Search results for: efficient energy values
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18103

Search results for: efficient energy values

17053 Designing of Induction Motor Efficiency Monitoring System

Authors: Ali Mamizadeh, Ires Iskender, Saeid Aghaei

Abstract:

Energy is one of the important issues with high priority property in the world. Energy demand is rapidly increasing depending on the growing population and industry. The useable energy sources in the world will be insufficient to meet the need for energy. Therefore, the efficient and economical usage of energy sources is getting more importance. In a survey conducted among electric consuming machines, the electrical machines are consuming about 40% of the total electrical energy consumed by electrical devices and 96% of this consumption belongs to induction motors. Induction motors are the workhorses of industry and have very large application areas in industry and urban systems like water pumping and distribution systems, steel and paper industries and etc. Monitoring and the control of the motors have an important effect on the operating performance of the motor, driver selection and replacement strategy management of electrical machines. The sensorless monitoring system for monitoring and calculating efficiency of induction motors are studied in this study. The equivalent circuit of IEEE is used in the design of this study. The terminal current and voltage of induction motor are used in this motor to measure the efficiency of induction motor. The motor nameplate information and the measured current and voltage are used in this system to calculate accurately the losses of induction motor to calculate its input and output power. The efficiency of the induction motor is monitored online in the proposed method without disconnecting the motor from the driver and without adding any additional connection at the motor terminal box. The proposed monitoring system measure accurately the efficiency by including all losses without using torque meter and speed sensor. The monitoring system uses embedded architecture and does not need to connect to a computer to measure and log measured data. The conclusion regarding the efficiency, the accuracy and technical and economical benefits of the proposed method are presented. The experimental verification has been obtained on a 3 phase 1.1 kW, 2-pole induction motor. The proposed method can be used for optimal control of induction motors, efficiency monitoring and motor replacement strategy.

Keywords: induction motor, efficiency, power losses, monitoring, embedded design

Procedia PDF Downloads 348
17052 Energetic and Exergetic Evaluation of Box-Type Solar Cookers Using Different Insulation Materials

Authors: A. K. Areamu, J. C. Igbeka

Abstract:

The performance of box-type solar cookers has been reported by several researchers but little attention was paid to the effect of the type of insulation material on the energy and exergy efficiency of these cookers. This research aimed at evaluating the energy and exergy efficiencies of the box-type cookers containing different insulation materials. Energy and exergy efficiencies of five box-type solar cookers insulated with maize cob, air (control), maize husk, coconut coir and polyurethane foam respectively were obtained over a period of three years. The cookers were evaluated using water heating test procedures in determining the energy and exergy analysis. The results were subjected to statistical analysis using ANOVA. The result shows that the average energy input for the five solar cookers were: 245.5, 252.2, 248.7, 241.5 and 245.5J respectively while their respective average energy losses were: 201.2, 212.7, 208.4, 189.1 and 199.8J. The average exergy input for five cookers were: 228.2, 234.4, 231.1, 224.4 and 228.2J respectively while their respective average exergy losses were: 223.4, 230.6, 226.9, 218.9 and 223.0J. The energy and exergy efficiency was highest in the cooker with coconut coir (37.35 and 3.90% respectively) in the first year but was lowest for air (11 and 1.07% respectively) in the third year. Statistical analysis showed significant difference between the energy and exergy efficiencies over the years. These results reiterate the importance of a good insulating material for a box-type solar cooker.

Keywords: efficiency, energy, exergy, heating insolation

Procedia PDF Downloads 367
17051 Electrocatalytic Properties of Ru-Pd Bimetal Quantum Dots/TiO₂ Nanotube Arrays Electrodes Composites with Double Schottky Junctions

Authors: Shiying Fan, Xinyong Li

Abstract:

The development of highly efficient multifunctional catalytic materials towards HER, ORR and Photo-fuel cell applications in terms of combined electrochemical and photo-electrochemical principles have currently confronted with dire challenges. In this study, novel palladium (Pd) and ruthenium (Ru) Bimetal Quantum Dots (BQDs) co-anchored on Titania nanotube (NTs) arrays electrodes have been successfully constructed by facial two-step electrochemical strategy. Double Schottky junctions with superior performance in electrocatalytic (EC) hydrogen generations and solar fuel cell energy conversions (PE) have been found. Various physicochemical techniques including UV-vis spectroscopy, TEM/EDX/HRTEM, SPV/TRV and electro-chemical strategy including EIS, C-V, I-V, and I-T, etc. were chronically utilized to systematically characterize the crystal-, electronic and micro-interfacial structures of the composites with double Schottky junction, respectively. The characterizations have implied that the marvelous enhancement of separation efficiency of electron-hole pairs generations is mainly caused by the Schottky-barriers within the nanocomposites, which would greatly facilitate the interfacial charge transfer for H₂ generations and solar fuel cell energy conversions. Moreover, the DFT calculations clearly indicated that the oriented growth of Ru and Pd bimetal atoms at the anatase (101) surface is mainly driven by the interaction between Ru/Pd and surface atoms, and the most active site for bimetal Ru and Pd adatoms on the perfect TiO₂ (101) surface is the 2cO-6cTi-3cO bridge sites and the 2cO-bridge sites with the highest adsorption energy of 9.17 eV. Furthermore, the electronic calculations show that in the nanocomposites, the number of impurity (i.e., co-anchored Ru-Pd BQDs) energy levels near Fermi surface increased and some were overlapped with original energy level, promoting electron energy transition and reduces the band gap. Therefore, this work shall provide a deeper insight for the molecular design of Bimetal Quantum Dots (BQDs) assembled onto Tatiana NTs composites with superior performance for electrocatalytic hydrogen productions and solar fuel cell energy conversions (PE) simultaneously.

Keywords: eletrocatalytic, Ru-Pd bimetallic quantum dots, titania nanotube arrays, double Schottky junctions, hydrogen production

Procedia PDF Downloads 143
17050 The Impact of Rising Architectural Façade in Improving Terms of the Physical Urban Ambience Inside the Free Space for Urban Fabric - the Street- Case Study the City of Biskra

Authors: Rami Qaoud, Alkama Djamal

Abstract:

When we ask about the impact of rising architectural façade in improving the terms physical urban ambiance inside the free space for urban fabric. Considered as bringing back life and culture values and civilization to these cities. And This will be the theme of this search. Where we have conducted the study about the relationship that connects the empty and full of in the urban fabric in terms of the density construction and the architectural elevation of its façade to street view. In this framework, we adopted in the methodology of this research the technical field experience. And according to three types of Street engineering(H≥2W, H=W, H≤0.5W). Where we conducted a field to raise the values of the physical ambiance according to three main axes of ambiance. The first axe 1 - Thermal ambiance. Where the temperature values were collected, relative humidity, wind speed, temperature of surfaces (the outer wall-ground). The second axe 2- Visual ambiance. Where we took the values of natural lighting levels during the daytime. The third axe 3- Acoustic ambiance . Where we take sound values during the entire day. That experience, which lasted for three consecutive days, and through six stations of measuring, where it has been one measuring station for each type of the street engineering and in two different way street. Through the obtained results and with the comparison of those values. We noticed the difference between this values and the three type of street engineering. Where the difference the calorific values of air equal 4 ° C , in terms of the visual ambiance the difference in the direct lighting natural periods amounted six hours between the three types of street engineering. As well in terms of sound ambience, registered a difference in values of up 15 (db) between the three types. This difference in values indicates The impact of rising architectural façade in improving the physical urban ambiance within the free field - street- for urban fabric.

Keywords: street, physical urban ambience, rising architectural façade, urban fabric

Procedia PDF Downloads 289
17049 Reliability Based Topology Optimization: An Efficient Method for Material Uncertainty

Authors: Mehdi Jalalpour, Mazdak Tootkaboni

Abstract:

We present a computationally efficient method for reliability-based topology optimization under material properties uncertainty, which is assumed to be lognormally distributed and correlated within the domain. Computational efficiency is achieved through estimating the response statistics with stochastic perturbation of second order, using these statistics to fit an appropriate distribution that follows the empirical distribution of the response, and employing an efficient gradient-based optimizer. The proposed algorithm is utilized for design of new structures and the changes in the optimized topology is discussed for various levels of target reliability and correlation strength. Predictions were verified thorough comparison with results obtained using Monte Carlo simulation.

Keywords: material uncertainty, stochastic perturbation, structural reliability, topology optimization

Procedia PDF Downloads 605
17048 Assessment of the Relationship Between Energy Price Dynamics and Green Growth in Sub-Saharan Africa

Authors: Christopher Ikechukwu Ifeacho

Abstract:

The paper examines the relationship between energy price dynamics and green growth in Sub Sahara African Countries. The quest for adopting green energy in order to improve the green growth that can engender sustainability, and stability has received more attention from researchers in recent times. This study uses a panel Autoregressive distributed lag approach to investigate this relationship. Findings from the result showed that energy price dynamics and exchange rate have more short-run significant impacts on green growth in individual countries rather than the pooled result. Furthermore, the long-run result confirmed that inflation and capital have a significant long-run relationship with green growth. The causality test result revealed the existence of a bi-directional relationship between green growth and energy price dynamics. The study recommends caution in a currency devaluation and improvement in renewable energy production in the Sub Sahara Africa in order to achieve sustainable green growth.

Keywords: green growth, energy price dynamics, Sub Sahara Africa., sustainability

Procedia PDF Downloads 22
17047 Implemented Cascade with Feed Forward by Enthalpy Balance Superheated Steam Temperature Control for a Boiler with Distributed Control System

Authors: Kanpop Saion, Sakreya Chitwong

Abstract:

Control of superheated steam temperature in the steam generation is essential for the efficiency safety and increment age of the boiler. Conventional cascade PID temperature control in the super heater is known to be efficient to compensate disturbance. However, the complex of thermal power plant due to nonlinearity, load disturbance and time delay of steam of superheater system is bigger than other control systems. The cascade loop with feed forward steam temperature control with energy balance compensator using thermodynamic model has been used for the compensation the complex structure of superheater. In order to improve the performance of steam temperature control. The experiment is implemented for 100% load steady and load changing state. The cascade with feed forward with energy balance steam temperature control has stabilized the system as well.

Keywords: cascade with feed forward, boiler, superheated steam temperature control, enthalpy balance

Procedia PDF Downloads 307
17046 Shifting of Global Energy Security: A Comparative Analysis of Indonesia and China’s Renewable Energy Policies

Authors: Widhi Hanantyo Suryadinata

Abstract:

Efforts undertaken by Indonesia and China to shift the strategies and security of renewable energy on a global stage involve approaches through policy construction related to rare minerals processing or value-adding in Indonesia and manufacturing policies through the New Energy Vehicles (NEVs) policy in China. Both policies encompass several practical regulations and policies that can be utilized for the implementation of Indonesia and China's grand efforts and ideas. Policy development in Indonesia and China can be analyzed using a comparative analysis method, as well as employing a pyramid illustration to identify policy construction phases based on the real conditions of the domestic market and implemented policies. This approach also helps to identify the potential integration of policies needed to enhance the policy development phase of a country within the pyramid. It also emphasizes the significance of integration policy to redefine renewable energy strategy and security on the global stage.

Keywords: global renewable energy security, global energy security, policy development, comparative analysis, shifting of global energy security, Indonesia, China

Procedia PDF Downloads 69
17045 Low Energy Mechanism in Pelvic Trauma at Elderly

Authors: Ravid Yinon

Abstract:

Introduction: Pelvic trauma causes high mortality, particularly among the elderly population. Pelvic injury ranges from low-energy incidents such as falls to high-energy trauma like motor vehicle accidents. The mortality rate among high-energy trauma patients is higher, as can be expected. The elderly population is more vulnerable to pelvic trauma even at low energy mechanisms due to the fragility and diminished physiological reserve of these patients. The aim of this study is to examine whether there is a higher long-term mortality in pelvic injuries in the elderly from the low-energy mechanism than those injured in high energy. Methods: A retrospective cohort study was conducted in a level 1 trauma center with injured patients aged 65 years and over with pelvic trauma. The patients were divided into two groups of low and high-energy mechanisms of injury. Multivariate analysis was conducted to characterize the differences between the groups. Results: There were 585 consecutive injured patients over the age of 65 with a documented pelvic injury who were treated at the primary trauma center between 2008-2020. The injured in the high energy group were younger (mean HE- 75.18, LE-80.73), with fewer comorbidities (mean 0.78 comorbidities at HE and 1.28 at LE), more men (52.6% at HE and 27.4% at LE), were consumed more treatments facilities such as angioembolization, ICU admission, emergency surgeries and blood products transfusion and higher mortality rate at admission (HE- 19/133, 14.28%, LE- 10/452, 2.21%) compared to the low energy group. However, in a long-term follow-up of one year after the injury, mortality in the low-energy group was significantly higher (HE- 14/114, 12.28%, LE- 155/442, 35.06%). Discussion: Although it can be expected that in the mechanism of high energy, the mortality rate in the long term would be higher, it was found that mortality at the low energy patient was higher. Apparently, low-energy pelvic injury in geriatric patients is a measure of frailty in these patients, causes injury to more frail and morbid patients, and is a predictor of mortality in this population in the long term. Conclusion: The long-term follow-up of injured elderly with pelvic trauma should be more intense, and the healthcare provider should put more emphasis on the rehabilitation of these special patient populations in an attempt to prevent long-term mortality.

Keywords: pelvic trauma, elderly trauma, high energy trauma, low energy trauma

Procedia PDF Downloads 52
17044 Optimization of Energy Harvesting Systems for RFID Applications

Authors: P. Chambe, B. Canova, A. Balabanian, M. Pele, N. Coeur

Abstract:

To avoid battery assisted tags with limited lifetime batteries, it is proposed here to replace them by energy harvesting systems, able to feed from local environment. This would allow total independence to RFID systems, very interesting for applications where tag removal from its location is not possible. Example is here described for luggage safety in airports, and is easily extendable to similar situation in terms of operation constraints. The idea is to fix RFID tag with energy harvesting system not only to identify luggage but also to supply an embedded microcontroller with a sensor delivering luggage weight making it impossible to add or to remove anything from the luggage during transit phases. The aim is to optimize the harvested energy for such RFID applications, and to study in which limits these applications are theoretically possible. Proposed energy harvester is based on two energy sources: piezoelectricity and electromagnetic waves, so that when the luggage is moving on ground transportation to airline counters, the piezo module supplies the tag and its microcontroller, while the RF module operates during luggage transit thanks to readers located along the way. Tag location on the luggage is analyzed to get best vibrations, as well as harvester better choice for optimizing the energy supply depending on applications and the amount of energy harvested during a period of time. Effects of system parameters (RFID UHF frequencies, limit distance between the tag and the antenna necessary to harvest energy, produced voltage and voltage threshold) are discussed and working conditions for such system are delimited.

Keywords: RFID tag, energy harvesting, piezoelectric, EM waves

Procedia PDF Downloads 452
17043 Energy in the Nexus of Defense and Border Security: Securing Energy Deposits in the Natuna Islands of Indonesia

Authors: Debby Rizqie Amelia Gustin, Purnomo Yusgiantoro

Abstract:

Hydrocarbon energy is still pivotal to today’s economy, but its existence is continually declining. Thus, preserving future energy supply has become the national interest of many countries, which they cater in various way, from importing to expansion and occupation. Underwater of Natuna islands in Indonesia deposits great amount of natural gas reserved, numbered to 46 TCF (trillion cubic feet), which is highly potential to meet Indonesia future energy demand. On the other hand, there could be a possibility that others also seek this natural resources. Natuna is located in the borderline of Indonesia, directly adjacent to the South China Sea, an area which is prolonged to conflict. It is a challenge for Indonesia government to preserve their energy deposit in Natuna islands and to response accordingly if the tension in South China Sea rises. This paper examines that nowadays defense and border security is not only a matter of guarding a country from foreign invasion, but also securing its resources accumulated on the borderline. Countries with great amount of energy deposits on their borderline need to build up their defense capacity continually, to ensure their territory along with their energy deposits is free from any interferences.

Keywords: border security, defense, energy, national interest, threat

Procedia PDF Downloads 482
17042 Effect of White Roofing on Refrigerated Buildings

Authors: Samuel Matylewicz, K. W. Goossen

Abstract:

The deployment of white or cool (high albedo) roofing is a common energy savings recommendation for a variety of buildings all over the world. Here, the effect of a white roof on the energy savings of an ice rink facility in the northeastern US is determined by measuring the effect of solar irradiance on the consumption of the rink's ice refrigeration system. The consumption of the refrigeration system was logged over a year, along with multiple weather vectors, and a statistical model was applied. The experimental model indicates that the expected savings of replacing the existing grey roof with a white roof on the consumption of the refrigeration system is only 4.7 %. This overall result of the statistical model is confirmed with isolated instances of otherwise similar weather days, but cloudy vs. sunny, where there was no measurable difference in refrigeration consumption up to the noise in the local data, which was a few percent. This compares with a simple theoretical calculation that indicates 30% savings. The difference is attributed to a lack of convective cooling of the roof in the theoretical model. The best experimental model shows a relative effect of the weather vectors dry bulb temperature, solar irradiance, wind speed, and relative humidity on refrigeration consumption of 1, 0.026, 0.163, and -0.056, respectively. This result can have an impact on decisions to apply white roofing to refrigerated buildings in general.

Keywords: cool roofs, solar cooling load, refrigerated buildings, energy-efficient building envelopes

Procedia PDF Downloads 129
17041 Research on the Feasibility of Evaluating Low-Temperature Cracking Performance of Asphalt Mixture Using Fracture Energy

Authors: Tao Yang, Yongli Zhao

Abstract:

Low-temperature cracking is one of the major challenges for asphalt pavement in the cold region. Fracture energy could determine from various test methods, which is a commonly used parameter to evaluate the low-temperature cracking resistance of asphalt mixture. However, the feasibility of evaluating the low-temperature cracking performance of asphalt mixture using fracture energy is not investigated comprehensively. This paper aims to verify whether fracture energy is an appropriate parameter to evaluate the low-temperature cracking performance. To achieve this goal, this paper compared the test results of thermal stress restrained specimen test (TSRST) and semi-circular bending test (SCB) of asphalt mixture with different types of aggregate, TSRST and indirect tensile test (IDT) of asphalt mixture with different additives, and single-edge notched beam test (SENB) and TSRST of asphalt mixture with different asphalt. Finally, the correlation between in-suit cracking performance and fracture energy was surveyed. The experimental results showed the evaluation result of critical cracking temperature and fracture energy are not always consistent; the in-suit cracking performance is also not correlated well with fracture energy. These results indicated that it is not feasible to evaluate low-temperature performance by fracture energy. Then, the composition of fracture energy of TSRST, SCB, disk-shaped compact tension test (DCT), three-point bending test (3PB) and IDT was analyzed. The result showed: the area of thermal stress versus temperature curve is the multiple of fracture energy and could be used to represent fracture energy of TSRST, as the multiple is nearly equal among different asphalt mixtures for a specific specimen; the fracture energy, determined from TSRST, SCB, DCT, 3PB, SENB and IDT, is mainly the surface energy that forms the fracture face; fracture energy is inappropriate to evaluate the low-temperature cracking performance of asphalt mixture, as the relaxation/viscous performance is not considered; if the fracture energy was used, it is recommended to combine this parameter with an index characterizing the relaxation or creep performance of asphalt mixture.

Keywords: asphalt pavement, cold region, critical cracking temperature, fracture energy, low-temperature cracking

Procedia PDF Downloads 187
17040 Karyotyping the Date Palm (Phoenix dactylifera L.)

Authors: Abdullah M. Alzahrani

Abstract:

The karyotypes of Khalas (KH), Sukkary (SK), Sheeshi (SS), Shibeebi (SB) and Sillije (SJ) date palm cultivars were investigated. Data showed no variation in chromosome number, 2n = 36, 34 autosomes in addition to XX in females and XY in males. Mean autosomes length ranged from 3.85-9.93 μm and 3.71-2.73 μm for X and Y chromosomes, respectively. The formula of female date palm karyotype was 8m + 4sm +2st + 4t, and submedian Y chromosome. Relative chromosome length ranged from 3.3- 9.38 μm. SS cultivar showed high asymmetry levels by scoring low values of Syi (45.51), TF (42.8) and high values for A1 (0.53), A (0.41) and AI (0.29). Syi developed an inverse relation with A1 and A while A exhibited a direct correlation with A1. Cultivars SK, SB and SJ score medium values of Syi, A1, AI and A. KH cultivar exhibited high symmetry by scoring highest values of Syi (53.68), TF (51.81) and lowest values of A1 (0.44), A (0.34) and AI (0.18). Higher DI value was obtained in SB cultivar (1.34) followed by SJ (1.15) and low DI scores of 0.99, 0.86 and 0.71 were detected in KH, SS and SK, respectively. Stebbins classification assorted SS as 3B and the other cultivars as 2B, insuring the evolution and asymmetry of SS compared to the other karyotypes. Scatter diagram of Syi-A1 couple has the advantage of revealing high degree of sensitivity to present karyotype interrelationships, followed by AI-A and CVCL-CVCI couples.

Keywords: Karyotype, date palm, Khalas, Sukkary, Sheeshi

Procedia PDF Downloads 369
17039 Influence of Driving Strategy on Power and Fuel Consumption of Lightweight PEM Fuel Cell Vehicle Powertrain

Authors: Suhadiyana Hanapi, Alhassan Salami Tijani, W. A. N Wan Mohamed

Abstract:

In this paper, a prototype PEM fuel cell vehicle integrated with a 1 kW air-blowing proton exchange membrane fuel cell (PEMFC) stack as a main power sources has been developed for a lightweight cruising vehicle. The test vehicle is equipped with a PEM fuel cell system that provides electric power to a brushed DC motor. This vehicle was designed to compete with industrial lightweight vehicle with the target of consuming least amount of energy and high performance. Individual variations in driving style have a significant impact on vehicle energy efficiency and it is well established from the literature. The primary aim of this study was to assesses the power and fuel consumption of a hydrogen fuel cell vehicle operating at three difference driving technique (i.e. 25 km/h constant speed, 22-28 km/h speed range, 20-30 km/h speed range). The goal is to develop the best driving strategy to maximize performance and minimize fuel consumption for the vehicle system. The relationship between power demand and hydrogen consumption has also been discussed. All the techniques can be evaluated and compared on broadly similar terms. Automatic intelligent controller for driving prototype fuel cell vehicle on different obstacle while maintaining all systems at maximum efficiency was used. The result showed that 25 km/h constant speed was identified for optimal driving with less fuel consumption.

Keywords: prototype fuel cell electric vehicles, energy efficient, control/driving technique, fuel economy

Procedia PDF Downloads 441
17038 Effect of Orientation of the Wall Window on Energy Saving under Clear Sky Conditions

Authors: Madhu Sudan, G. N. Tiwari

Abstract:

In this paper, an attempt has been made to analyze the effect of wall window orientation on Daylight Illuminance Ratio (DIR) and energy saving in a building known as “SODHA BERS COMPLEX (SBC)” at Varanasi, UP, India. The building has been designed incorporating all passive concepts for thermal comfort as well daylighting concepts to maximize the use of natural daylighting for the occupants in the day to day activities. The annual average DIR and the energy saving has been estimated by using the DIR model for wall window with different orientations under clear sky condition. It has been found that for south oriented window the energy saving per square meter is more compared to the other orientations due to the higher level of solar insolation for the south window in northern hemisphere whereas energy saving potential is minimum for north oriented wall window. The energy saving potential was 26%, 81% and 51% higher for east, south and west oriented window in comparison to north oriented window. The average annual DIR has same trends of variation as the annual energy saving and it is maximum for south oriented window and minimum for north oriented window.

Keywords: clear sky, daylight factor, energy saving, wall window

Procedia PDF Downloads 407
17037 Mapping of Electrical Energy Consumption Yogyakarta Province in 2014-2025

Authors: Alfi Al Fahreizy

Abstract:

Yogyakarta is one of the provinces in Indonesia that often get a power outage because of high load electrical consumption. The authors mapped the electrical energy consumption [GWh] for the province of Yogyakarta in 2014-2025 using LEAP (Long-range Energy Alternatives Planning system) software. This paper use BAU (Business As Usual) scenario. BAU scenario in which the projection is based on the assumption that growth in electricity consumption will run as normally as before. The goal is to be able to see the electrical energy consumption in the household sector, industry , business, social, government office building, and street lighting. The data is the data projected statistical population and consumption data electricity [GWh] 2010, 2011, 2012 in Yogyakarta province.

Keywords: LEAP, energy consumption, Yogyakarta, BAU

Procedia PDF Downloads 598
17036 Effect of Evaporator Temperature on the Performance of Water Desalination/Refrigeration Adsorption System Using AQSOA-ZO2

Authors: Peter G. Youssef, Saad M. Mahmoud, Raya K. AL-Dadah

Abstract:

Many water desalination technologies have been developed but in general they are energy intensive and have high cost and adverse environmental impact. Recently, adsorption technology for water desalination has been investigated showing the potential of using low temperature waste heat (50-85oC) thus reducing energy consumption and CO2 emissions. This work mathematically compares the performance of an adsorption cycle that produces two useful effects namely, fresh water and cooling using two different adsorbents, silica-gel and an advanced zeolite material AQSOA-ZO2, produced by Mitsubishi plastics. It was found that at low chilled water temperatures, typically below 20oC, the AQSOA-Z02 is more efficient than silica-gel as the cycle can produce 5.8 m3 of fresh water per day and 50.1 Rton of cooling per tonne of AQSOA-ZO2. Above 20oC silica-gel is still better as the cycle production reaches 8.4 m3 per day and 62.4 Rton per tonne of silica-gel. These results show the potential of using the AQSOA-Z02 at low chilled water temperature for water desalination and cooling applications.

Keywords: adsorption, desalination, refrigeration, seawater

Procedia PDF Downloads 495
17035 Research on Modern Semiconductor Converters and the Usage of SiC Devices in the Technology Centre of Ostrava

Authors: P. Vaculík, P. Kaňovský

Abstract:

The following article presents Technology Centre of Ostrava (TCO) in the Czech Republic. Describes the structure and main research areas realized by the project ENET-Energy Units for Utilization of non-traditional Energy Sources. More details are presented from the research program dealing with transformation, accumulation, and distribution of electric energy. Technology Centre has its own energy mix consisting of alternative sources of fuel sources that use of process gases from the storage part and also the energy from distribution network. The article will focus on the properties and application possibilities SiC semiconductor devices for power semiconductor converter for photo-voltaic systems.

Keywords: SiC, Si, technology centre of Ostrava, photovoltaic systems, DC/DC Converter, simulation

Procedia PDF Downloads 610
17034 Expounding on the Role of Sustainability Values (SVs) on Consumers’ Switching Intentions Regarding Disruptive 5G Technology in China

Authors: Sayed Kifayat Shah, Tang Zhongjun, Mohammad Ahmad, Sohaib Mostafa

Abstract:

This article investigates consumer’s intention to shift to 5G in the light of disruptive technology innovation. To switch from 4G (Existing) technology to 5G (Disruptive) technology requires not just economic benefits and costs but involves other values too, which aren't yet experienced in the framework of technology innovation. This study extended the valued adaptation (VAM) model by proposing the sustainability values (SVs) construct. The model was examined on data from 361 Chinese consumers using the partial least squares-based structural equation modelling (PLS-SEM) technique. The outcomes prove the significant correlation of sustainability values (SVs) which influences consumer’s switching intentions toward 5G disruptive technology. The findings of this research will be helpful to telecoms firms in developing consumer retention strategies. Some limitations and the importance of the research for scholars and managers are also discussed.

Keywords: value adaptation model (VAM), sustainability values (SVs), disruptive 5G technology, switching intentions (SI), partial least squares-based structural equation modelling (PLS-SEM)

Procedia PDF Downloads 148
17033 Improving the Crashworthiness Characteristics of Long Steel Circular Tubes Subjected to Axial Compression by Inserting a Helical Spring

Authors: Mehdi Tajdari, Farzad Mokhtarnejad, Fatemeh Moradi, Mehdi Najafizadeh

Abstract:

Nowadays, energy absorbing devices have been widely used in all vehicles and moving parts such as railway couches, aircraft, ships and lifts. The aim is to protect these structures from serious damages while subjected to impact loads, or to minimize human injuries while collision is occurred in transportation systems. These energy-absorbing devices can dissipate kinetic energy in a wide variety of ways like friction, facture, plastic bending, crushing, cyclic plastic deformation and metal cutting. On the other hand, various structures may be used as collapsible energy absorbers. Metallic cylindrical tubes have attracted much more attention due to their high stiffness and strength combined with the low weight and ease of manufacturing process. As a matter of fact, favorable crash worthiness characteristics for energy dissipation purposes can be achieved from axial collapse of tubes while they crush progressively in symmetric modes. However, experimental and theoretical results have shown that depending on various parameters such as tube geometry, material properties of tube, boundary and loading conditions, circular tubes buckle in different modes of deformation, namely, diamond and Euler collapsing modes. It is shown that when the tube length is greater than the critical length, the tube deforms in overall Euler buckling mode, which is an inefficient mode of energy absorption and needs to be avoided in crash worthiness applications. This study develops a new method with the aim of improving energy absorption characteristics of long steel circular tubes. Inserting a helical spring into the tubes is proved experimentally to be an efficient solution. In fact when a long tube is subjected to axial compression load, the spring prevents of undesirable Euler or diamond collapsing modes. This is because the spring reinforces the internal wall of tubes and it causes symmetric deformation in tubes. In this research three specimens were prepared and three tests were performed. The dimensions of tubes were selected so that in axial compression load buckling is occurred. In the second and third tests a spring was inserted into tubes and they were subjected to axial compression load in quasi-static and impact loading, respectively. The results showed that in the second and third tests buckling were not happened and the tubes deformed in symmetric modes which are desirable in energy absorption.

Keywords: energy absorption, circular tubes, collapsing deformation, crashworthiness

Procedia PDF Downloads 340
17032 Life Cycle Assessment of Residential Buildings: A Case Study in Canada

Authors: Venkatesh Kumar, Kasun Hewage, Rehan Sadiq

Abstract:

Residential buildings consume significant amounts of energy and produce a large amount of emissions and waste. However, there is a substantial potential for energy savings in this sector which needs to be evaluated over the life cycle of residential buildings. Life Cycle Assessment (LCA) methodology has been employed to study the primary energy uses and associated environmental impacts of different phases (i.e., product, construction, use, end of life, and beyond building life) for residential buildings. Four different alternatives of residential buildings in Vancouver (BC, Canada) with a 50-year lifespan have been evaluated, including High Rise Apartment (HRA), Low Rise Apartment (LRA), Single family Attached House (SAH), and Single family Detached House (SDH). Life cycle performance of the buildings is evaluated for embodied energy, embodied environmental impacts, operational energy, operational environmental impacts, total life-cycle energy, and total life cycle environmental impacts. Estimation of operational energy and LCA are performed using DesignBuilder software and Athena Impact estimator software respectively. The study results revealed that over the life span of the buildings, the relationship between the energy use and the environmental impacts are identical. LRA is found to be the best alternative in terms of embodied energy use and embodied environmental impacts; while, HRA showed the best life-cycle performance in terms of minimum energy use and environmental impacts. Sensitivity analysis has also been carried out to study the influence of building service lifespan over 50, 75, and 100 years on the relative significance of embodied energy and total life cycle energy. The life-cycle energy requirements for SDH is found to be a significant component among the four types of residential buildings. The overall disclose that the primary operations of these buildings accounts for 90% of the total life cycle energy which far outweighs minor differences in embodied effects between the buildings.

Keywords: building simulation, environmental impacts, life cycle assessment, life cycle energy analysis, residential buildings

Procedia PDF Downloads 474
17031 Heritage Buildings an Inspiration for Energy Conservation under Solar Control – a Case Study of Hadoti Region of India.

Authors: Abhinav Chaturvedi, Joohi Chaturvedi, Renu Chaturvedi

Abstract:

With rapid urbanization and growth of population, more buildings are require to be constructed to meet the increasing demand of the shelter. 80 % of the world population is living in developing countries, but the adequate energy supplied to only 30% of it. In India situation get little more difficult as majority of the villages of India are still deprived of energy. 1/3 of the Indian household does not have energy supply. So there is big gap between energy demand and supply. Moreover India is producing around 65 % of the energy from Non – Renewable sources and 25 % of the Energy is imported in the form of oil and gas and only 10% of the total, is generated from other sources like solar power, wind power etc. Present modern structures are big energy consumers as they are consuming 40 % of the total energy in providing comfort conditions to the users, in from of heating and cooling,5 % in Building Construction, 20 % in transportation and 20 % in industrial process and 10 % in other processes. If we minimize this Heating and Cooling and lighting load of the building we can conserve huge amount of energy for the future. In history, buildings do not have artificial systems of cooling or heating. These buildings, especially in Hadoti Region which have Semi Arid Climatic conditions, are provided with Solar Passive Design Techniques that is the reason of comfort inside the buildings. So if we use some appropriate elements of these heritage structures, in our present age building design we can find some certain solution to energy crises. Present paper describes Various Solar Passive design techniques used in past, and the same could be used in present to reduce the consumption of energy.

Keywords: energy conservation, Hadoti region, solar passive design techniques , semi - arid climatic condition

Procedia PDF Downloads 475
17030 Human Gait Recognition Using Moment with Fuzzy

Authors: Jyoti Bharti, Navneet Manjhi, M. K.Gupta, Bimi Jain

Abstract:

A reliable gait features are required to extract the gait sequences from an images. In this paper suggested a simple method for gait identification which is based on moments. Moment values are extracted on different number of frames of gray scale and silhouette images of CASIA database. These moment values are considered as feature values. Fuzzy logic and nearest neighbour classifier are used for classification. Both achieved higher recognition.

Keywords: gait, fuzzy logic, nearest neighbour, recognition rate, moments

Procedia PDF Downloads 758
17029 Evolution of Germany’s Feed-in Tariff Policy

Authors: Gaafar Muhammed, N. T. Ersoy

Abstract:

The role of electricity in the economic development of any country is undeniable. The main goal of utilizing renewable sources in electricity generation, especially in the emerging countries, is to improve electricity access, economic development and energy sustainability. Germany’s recent transition from conventional to renewable energy technologies is overwhelming, this might not be associated with its abundant natural resources but owing to the policies in place. In line with the fast economic and technological developments recorded in recent years, Germany currently produces approximately 1059 GW of its energy from renewable sources. Hence, at the end of 2016, Germany is among the world leaders in terms of installed renewable energy capacity. As one of the most important factors that lead to renewable energy utilization in any nation is an effective policy, this study aims at examining the effect of policies on renewable energy (RE) development in Germany. Also, the study will focus on the evolution of the adopted feed-in tariff policies, as this evolution has affected the renewable energy capacity in Germany over a period of 15 years (2000 to 2015). The main contribution of the study is to establish a link between the feed-in tariff and the increase of RE in Germany’s energy mix. This is done by analyzing the characteristics of various feed-in tariff mechanisms adopted through the years. These characteristics include the feed-in-tariff rate, degression, special conditions, supported technology, etc. Then, the renewable energy development in Germany has been analyzed through the years along with the targets and the progress in reaching these targets. The study reveals that Germany’s renewable energy support policies (especially feed-in tariff) lead to several benefits and contribute towards the targets existing for renewable energy.

Keywords: feed-in tariff, Germany, policy, penewable energy

Procedia PDF Downloads 290
17028 Assessment of Obesity Parameters in Terms of Metabolic Age above and below Chronological Age in Adults

Authors: Orkide Donma, Mustafa M. Donma

Abstract:

Chronologic age (CA) of individuals is closely related to obesity and generally affects the magnitude of obesity parameters. On the other hand, close association between basal metabolic rate (BMR) and metabolic age (MA) is also a matter of concern. It is suggested that MA higher than CA is the indicator of the need to improve the metabolic rate. In this study, the aim was to assess some commonly used obesity parameters, such as obesity degree, visceral adiposity, BMR, BMR-to-weight ratio, in several groups with varying differences between MA and CA values. The study comprises adults, whose ages vary between 18 and 79 years. Four groups were constituted. Group 1, 2, 3 and 4 were composed of 55, 33, 76 and 47 adults, respectively. The individuals exhibiting -1, 0 and +1 for their MA-CA values were involved in Group 1, which was considered as the control group. Those, whose MA-CA values varying between -5 and -10 participated in Group 2. Those, whose MAs above their real ages were divided into two groups [Group 3 (MA-CA; from +5 to + 10) and Group 4 (MA-CA; from +11 to + 12)]. Body mass index (BMI) values were calculated. TANITA body composition monitor using bioelectrical impedance analysis technology was used to obtain values for obesity degree, visceral adiposity, BMR and BMR-to-weight ratio. The compiled data were evaluated statistically using a statistical package program; SPSS. Mean ± SD values were determined. Correlation analyses were performed. The statistical significance degree was accepted as p < 0.05. The increase in BMR was positively correlated with obesity degree. MAs and CAs of the groups were 39.9 ± 16.8 vs 39.9 ± 16.7 years for Group 1, 45.0 ± 15.3 vs 51.4 ± 15.7 years for Group 2, 47.2 ± 12.7 vs 40.0 ± 12.7 years for Group 3, and 53.6 ± 14.8 vs 42 ± 14.8 years for Group 4. BMI values of the groups were 24.3 ± 3.6 kg/m2, 23.2 ± 1.7 kg/m2, 30.3 ± 3.8 kg/m2, and 40.1 ± 5.1 kg/m2 for Group 1, 2, 3 and 4, respectively. Values obtained for BMR were 1599 ± 328 kcal in Group 1, 1463 ± 198 kcal in Group 2, 1652 ± 350 kcal in Group 3, and 1890 ± 360 kcal in Group 4. A correlation was observed between BMR and MA-CA values in Group 1. No correlation was detected in other groups. On the other hand, statistically significant correlations between MA-CA values and obesity degree, BMI as well as BMR/weight were found in Group 3 and in Group 4. It was concluded that upon consideration of these findings in terms of MA-CA values, BMR-to-weight ratio was found to be much more useful indicator of the severe increase in obesity development than BMR. Also, the lack of associations between MA and BMR as well as BMR-to-weight ratio emphasize the importance of consideration of MA-CA values rather than MA.

Keywords: basal metabolic rate, basal metabolic rate-to-weight-ratio, chronologic age, metabolic age, obesity degree

Procedia PDF Downloads 97
17027 An Integrated Power Generation System Design Developed between Solar Energy-Assisted Dual Absorption Cycles

Authors: Asli Tiktas, Huseyin Gunerhan, Arif Hepbasli

Abstract:

Solar energy, with its abundant and clean features, is one of the prominent renewable energy sources in multigeneration energy systems where various outputs, especially power generation, are produced together. In the literature, concentrated solar energy systems, which are an expensive technology, are mostly used in solar power plants where medium-high capacity production outputs are achieved. In addition, although different methods have been developed and proposed for solar energy-supported integrated power generation systems by different investigators, absorption technology, which is one of the key points of the present study, has been used extensively in cooling systems in these studies. Unlike these common uses mentioned in the literature, this study designs a system in which a flat plate solar collector (FPSC), Rankine cycle, absorption heat transformer (AHT), and cooling systems (ACS) are integrated. The system proposed within the scope of this study aims to produce medium-high-capacity electricity, heating, and cooling outputs using a technique different from the literature, with lower production costs than existing systems. With the proposed integrated system design, the average production costs based on electricity, heating, and cooling load production for similar scale systems are 5-10% of the average production costs of 0.685 USD/kWh, 0.247 USD/kWh, and 0.342 USD/kWh. In the proposed integrated system design, this will be achieved by increasing the outlet temperature of the AHT and FPSC system first, expanding the high-temperature steam coming out of the absorber of the AHT system in the turbine up to the condenser temperature of the ACS system, and next directly integrating it into the evaporator of this system and then completing the AHT cycle. Through this proposed system, heating and cooling will be carried out by completing the AHT and ACS cycles, respectively, while power generation will be provided because of the expansion of the turbine. Using only a single generator in the production of these three outputs together, the costs of additional boilers and the need for a heat source are also saved. In order to demonstrate that the system proposed in this study offers a more optimum solution, the techno-economic parameters obtained based on energy, exergy, economic, and environmental analysis were compared with the parameters of similar scale systems in the literature. The design parameters of the proposed system were determined through a parametric optimization study to exceed the maximum efficiency and effectiveness and reduce the production cost rate values of the compared systems.

Keywords: solar energy, absorption technology, Rankine cycle, multigeneration energy system

Procedia PDF Downloads 58
17026 Multi-Objective Optimization of Run-of-River Small-Hydropower Plants Considering Both Investment Cost and Annual Energy Generation

Authors: Amèdédjihundé H. J. Hounnou, Frédéric Dubas, François-Xavier Fifatin, Didier Chamagne, Antoine Vianou

Abstract:

This paper presents the techno-economic evaluation of run-of-river small-hydropower plants. In this regard, a multi-objective optimization procedure is proposed for the optimal sizing of the hydropower plants, and NSGAII is employed as the optimization algorithm. Annual generated energy and investment cost are considered as the objective functions, and number of generator units (n) and nominal turbine flow rate (QT) constitute the decision variables. Site of Yeripao in Benin is considered as the case study. We have categorized the river of this site using its environmental characteristics: gross head, and first quartile, median, third quartile and mean of flow. Effects of each decision variable on the objective functions are analysed. The results gave Pareto Front which represents the trade-offs between annual energy generation and the investment cost of hydropower plants, as well as the recommended optimal solutions. We noted that with the increase of the annual energy generation, the investment cost rises. Thus, maximizing energy generation is contradictory with minimizing the investment cost. Moreover, we have noted that the solutions of Pareto Front are grouped according to the number of generator units (n). The results also illustrate that the costs per kWh are grouped according to the n and rise with the increase of the nominal turbine flow rate. The lowest investment costs per kWh are obtained for n equal to one and are between 0.065 and 0.180 €/kWh. Following the values of n (equal to 1, 2, 3 or 4), the investment cost and investment cost per kWh increase almost linearly with increasing the nominal turbine flowrate while annual generated. Energy increases logarithmically with increasing of the nominal turbine flowrate. This study made for the Yeripao river can be applied to other rivers with their own characteristics.

Keywords: hydropower plant, investment cost, multi-objective optimization, number of generator units

Procedia PDF Downloads 157
17025 Reconfigurable Ubiquitous Computing Infrastructure for Load Balancing

Authors: Khaled Sellami, Lynda Sellami, Pierre F. Tiako

Abstract:

Ubiquitous computing helps make data and services available to users anytime and anywhere. This makes the cooperation of devices a crucial need. In return, such cooperation causes an overload of the devices and/or networks, resulting in network malfunction and suspension of its activities. Our goal in this paper is to propose an approach of devices reconfiguration in order to help to reduce the energy consumption in ubiquitous environments. The idea is that when high-energy consumption is detected, we proceed to a change in component distribution on the devices to reduce and/or balance the energy consumption. We also investigate the possibility to detect high-energy consumption of devices/network based on devices abilities. As a result, our idea realizes a reconfiguration of devices aimed at reducing the consumption of energy and/or load balancing in ubiquitous environments.

Keywords: ubiquitous computing, load balancing, device energy consumption, reconfiguration

Procedia PDF Downloads 275
17024 Revolutionary Wastewater Treatment Technology: An Affordable, Low-Maintenance Solution for Wastewater Recovery and Energy-Saving

Authors: Hady Hamidyan

Abstract:

As the global population continues to grow, the demand for clean water and effective wastewater treatment becomes increasingly critical. By 2030, global water demand is projected to exceed supply by 40%, driven by population growth, increased water usage, and climate change. Currently, about 4.2 billion people lack access to safely managed sanitation services. The wastewater treatment sector faces numerous challenges, including the need for energy-efficient solutions, cost-effectiveness, ease of use, and low maintenance requirements. This abstract presents a groundbreaking wastewater treatment technology that addresses these challenges by offering an energy-saving approach, wastewater recovery capabilities, and a ready-made, affordable, and user-friendly package with minimal maintenance costs. The unique design of this ready-made package made it possible to eliminate the need for pumps, filters, airlift, and other common equipment. Consequently, it enables sustainable wastewater treatment management with exceptionally low energy and cost requirements, minimizing investment and maintenance expenses. The operation of these packages is based on continuous aeration, which involves injecting oxygen gas or air into the aeration chamber through a tubular diffuser with very small openings. This process supplies the necessary oxygen for aerobic bacteria. The recovered water, which amounts to almost 95% of the input, can be treated to meet specific quality standards, allowing safe reuse for irrigation, industrial processes, or even potable purposes. This not only reduces the strain on freshwater resources but also provides economic benefits by offsetting the costs associated with freshwater acquisition and wastewater discharge. The ready-made, affordable, and user-friendly nature of this technology makes it accessible to a wide range of users, including small communities, industries, and decentralized wastewater treatment systems. The system incorporates user-friendly interfaces, simplified operational procedures, and integrated automation, facilitating easy implementation and operation. Additionally, the use of durable materials, efficient equipment, and advanced monitoring systems significantly reduces maintenance requirements, resulting in low overall life-cycle costs and alleviating the burden on operators and maintenance personnel. In conclusion, the presented wastewater treatment technology offers a comprehensive solution to the challenges faced by the industry. Its energy-saving approach, combined with wastewater recovery capabilities, ensures sustainable resource management and enhances environmental stewardship. This affordable, ready-made, and low-maintenance package promotes broad adoption across various sectors and communities, contributing to a more sustainable future for water and wastewater management.

Keywords: wastewater treatment, energy saving, wastewater recovery, affordable package, low maintenance costs, sustainable resource management, environmental stewardship

Procedia PDF Downloads 92