then a few optional questions are asked to understand the reason(s) behind the same. Last four questions in the survey are dedicated to collect data related to the demographic variables. An indication of the Major Findings: Based on the extensive literature review carried out to develop several propositions; a research model is prescribed to start with. A major outcome expected at the completion of the study is the development of a research model that would help to understand the relationship involving the demographic variables and service quality dimensions, and the willingness to adopt e-government services, particularly in an emerging economy like India. Concluding Statement: Governments of emerging economies and other relevant agencies can use the findings from the study in designing, updating, and promoting e-government services to enhance public participation, which in turn, would help to improve efficiency, convenience, engagement, and transparency in implementing these services.

Keywords: adoption and diffusion of e-government services, demographic variables, hierarchical regression analysis, service quality dimensions

Procedia PDF Downloads 268
17148 A Comparison of Smoothing Spline Method and Penalized Spline Regression Method Based on Nonparametric Regression Model

Authors: Autcha Araveeporn

Abstract:

This paper presents a study about a nonparametric regression model consisting of a smoothing spline method and a penalized spline regression method. We also compare the techniques used for estimation and prediction of nonparametric regression model. We tried both methods with crude oil prices in dollars per barrel and the Stock Exchange of Thailand (SET) index. According to the results, it is concluded that smoothing spline method performs better than that of penalized spline regression method.

Keywords: nonparametric regression model, penalized spline regression method, smoothing spline method, Stock Exchange of Thailand (SET)

Procedia PDF Downloads 440