Search results for: iterative algorithms
1321 Programmed Speech to Text Summarization Using Graph-Based Algorithm
Authors: Hamsini Pulugurtha, P. V. S. L. Jagadamba
Abstract:
Programmed Speech to Text and Text Summarization Using Graph-based Algorithms can be utilized in gatherings to get the short depiction of the gathering for future reference. This gives signature check utilizing Siamese neural organization to confirm the personality of the client and convert the client gave sound record which is in English into English text utilizing the discourse acknowledgment bundle given in python. At times just the outline of the gathering is required, the answer for this text rundown. Thus, the record is then summed up utilizing the regular language preparing approaches, for example, solo extractive text outline calculationsKeywords: Siamese neural network, English speech, English text, natural language processing, unsupervised extractive text summarization
Procedia PDF Downloads 2191320 Optimal Perturbation in an Impulsively Blocked Channel Flow
Authors: Avinash Nayak, Debopam Das
Abstract:
The current work implements the variational principle to find the optimum initial perturbation that provides maximum growth in an impulsively blocked channel flow. The conventional method for studying temporal stability has always been through modal analysis. In most of the transient flows, this modal analysis is still followed with the quasi-steady assumption, i.e. change in base flow is much slower compared to perturbation growth rate. There are other studies where transient analysis on time dependent flows is done by formulating the growth of perturbation as an initial value problem. But the perturbation growth is sensitive to the initial condition. This study intends to find the initial perturbation that provides the maximum growth at a later time. Here, the expression of base flow for blocked channel is derived and the formulation is based on the two dimensional perturbation with stream function representing the perturbation quantity. Hence, the governing equation becomes the Orr-Sommerfeld equation. In the current context, the cost functional is defined as the ratio of disturbance energy at a terminal time 'T' to the initial energy, i.e. G(T) = ||q(T)||2/||q(0)||2 where q is the perturbation and ||.|| defines the norm chosen. The above cost functional needs to be maximized against the initial perturbation distribution. It is achieved with the constraint that perturbation follows the basic governing equation, i.e. Orr-Sommerfeld equation. The corresponding adjoint equation is derived and is solved along with the basic governing equation in an iterative manner to provide the initial spatial shape of the perturbation that provides the maximum growth G (T). The growth rate is plotted against time showing the development of perturbation which achieves an asymptotic shape. The effects of various parameters, e.g. Reynolds number, are studied in the process. Thus, the study emphasizes on the usage of optimal perturbation and its growth to understand the stability characteristics of time dependent flows. The assumption of quasi-steady analysis can be verified against these results for the transient flows like impulsive blocked channel flow.Keywords: blocked channel flow, calculus of variation, hydrodynamic stability, optimal perturbation
Procedia PDF Downloads 4211319 Improvement of Piezoresistive Pressure Sensor Accuracy by Means of Current Loop Circuit Using Optimal Digital Signal Processing
Authors: Peter A. L’vov, Roman S. Konovalov, Alexey A. L’vov
Abstract:
The paper presents the advanced digital modification of the conventional current loop circuit for pressure piezoelectric transducers. The optimal DSP algorithms of current loop responses by the maximum likelihood method are applied for diminishing of measurement errors. The loop circuit has some additional advantages such as the possibility to operate with any type of resistance or reactance sensors, and a considerable increase in accuracy and quality of measurements to be compared with AC bridges. The results obtained are dedicated to replace high-accuracy and expensive measuring bridges with current loop circuits.Keywords: current loop, maximum likelihood method, optimal digital signal processing, precise pressure measurement
Procedia PDF Downloads 5291318 Routing in IP/LEO Satellite Communication Systems: Past, Present and Future
Authors: Mohammed Hussein, Abualseoud Hanani
Abstract:
In Low Earth Orbit (LEO) satellite constellation system, routing data from the source all the way to the destination constitutes a daunting challenge because LEO satellite constellation resources are spare and the high speed movement of LEO satellites results in a highly dynamic network topology. This situation limits the applicability of traditional routing approaches that rely on exchanging topology information upon change or setup of a connection. Consequently, in recent years, many routing algorithms and implementation strategies for satellite constellation networks with Inter Satellite Links (ISLs) have been proposed. In this article, we summarize and classify some of the most representative solutions according to their objectives, and discuss their advantages and disadvantages. Finally, with a look into the future, we present some of the new challenges and opportunities for LEO satellite constellations in general and routing protocols in particular.Keywords: LEO satellite constellations, dynamic topology, IP routing, inter-satellite-links
Procedia PDF Downloads 3831317 Mathematical Properties of the Viscous Rotating Stratified Fluid Counting with Salinity and Heat Transfer in a Layer
Authors: A. Giniatoulline
Abstract:
A model of the mathematical fluid dynamics which describes the motion of a three-dimensional viscous rotating fluid in a homogeneous gravitational field with the consideration of the salinity and heat transfer is considered in a vertical finite layer. The model is a generalization of the linearized Navier-Stokes system with the addition of the Coriolis parameter and the equations for changeable density, salinity, and heat transfer. An explicit solution is constructed and the proof of the existence and uniqueness theorems is given. The localization and the structure of the spectrum of inner waves is also investigated. The results may be used, in particular, for constructing stable numerical algorithms for solutions of the considered models of fluid dynamics of the Atmosphere and the Ocean.Keywords: Fourier transform, generalized solutions, Navier-Stokes equations, stratified fluid
Procedia PDF Downloads 2551316 A Model for Analyzing the Startup Dynamics of a Belt Transmission Driven by a DC Motor
Authors: Giovanni Incerti
Abstract:
In this paper the dynamic behavior of a synchronous belt drive during start-up is analyzed and discussed. Besides considering the belt elasticity, the mathematical model here proposed also takes into consideration the electrical behaviour of the DC motor. The solution of the motion equations is obtained by means of the modal analysis in state space, which allows to obtain the decoupling of all equations of the mathematical model without introducing the hypothesis of proportional damping. The mathematical model of the transmission and the solution algorithms have been implemented within a computing software that allows the user to simulate the dynamics of the system and to evaluate the effects due to the elasticity of the belt branches and to the electromagnetic behavior of the DC motor. In order to show the details of the calculation procedure, the paper presents a case study developed with the aid of the abovementioned software.Keywords: belt drive, vibrations, startup, DC motor
Procedia PDF Downloads 5801315 Comparison of the Effectiveness of Tree Algorithms in Classification of Spongy Tissue Texture
Authors: Roza Dzierzak, Waldemar Wojcik, Piotr Kacejko
Abstract:
Analysis of the texture of medical images consists of determining the parameters and characteristics of the examined tissue. The main goal is to assign the analyzed area to one of two basic groups: as a healthy tissue or a tissue with pathological changes. The CT images of the thoracic lumbar spine from 15 healthy patients and 15 with confirmed osteoporosis were used for the analysis. As a result, 120 samples with dimensions of 50x50 pixels were obtained. The set of features has been obtained based on the histogram, gradient, run-length matrix, co-occurrence matrix, autoregressive model, and Haar wavelet. As a result of the image analysis, 290 descriptors of textural features were obtained. The dimension of the space of features was reduced by the use of three selection methods: Fisher coefficient (FC), mutual information (MI), minimization of the classification error probability and average correlation coefficients between the chosen features minimization of classification error probability (POE) and average correlation coefficients (ACC). Each of them returned ten features occupying the initial place in the ranking devised according to its own coefficient. As a result of the Fisher coefficient and mutual information selections, the same features arranged in a different order were obtained. In both rankings, the 50% percentile (Perc.50%) was found in the first place. The next selected features come from the co-occurrence matrix. The sets of features selected in the selection process were evaluated using six classification tree methods. These were: decision stump (DS), Hoeffding tree (HT), logistic model trees (LMT), random forest (RF), random tree (RT) and reduced error pruning tree (REPT). In order to assess the accuracy of classifiers, the following parameters were used: overall classification accuracy (ACC), true positive rate (TPR, classification sensitivity), true negative rate (TNR, classification specificity), positive predictive value (PPV) and negative predictive value (NPV). Taking into account the classification results, it should be stated that the best results were obtained for the Hoeffding tree and logistic model trees classifiers, using the set of features selected by the POE + ACC method. In the case of the Hoeffding tree classifier, the highest values of three parameters were obtained: ACC = 90%, TPR = 93.3% and PPV = 93.3%. Additionally, the values of the other two parameters, i.e., TNR = 86.7% and NPV = 86.6% were close to the maximum values obtained for the LMT classifier. In the case of logistic model trees classifier, the same ACC value was obtained ACC=90% and the highest values for TNR=88.3% and NPV= 88.3%. The values of the other two parameters remained at a level close to the highest TPR = 91.7% and PPV = 91.6%. The results obtained in the experiment show that the use of classification trees is an effective method of classification of texture features. This allows identifying the conditions of the spongy tissue for healthy cases and those with the porosis.Keywords: classification, feature selection, texture analysis, tree algorithms
Procedia PDF Downloads 1801314 Entropy Analysis in a Bubble Column Based on Ultrafast X-Ray Tomography Data
Authors: Stoyan Nedeltchev, Markus Schubert
Abstract:
By means of the ultrafast X-ray tomography facility, data were obtained at different superficial gas velocities UG in a bubble column (0.1 m in ID) operated with an air-deionized water system at ambient conditions. Raw reconstructed images were treated by both the information entropy (IE) and the reconstruction entropy (RE) algorithms in order to identify the main transition velocities in a bubble column. The IE values exhibited two well-pronounced minima at UG=0.025 m/s and UG=0.085 m/s identifying the boundaries of the homogeneous, transition and heterogeneous regimes. The RE extracted from the central region of the column’s cross-section exhibited only one characteristic peak at UG=0.03 m/s, which was attributed to the transition from the homogeneous to the heterogeneous flow regime. This result implies that the transition regime is non-existent in the core of the column.Keywords: bubble column, ultrafast X-ray tomography, information entropy, reconstruction entropy
Procedia PDF Downloads 3921313 The Visualizer for Real-Time Analysis of Internet Trends
Authors: Radek Malinský, Ivan Jelínek
Abstract:
The current web has become a modern encyclopedia, where people share their thoughts and ideas on various topics around them. Such kind of encyclopedia is very useful for other people who are looking for answers to their questions. However, with the growing popularity of social networking and blogging and ever expanding network services, there has also been a growing diversity of technologies along with different structure of individual websites. It is, therefore, difficult to directly find a relevant answer for a common Internet user. This paper presents a web application for the real-time end-to-end analysis of selected Internet trends; where the trend can be whatever the people post online. The application integrates fully configurable tools for data collection and analysis using selected webometric algorithms, and for its chronological visualization to user. It can be assumed that the application facilitates the users to evaluate the quality of various products that are mentioned online.Keywords: Trend, visualizer, web analysis, web 2.0.
Procedia PDF Downloads 2641312 Literature Review: Application of Artificial Intelligence in EOR
Authors: Masoumeh Mofarrah, Amir NahanMoghadam
Abstract:
Higher oil prices and increasing oil demand are main reasons for great attention to Enhanced Oil Recovery (EOR). Comprehensive researches have been accomplished to develop, appraise and improve EOR methods and their application. Recently Artificial Intelligence (AI) gained popularity in petroleum industry that can help petroleum engineers to solve some fundamental petroleum engineering problems such as reservoir simulation, EOR project risk analysis, well log interpretation and well test model selection. This study presents a historical overview of most popular AI tools including neural networks, genetic algorithms, fuzzy logic and expert systems in petroleum industry and discusses two case studies to represent the application of two mentioned AI methods for selecting an appropriate EOR method based on reservoir characterization in feasible and effective way.Keywords: artificial intelligence, EOR, neural networks, expert systems
Procedia PDF Downloads 4101311 Developing an AI-Driven Application for Real-Time Emotion Recognition from Human Vocal Patterns
Authors: Sayor Ajfar Aaron, Mushfiqur Rahman, Sajjat Hossain Abir, Ashif Newaz
Abstract:
This study delves into the development of an artificial intelligence application designed for real-time emotion recognition from human vocal patterns. Utilizing advanced machine learning algorithms, including deep learning and neural networks, the paper highlights both the technical challenges and potential opportunities in accurately interpreting emotional cues from speech. Key findings demonstrate the critical role of diverse training datasets and the impact of ambient noise on recognition accuracy, offering insights into future directions for improving robustness and applicability in real-world scenarios.Keywords: artificial intelligence, convolutional neural network, emotion recognition, vocal patterns
Procedia PDF Downloads 581310 Development of an EEG-Based Real-Time Emotion Recognition System on Edge AI
Authors: James Rigor Camacho, Wansu Lim
Abstract:
Over the last few years, the development of new wearable and processing technologies has accelerated in order to harness physiological data such as electroencephalograms (EEGs) for EEG-based applications. EEG has been demonstrated to be a source of emotion recognition signals with the highest classification accuracy among physiological signals. However, when emotion recognition systems are used for real-time classification, the training unit is frequently left to run offline or in the cloud rather than working locally on the edge. That strategy has hampered research, and the full potential of using an edge AI device has yet to be realized. Edge AI devices are computers with high performance that can process complex algorithms. It is capable of collecting, processing, and storing data on its own. It can also analyze and apply complicated algorithms like localization, detection, and recognition on a real-time application, making it a powerful embedded device. The NVIDIA Jetson series, specifically the Jetson Nano device, was used in the implementation. The cEEGrid, which is integrated to the open-source brain computer-interface platform (OpenBCI), is used to collect EEG signals. An EEG-based real-time emotion recognition system on Edge AI is proposed in this paper. To perform graphical spectrogram categorization of EEG signals and to predict emotional states based on input data properties, machine learning-based classifiers were used. Until the emotional state was identified, the EEG signals were analyzed using the K-Nearest Neighbor (KNN) technique, which is a supervised learning system. In EEG signal processing, after each EEG signal has been received in real-time and translated from time to frequency domain, the Fast Fourier Transform (FFT) technique is utilized to observe the frequency bands in each EEG signal. To appropriately show the variance of each EEG frequency band, power density, standard deviation, and mean are calculated and employed. The next stage is to identify the features that have been chosen to predict emotion in EEG data using the K-Nearest Neighbors (KNN) technique. Arousal and valence datasets are used to train the parameters defined by the KNN technique.Because classification and recognition of specific classes, as well as emotion prediction, are conducted both online and locally on the edge, the KNN technique increased the performance of the emotion recognition system on the NVIDIA Jetson Nano. Finally, this implementation aims to bridge the research gap on cost-effective and efficient real-time emotion recognition using a resource constrained hardware device, like the NVIDIA Jetson Nano. On the cutting edge of AI, EEG-based emotion identification can be employed in applications that can rapidly expand the research and implementation industry's use.Keywords: edge AI device, EEG, emotion recognition system, supervised learning algorithm, sensors
Procedia PDF Downloads 1071309 Influence Maximization in Dynamic Social Networks and Graphs
Authors: Gkolfo I. Smani, Vasileios Megalooikonomou
Abstract:
Social influence and influence diffusion have been studied in social networks. However, most existing tasks on this subject focus on static networks. In this paper, the problem of maximizing influence diffusion in dynamic social networks, i.e., the case of networks that change over time, is studied. The DM algorithm is an extension of the MATI algorithm and solves the influence maximization (IM) problem in dynamic networks and is proposed under the linear threshold (LT) and independent cascade (IC) models. Experimental results show that our proposed algorithm achieves a diffusion performance better by 1.5 times than several state-of-the-art algorithms and comparable results in diffusion scale with the Greedy algorithm. Also, the proposed algorithm is 2.4 times faster than previous methods.Keywords: influence maximization, dynamic social networks, diffusion, social influence, graphs
Procedia PDF Downloads 2421308 Flexible Design Solutions for Complex Free form Geometries Aimed to Optimize Performances and Resources Consumption
Authors: Vlad Andrei Raducanu, Mariana Lucia Angelescu, Ion Cinca, Vasile Danut Cojocaru, Doina Raducanu
Abstract:
By using smart digital tools, such as generative design (GD) and digital fabrication (DF), problems of high actuality concerning resources optimization (materials, energy, time) can be solved and applications or products of free-form type can be created. In the new digital technology materials are active, designed in response to a set of performance requirements, which impose a total rethinking of old material practices. The article presents the design procedure key steps of a free-form architectural object - a column type one with connections to get an adaptive 3D surface, by using the parametric design methodology and by exploiting the properties of conventional metallic materials. In parametric design the form of the created object or space is shaped by varying the parameters values and relationships between the forms are described by mathematical equations. Digital parametric design is based on specific procedures, as shape grammars, Lindenmayer - systems, cellular automata, genetic algorithms or swarm intelligence, each of these procedures having limitations which make them applicable only in certain cases. In the paper the design process stages and the shape grammar type algorithm are presented. The generative design process relies on two basic principles: the modeling principle and the generative principle. The generative method is based on a form finding process, by creating many 3D spatial forms, using an algorithm conceived in order to apply its generating logic onto different input geometry. Once the algorithm is realized, it can be applied repeatedly to generate the geometry for a number of different input surfaces. The generated configurations are then analyzed through a technical or aesthetic selection criterion and finally the optimal solution is selected. Endless range of generative capacity of codes and algorithms used in digital design offers various conceptual possibilities and optimal solutions for both technical and environmental increasing demands of building industry and architecture. Constructions or spaces generated by parametric design can be specifically tuned, in order to meet certain technical or aesthetical requirements. The proposed approach has direct applicability in sustainable architecture, offering important potential economic advantages, a flexible design (which can be changed until the end of the design process) and unique geometric models of high performance.Keywords: parametric design, algorithmic procedures, free-form architectural object, sustainable architecture
Procedia PDF Downloads 3781307 Urban Land Cover from GF-2 Satellite Images Using Object Based and Neural Network Classifications
Authors: Lamyaa Gamal El-Deen Taha, Ashraf Sharawi
Abstract:
China launched satellite GF-2 in 2014. This study deals with comparing nearest neighbor object-based classification and neural network classification methods for classification of the fused GF-2 image. Firstly, rectification of GF-2 image was performed. Secondly, a comparison between nearest neighbor object-based classification and neural network classification for classification of fused GF-2 was performed. Thirdly, the overall accuracy of classification and kappa index were calculated. Results indicate that nearest neighbor object-based classification is better than neural network classification for urban mapping.Keywords: GF-2 images, feature extraction-rectification, nearest neighbour object based classification, segmentation algorithms, neural network classification, multilayer perceptron
Procedia PDF Downloads 3901306 Trajectory Planning Algorithms for Autonomous Agricultural Vehicles
Authors: Caner Koc, Dilara Gerdan Koc, Mustafa Vatandas
Abstract:
The fundamental components of autonomous agricultural robot design, such as having a working understanding of coordinates, correctly constructing the desired route, and sensing environmental elements, are the most important. A variety of sensors, hardware, and software are employed by agricultural robots to find these systems.These enable the fully automated driving system of an autonomous vehicle to simulate how a human-driven vehicle would respond to changing environmental conditions. To calculate the vehicle's motion trajectory using data from the sensors, this automation system typically consists of a sophisticated software architecture based on object detection and driving decisions. In this study, the software architecture of an autonomous agricultural vehicle is compared to the trajectory planning techniques.Keywords: agriculture 5.0, computational intelligence, motion planning, trajectory planning
Procedia PDF Downloads 781305 Binary Programming for Manufacturing Material and Manufacturing Process Selection Using Genetic Algorithms
Authors: Saleem Z. Ramadan
Abstract:
The material selection problem is concerned with the determination of the right material for a certain product to optimize certain performance indices in that product such as mass, energy density, and power-to-weight ratio. This paper is concerned about optimizing the selection of the manufacturing process along with the material used in the product under performance indices and availability constraints. In this paper, the material selection problem is formulated using binary programming and solved by genetic algorithm. The objective function of the model is to minimize the total manufacturing cost under performance indices and material and manufacturing process availability constraints.Keywords: optimization, material selection, process selection, genetic algorithm
Procedia PDF Downloads 4211304 Development of Algorithms for the Study of the Image in Digital Form for Satellite Applications: Extraction of a Road Network and Its Nodes
Authors: Zineb Nougrara
Abstract:
In this paper, we propose a novel methodology for extracting a road network and its nodes from satellite images of Algeria country. This developed technique is a progress of our previous research works. It is founded on the information theory and the mathematical morphology; the information theory and the mathematical morphology are combined together to extract and link the road segments to form a road network and its nodes. We, therefore, have to define objects as sets of pixels and to study the shape of these objects and the relations that exist between them. In this approach, geometric and radiometric features of roads are integrated by a cost function and a set of selected points of a crossing road. Its performances were tested on satellite images of Algeria country.Keywords: satellite image, road network, nodes, image analysis and processing
Procedia PDF Downloads 2741303 A Real-time Classification of Lying Bodies for Care Application of Elderly Patients
Authors: E. Vazquez-Santacruz, M. Gamboa-Zuniga
Abstract:
In this paper, we show a methodology for bodies classification in lying state using HOG descriptors and pressures sensors positioned in a matrix form (14 x 32 sensors) on the surface where bodies lie down. it will be done in real time. Our system is embedded in a care robot that can assist the elderly patient and medical staff around to get a better quality of life in and out of hospitals. Due to current technology a limited number of sensors is used, wich results in low-resolution data array, that will be used as image of 14 x 32 pixels. Our work considers the problem of human posture classification with few information (sensors), applying digital process to expand the original data of the sensors and so get more significant data for the classification, however, this is done with low-cost algorithms to ensure the real-time execution.Keywords: real-time classification, sensors, robots, health care, elderly patients, artificial intelligence
Procedia PDF Downloads 8661302 Energy Efficient Firefly Algorithm in Wireless Sensor Network
Authors: Wafa’ Alsharafat, Khalid Batiha, Alaa Kassab
Abstract:
Wireless sensor network (WSN) is comprised of a huge number of small and cheap devices known as sensor nodes. Usually, these sensor nodes are massively and deployed randomly as in Ad-hoc over hostile and harsh environment to sense, collect and transmit data to the needed locations (i.e., base station). One of the main advantages of WSN is that the ability to work in unattended and scattered environments regardless the presence of humans such as remote active volcanoes environments or earthquakes. In WSN expanding network, lifetime is a major concern. Clustering technique is more important to maximize network lifetime. Nature-inspired algorithms are developed and optimized to find optimized solutions for various optimization problems. We proposed Energy Efficient Firefly Algorithm to improve network lifetime as long as possible.Keywords: wireless network, SN, Firefly, energy efficiency
Procedia PDF Downloads 3891301 Coding Considerations for Standalone Molecular Dynamics Simulations of Atomistic Structures
Authors: R. O. Ocaya, J. J. Terblans
Abstract:
The laws of Newtonian mechanics allow ab-initio molecular dynamics to model and simulate particle trajectories in material science by defining a differentiable potential function. This paper discusses some considerations for the coding of ab-initio programs for simulation on a standalone computer and illustrates the approach by C language codes in the context of embedded metallic atoms in the face-centred cubic structure. The algorithms use velocity-time integration to determine particle parameter evolution for up to several thousands of particles in a thermodynamical ensemble. Such functions are reusable and can be placed in a redistributable header library file. While there are both commercial and free packages available, their heuristic nature prevents dissection. In addition, developing own codes has the obvious advantage of teaching techniques applicable to new problems.Keywords: C language, molecular dynamics, simulation, embedded atom method
Procedia PDF Downloads 3061300 Rough Neural Networks in Adapting Cellular Automata Rule for Reducing Image Noise
Authors: Yasser F. Hassan
Abstract:
The reduction or removal of noise in a color image is an essential part of image processing, whether the final information is used for human perception or for an automatic inspection and analysis. This paper describes the modeling system based on the rough neural network model to adaptive cellular automata for various image processing tasks and noise remover. In this paper, we consider the problem of object processing in colored image using rough neural networks to help deriving the rules which will be used in cellular automata for noise image. The proposed method is compared with some classical and recent methods. The results demonstrate that the new model is capable of being trained to perform many different tasks, and that the quality of these results is comparable or better than established specialized algorithms.Keywords: rough sets, rough neural networks, cellular automata, image processing
Procedia PDF Downloads 4401299 A Fast Optimizer for Large-scale Fulfillment Planning based on Genetic Algorithm
Authors: Choonoh Lee, Seyeon Park, Dongyun Kang, Jaehyeong Choi, Soojee Kim, Younggeun Kim
Abstract:
Market Kurly is the first South Korean online grocery retailer that guarantees same-day, overnight shipping. More than 1.6 million customers place an average of 4.7 million orders and add 3 to 14 products into a cart per month. The company has sold almost 30,000 kinds of various products in the past 6 months, including food items, cosmetics, kitchenware, toys for kids/pets, and even flowers. The company is operating and expanding multiple dry, cold, and frozen fulfillment centers in order to store and ship these products. Due to the scale and complexity of the fulfillment, pick-pack-ship processes are planned and operated in batches, and thus, the planning that decides the batch of the customers’ orders is a critical factor in overall productivity. This paper introduces a metaheuristic optimization method that reduces the complexity of batch processing in a fulfillment center. The method is an iterative genetic algorithm with heuristic creation and evolution strategies; it aims to group similar orders into pick-pack-ship batches to minimize the total number of distinct products. With a well-designed approach to create initial genes, the method produces streamlined plans, up to 13.5% less complex than the actual plans carried out in the company’s fulfillment centers in the previous months. Furthermore, our digital-twin simulations show that the optimized plans can reduce 3% of operation time for packing, which is the most complex and time-consuming task in the process. The optimization method implements a multithreading design on the Spring framework to support the company’s warehouse management systems in near real-time, finding a solution for 4,000 orders within 5 to 7 seconds on an AWS c5.2xlarge instance.Keywords: fulfillment planning, genetic algorithm, online grocery retail, optimization
Procedia PDF Downloads 831298 Design and Control Algorithms for Power Electronic Converters for EV Applications
Authors: Ilya Kavalchuk, Mehdi Seyedmahmoudian, Ben Horan, Aman Than Oo, Alex Stojcevski
Abstract:
The power electronic components within Electric Vehicles (EV) need to operate in several important modes. Some modes directly influence safety, while others influence vehicle performance. Given the variety of functions and operational modes required of the power electronics, it needs to meet efficiency requirements to minimize power losses. Another challenge in the control and construction of such systems is the ability to support bidirectional power flow. This paper considers the construction, operation, and feasibility of available converters for electric vehicles with feasible configurations of electrical buses and loads. This paper describes logic and control signals for the converters for different operations conditions based on the efficiency and energy usage bases.Keywords: electric vehicles, electrical machines control, power electronics, powerflow regulations
Procedia PDF Downloads 5611297 Dido: An Automatic Code Generation and Optimization Framework for Stencil Computations on Distributed Memory Architectures
Authors: Mariem Saied, Jens Gustedt, Gilles Muller
Abstract:
We present Dido, a source-to-source auto-generation and optimization framework for multi-dimensional stencil computations. It enables a large programmer community to easily and safely implement stencil codes on distributed-memory parallel architectures with Ordered Read-Write Locks (ORWL) as an execution and communication back-end. ORWL provides inter-task synchronization for data-oriented parallel and distributed computations. It has been proven to guarantee equity, liveness, and efficiency for a wide range of applications, particularly for iterative computations. Dido consists mainly of an implicitly parallel domain-specific language (DSL) implemented as a source-level transformer. It captures domain semantics at a high level of abstraction and generates parallel stencil code that leverages all ORWL features. The generated code is well-structured and lends itself to different possible optimizations. In this paper, we enhance Dido to handle both Jacobi and Gauss-Seidel grid traversals. We integrate temporal blocking to the Dido code generator in order to reduce the communication overhead and minimize data transfers. To increase data locality and improve intra-node data reuse, we coupled the code generation technique with the polyhedral parallelizer Pluto. The accuracy and portability of the generated code are guaranteed thanks to a parametrized solution. The combination of ORWL features, the code generation pattern and the suggested optimizations, make of Dido a powerful code generation framework for stencil computations in general, and for distributed-memory architectures in particular. We present a wide range of experiments over a number of stencil benchmarks.Keywords: stencil computations, ordered read-write locks, domain-specific language, polyhedral model, experiments
Procedia PDF Downloads 1291296 Similarity Solutions of Nonlinear Stretched Biomagnetic Flow and Heat Transfer with Signum Function and Temperature Power Law Geometries
Authors: M. G. Murtaza, E. E. Tzirtzilakis, M. Ferdows
Abstract:
Biomagnetic fluid dynamics is an interdisciplinary field comprising engineering, medicine, and biology. Bio fluid dynamics is directed towards finding and developing the solutions to some of the human body related diseases and disorders. This article describes the flow and heat transfer of two dimensional, steady, laminar, viscous and incompressible biomagnetic fluid over a non-linear stretching sheet in the presence of magnetic dipole. Our model is consistent with blood fluid namely biomagnetic fluid dynamics (BFD). This model based on the principles of ferrohydrodynamic (FHD). The temperature at the stretching surface is assumed to follow a power law variation, and stretching velocity is assumed to have a nonlinear form with signum function or sign function. The governing boundary layer equations with boundary conditions are simplified to couple higher order equations using usual transformations. Numerical solutions for the governing momentum and energy equations are obtained by efficient numerical techniques based on the common finite difference method with central differencing, on a tridiagonal matrix manipulation and on an iterative procedure. Computations are performed for a wide range of the governing parameters such as magnetic field parameter, power law exponent temperature parameter, and other involved parameters and the effect of these parameters on the velocity and temperature field is presented. It is observed that for different values of the magnetic parameter, the velocity distribution decreases while temperature distribution increases. Besides, the finite difference solutions results for skin-friction coefficient and rate of heat transfer are discussed. This study will have an important bearing on a high targeting efficiency, a high magnetic field is required in the targeted body compartment.Keywords: biomagnetic fluid, FHD, MHD, nonlinear stretching sheet
Procedia PDF Downloads 1621295 Advantages of Utilizing Post-Tensioned Stress Ribbon Systems in Long Span Roofs
Authors: Samih Ahmed, Guayente Minchot, Fritz King, Mikael Hallgren
Abstract:
The stress ribbon system has numerous advantages that include but are not limited to increasing overall stiffness, control deflections, and reduction of materials consumption, which in turn, reduces the load and the cost. Nevertheless, its use is usually limited to bridges, in particular, pedestrian bridges; this can be attributed to the insufficient space that buildings' usually have for end supports, and/or back- stayed cables, that can accommodate the expected high pull-out forces occurring at the cables' ends. In this work, the roof of Västerås Travel Center, which will become one of the longest cable suspended roofs in the world, was chosen as a case study. The aim was to investigate the optimal technique to model the post-tensioned stress ribbon system for the roof structure using the FEM software SAP2000 and to assess any possible reduction in the pull-out forces, deflections, and concrete stresses. Subsequently, a conventional cable suspended roof was simulated using SAP2000, and compared to the post-tension stress ribbon system in order to examine the potential of the latter. Moreover, the effects of temperature loads and support movements on the final design loads were examined. Based on the study, a few practical recommendations concerning the construction method and the iterative design process, required to meet the architectural geometrical demands, are stated by the authors. The results showed that the post-tensioned stress ribbon system reduces the concrete stresses, overall deflections, and more importantly, reduces the pull-out forces and the vertical reactions at both ends by up to 16% and 11%, respectively, which substantially reduces the design forces for the support structures. The magnitude of these reductions was found to be highly correlated to the applied prestressing force, making the size of the prestressing force a key factor in the design.Keywords: cable suspended, post-tension, roof structure, SAP2000, stress ribbon
Procedia PDF Downloads 1591294 Model Predictive Control (MPC) and Proportional-Integral-Derivative (PID) Control of Quadcopters: A Comparative Analysis
Authors: Anel Hasić, Naser Prljača
Abstract:
In the domain of autonomous or piloted flights, the accurate control of quadrotor trajectories is of paramount significance for large numbers of tasks. These adaptable aerial platforms find applications that span from high-precision aerial photography and surveillance to demanding search and rescue missions. Among the fundamental challenges confronting quadrotor operation is the demand for accurate following of desired flight paths. To address this control challenge, among others, two celebrated well-established control strategies have emerged as noteworthy contenders: Model Predictive Control (MPC) and Proportional-Integral-Derivative (PID) control. In this work, we focus on the extensive examination of MPC and PID control techniques by using comprehensive simulation studies in MATLAB/Simulink. Intensive simulation results demonstrate the performance of the studied control algorithms.Keywords: MATLAB, MPC, PID, quadcopter, simulink
Procedia PDF Downloads 721293 Evaluating Classification with Efficacy Metrics
Authors: Guofan Shao, Lina Tang, Hao Zhang
Abstract:
The values of image classification accuracy are affected by class size distributions and classification schemes, making it difficult to compare the performance of classification algorithms across different remote sensing data sources and classification systems. Based on the term efficacy from medicine and pharmacology, we have developed the metrics of image classification efficacy at the map and class levels. The novelty of this approach is that a baseline classification is involved in computing image classification efficacies so that the effects of class statistics are reduced. Furthermore, the image classification efficacies are interpretable and comparable, and thus, strengthen the assessment of image data classification methods. We use real-world and hypothetical examples to explain the use of image classification efficacies. The metrics of image classification efficacy meet the critical need to rectify the strategy for the assessment of image classification performance as image classification methods are becoming more diversified.Keywords: accuracy assessment, efficacy, image classification, machine learning, uncertainty
Procedia PDF Downloads 2121292 Optimized Cluster Head Selection Algorithm Based on LEACH Protocol for Wireless Sensor Networks
Authors: Wided Abidi, Tahar Ezzedine
Abstract:
Low-Energy Adaptive Clustering Hierarchy (LEACH) has been considered as one of the effective hierarchical routing algorithms that optimize energy and prolong the lifetime of network. Since the selection of Cluster Head (CH) in LEACH is carried out randomly, in this paper, we propose an approach of electing CH based on LEACH protocol. In other words, we present a formula for calculating the threshold responsible for CH election. In fact, we adopt three principle criteria: the remaining energy of node, the number of neighbors within cluster range and the distance between node and CH. Simulation results show that our proposed approach beats LEACH protocol in regards of prolonging the lifetime of network and saving residual energy.Keywords: wireless sensors networks, LEACH protocol, cluster head election, energy efficiency
Procedia PDF Downloads 331