Search results for: deep learning model
22067 Evaluating Learning Outcomes in the Implementation of Flipped Teaching Using Data Envelopment Analysis
Authors: Huie-Wen Lin
Abstract:
This study integrated various teaching factors -based on the idea of a flipped classroom- in a financial management course. The study’s aim was to establish an effective teaching implementation strategy and evaluation mechanism with respect to learning outcomes, which can serve as a reference for the future modification of teaching methods. This study implemented a teaching method in five stages and estimated the learning efficiencies of 22 students (in the teaching scenario and over two semesters). Subsequently, data envelopment analysis (DEA) was used to compare, for each student, between the learning efficiencies before and after participation in the flipped classroom -in the first and second semesters, respectively- to identify the crucial external factors influencing learning efficiency. According to the results, the average overall student learning efficiency increased from 0.901 in the first semester to 0.967 in the second semester, which demonstrate that the flipped classroom approach can improve teaching effectiveness and learning outcomes. The results also revealed a difference in learning efficiency between male and female students.Keywords: data envelopment analysis, flipped classroom, learning outcome, teaching and learning
Procedia PDF Downloads 15622066 Efficacy of Deep Learning for Below-Canopy Reconstruction of Satellite and Aerial Sensing Point Clouds through Fractal Tree Symmetry
Authors: Dhanuj M. Gandikota
Abstract:
Sensor-derived three-dimensional (3D) point clouds of trees are invaluable in remote sensing analysis for the accurate measurement of key structural metrics, bio-inventory values, spatial planning/visualization, and ecological modeling. Machine learning (ML) holds the potential in addressing the restrictive tradeoffs in cost, spatial coverage, resolution, and information gain that exist in current point cloud sensing methods. Terrestrial laser scanning (TLS) remains the highest fidelity source of both canopy and below-canopy structural features, but usage is limited in both coverage and cost, requiring manual deployment to map out large, forested areas. While aerial laser scanning (ALS) remains a reliable avenue of LIDAR active remote sensing, ALS is also cost-restrictive in deployment methods. Space-borne photogrammetry from high-resolution satellite constellations is an avenue of passive remote sensing with promising viability in research for the accurate construction of vegetation 3-D point clouds. It provides both the lowest comparative cost and the largest spatial coverage across remote sensing methods. However, both space-borne photogrammetry and ALS demonstrate technical limitations in the capture of valuable below-canopy point cloud data. Looking to minimize these tradeoffs, we explored a class of powerful ML algorithms called Deep Learning (DL) that show promise in recent research on 3-D point cloud reconstruction and interpolation. Our research details the efficacy of applying these DL techniques to reconstruct accurate below-canopy point clouds from space-borne and aerial remote sensing through learned patterns of tree species fractal symmetry properties and the supplementation of locally sourced bio-inventory metrics. From our dataset, consisting of tree point clouds obtained from TLS, we deconstructed the point clouds of each tree into those that would be obtained through ALS and satellite photogrammetry of varying resolutions. We fed this ALS/satellite point cloud dataset, along with the simulated local bio-inventory metrics, into the DL point cloud reconstruction architectures to generate the full 3-D tree point clouds (the truth values are denoted by the full TLS tree point clouds containing the below-canopy information). Point cloud reconstruction accuracy was validated both through the measurement of error from the original TLS point clouds as well as the error of extraction of key structural metrics, such as crown base height, diameter above root crown, and leaf/wood volume. The results of this research additionally demonstrate the supplemental performance gain of using minimum locally sourced bio-inventory metric information as an input in ML systems to reach specified accuracy thresholds of tree point cloud reconstruction. This research provides insight into methods for the rapid, cost-effective, and accurate construction of below-canopy tree 3-D point clouds, as well as the supported potential of ML and DL to learn complex, unmodeled patterns of fractal tree growth symmetry.Keywords: deep learning, machine learning, satellite, photogrammetry, aerial laser scanning, terrestrial laser scanning, point cloud, fractal symmetry
Procedia PDF Downloads 10222065 An Investigation into Computer Vision Methods to Identify Material Other Than Grapes in Harvested Wine Grape Loads
Authors: Riaan Kleyn
Abstract:
Mass wine production companies across the globe are provided with grapes from winegrowers that predominantly utilize mechanical harvesting machines to harvest wine grapes. Mechanical harvesting accelerates the rate at which grapes are harvested, allowing grapes to be delivered faster to meet the demands of wine cellars. The disadvantage of the mechanical harvesting method is the inclusion of material-other-than-grapes (MOG) in the harvested wine grape loads arriving at the cellar which degrades the quality of wine that can be produced. Currently, wine cellars do not have a method to determine the amount of MOG present within wine grape loads. This paper seeks to find an optimal computer vision method capable of detecting the amount of MOG within a wine grape load. A MOG detection method will encourage winegrowers to deliver MOG-free wine grape loads to avoid penalties which will indirectly enhance the quality of the wine to be produced. Traditional image segmentation methods were compared to deep learning segmentation methods based on images of wine grape loads that were captured at a wine cellar. The Mask R-CNN model with a ResNet-50 convolutional neural network backbone emerged as the optimal method for this study to determine the amount of MOG in an image of a wine grape load. Furthermore, a statistical analysis was conducted to determine how the MOG on the surface of a grape load relates to the mass of MOG within the corresponding grape load.Keywords: computer vision, wine grapes, machine learning, machine harvested grapes
Procedia PDF Downloads 9422064 Enhancing Project Performance Forecasting using Machine Learning Techniques
Authors: Soheila Sadeghi
Abstract:
Accurate forecasting of project performance metrics is crucial for successfully managing and delivering urban road reconstruction projects. Traditional methods often rely on static baseline plans and fail to consider the dynamic nature of project progress and external factors. This research proposes a machine learning-based approach to forecast project performance metrics, such as cost variance and earned value, for each Work Breakdown Structure (WBS) category in an urban road reconstruction project. The proposed model utilizes time series forecasting techniques, including Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory (LSTM) networks, to predict future performance based on historical data and project progress. The model also incorporates external factors, such as weather patterns and resource availability, as features to enhance the accuracy of forecasts. By applying the predictive power of machine learning, the performance forecasting model enables proactive identification of potential deviations from the baseline plan, which allows project managers to take timely corrective actions. The research aims to validate the effectiveness of the proposed approach using a case study of an urban road reconstruction project, comparing the model's forecasts with actual project performance data. The findings of this research contribute to the advancement of project management practices in the construction industry, offering a data-driven solution for improving project performance monitoring and control.Keywords: project performance forecasting, machine learning, time series forecasting, cost variance, earned value management
Procedia PDF Downloads 4922063 The Impact of Artificial Intelligence on Agricultural Machines and Plant Nutrition
Authors: Kirolos Gerges Yakoub Gerges
Abstract:
Self-sustaining agricultural machines act in stochastic surroundings and therefore, should be capable of perceive the surroundings in real time. This notion can be done using image sensors blended with superior device learning, mainly Deep mastering. Deep convolutional neural networks excel in labeling and perceiving colour pix and since the fee of RGB-cameras is low, the hardware cost of accurate notion relies upon heavily on memory and computation power. This paper investigates the opportunity of designing lightweight convolutional neural networks for semantic segmentation (pixel clever class) with reduced hardware requirements, to allow for embedded usage in self-reliant agricultural machines. The usage of compression techniques, a lightweight convolutional neural community is designed to carry out actual-time semantic segmentation on an embedded platform. The community is skilled on two big datasets, ImageNet and Pascal Context, to apprehend as much as four hundred man or woman instructions. The 400 training are remapped into agricultural superclasses (e.g. human, animal, sky, road, area, shelterbelt and impediment) and the capacity to provide correct actual-time perception of agricultural environment is studied. The network is carried out to the case of self-sufficient grass mowing the usage of the NVIDIA Tegra X1 embedded platform. Feeding case-unique pics to the community consequences in a fully segmented map of the superclasses within the picture. As the network remains being designed and optimized, handiest a qualitative analysis of the technique is entire on the abstract submission deadline. intending this cut-off date, the finalized layout is quantitatively evaluated on 20 annotated grass mowing pictures. Light-weight convolutional neural networks for semantic segmentation can be implemented on an embedded platform and show aggressive performance on the subject of accuracy and speed. It’s miles viable to offer value-efficient perceptive capabilities related to semantic segmentation for autonomous agricultural machines.Keywords: centrifuge pump, hydraulic energy, agricultural applications, irrigationaxial flux machines, axial flux applications, coreless machines, PM machinesautonomous agricultural machines, deep learning, safety, visual perception
Procedia PDF Downloads 2622062 ARCS Model for Enhancing Intrinsic Motivation in Learning Biodiversity Subjects: A Case Study of Tertiary Level Students in Malaysia
Authors: Nadia Nisha Musa, Nur Atirah Hasmi, Hasnun Nita Ismail, Zulfadli Mahfodz
Abstract:
In Malaysian Education System, subject related to biodiversity has started in the curriculum from Foundation Study until tertiary education. Biodiversity become the focus of attention due to awareness on global warming which potentially leads to a loss of biodiversity. A loss in biodiversity means a loss in medicinal discoveries and reduces food supply. It is of great important to ensure that young generations become aware of biodiversity conservation. The more interactive approaches are needed to build society with a high awareness for biodiversity conservation. To address this challenge, the goal of this study is to enhance intrinsic motivation of biological students via ARCS model of instruction. Self-access learning materials such as tutorial, module and fieldwork were designed with ARCS elements to a sample size of 70 university students from the beginning of the semester. Both paper and online surveys were used to collect data from the respondents. The results showed that elements of attention, relevance, confidence and satisfaction have a positive impact on intrinsic motivation of students and their academic performance.Keywords: intrinsic motivation, ARCS model of instruction, biodiversity, self-access learning
Procedia PDF Downloads 22222061 Student Engagement and Perceived Academic Stress: Open Distance Learning in Malaysia
Authors: Ng Siew Keow, Cheah Seeh Lee
Abstract:
Students’ strong engagement in learning increases their motivation and satisfaction to learn, be resilient to combat academic stress. Engagement in learning is even crucial in the open distance learning (ODL) setting, where the adult students are learning remotely, lessons and learning materials are mostly delivered via online platforms. This study aimed to explore the relationship between learning engagement and perceived academic stress levels of adult students who enrolled in ODL learning mode. In this descriptive correlation study during the 2021-2022 academic years, 101 adult students from Wawasan Open University, Malaysia (WOU) were recruited through convenient sampling. The adult students’ online learning engagement levels and perceived academic stress levels were identified through the self-report Online Student Engagement Scale (OSE) and the Perception of Academic Stress Scale (PASS). The Pearson correlation coefficient test revealed a significant positive relationship between online student engagement and perceived academic stress (r= 0.316, p<0.01). The higher scores on PASS indicated lower levels of perceived academic stress. The findings of the study supported the assumption of the importance of engagement in learning in promoting psychological well-being as well as sustainability in online learning in the open distance learning context.Keywords: student engagement, academic stress, open distance learning, online learning
Procedia PDF Downloads 16122060 PatchMix: Learning Transferable Semi-Supervised Representation by Predicting Patches
Authors: Arpit Rai
Abstract:
In this work, we propose PatchMix, a semi-supervised method for pre-training visual representations. PatchMix mixes patches of two images and then solves an auxiliary task of predicting the label of each patch in the mixed image. Our experiments on the CIFAR-10, 100 and the SVHN dataset show that the representations learned by this method encodes useful information for transfer to new tasks and outperform the baseline Residual Network encoders by on CIFAR 10 by 12% on ResNet 101 and 2% on ResNet-56, by 4% on CIFAR-100 on ResNet101 and by 6% on SVHN dataset on the ResNet-101 baseline model.Keywords: self-supervised learning, representation learning, computer vision, generalization
Procedia PDF Downloads 8922059 Development of an Optimised, Automated Multidimensional Model for Supply Chains
Authors: Safaa H. Sindi, Michael Roe
Abstract:
This project divides supply chain (SC) models into seven Eras, according to the evolution of the market’s needs throughout time. The five earliest Eras describe the emergence of supply chains, while the last two Eras are to be created. Research objectives: The aim is to generate the two latest Eras with their respective models that focus on the consumable goods. Era Six contains the Optimal Multidimensional Matrix (OMM) that incorporates most characteristics of the SC and allocates them into four quarters (Agile, Lean, Leagile, and Basic SC). This will help companies, especially (SMEs) plan their optimal SC route. Era Seven creates an Automated Multidimensional Model (AMM) which upgrades the matrix of Era six, as it accounts for all the supply chain factors (i.e. Offshoring, sourcing, risk) into an interactive system with Heuristic Learning that helps larger companies and industries to select the best SC model for their market. Methodologies: The data collection is based on a Fuzzy-Delphi study that analyses statements using Fuzzy Logic. The first round of Delphi study will contain statements (fuzzy rules) about the matrix of Era six. The second round of Delphi contains the feedback given from the first round and so on. Preliminary findings: both models are applicable, Matrix of Era six reduces the complexity of choosing the best SC model for SMEs by helping them identify the best strategy of Basic SC, Lean, Agile and Leagile SC; that’s tailored to their needs. The interactive heuristic learning in the AMM of Era seven will help mitigate error and aid large companies to identify and re-strategize the best SC model and distribution system for their market and commodity, hence increasing efficiency. Potential contributions to the literature: The problematic issue facing many companies is to decide which SC model or strategy to incorporate, due to the many models and definitions developed over the years. This research simplifies this by putting most definition in a template and most models in the Matrix of era six. This research is original as the division of SC into Eras, the Matrix of Era six (OMM) with Fuzzy-Delphi and Heuristic Learning in the AMM of Era seven provides a synergy of tools that were not combined before in the area of SC. Additionally the OMM of Era six is unique as it combines most characteristics of the SC, which is an original concept in itself.Keywords: Leagile, automation, heuristic learning, supply chain models
Procedia PDF Downloads 38922058 Effectiveness of Language Learning Strategy Instruction Based on CALLA on Iranian EFL Language Strategy Use
Authors: Reza Khani, Ziba Hosseini
Abstract:
Ever since the importance of language learning strategy instruction (LLS) has been distinguished, there has been growing interest on how to teach LLS in language learning classrooms. So thus this study attempted to implement language strategy instruction based on CALLA approach for Iranian EFL learners in a real classroom setting. The study was testing the hypothesis that strategy instruction result in improved linguistic strategy of students. The participant of the study were 240 EFL learners who received language learning instruction for four months. The data collected using Oxford strategy inventory for language learning. The results indicated the instruction had statistically significant effect on language strategy use of intervention group who received instruction.Keywords: CALLA, language learning strategy, language learning strategy instruction, Iranian EFL language strategy
Procedia PDF Downloads 57022057 Efficient DNN Training on Heterogeneous Clusters with Pipeline Parallelism
Abstract:
Pipeline parallelism has been widely used to accelerate distributed deep learning to alleviate GPU memory bottlenecks and to ensure that models can be trained and deployed smoothly under limited graphics memory conditions. However, in highly heterogeneous distributed clusters, traditional model partitioning methods are not able to achieve load balancing. The overlap of communication and computation is also a big challenge. In this paper, HePipe is proposed, an efficient pipeline parallel training method for highly heterogeneous clusters. According to the characteristics of the neural network model pipeline training task, oriented to the 2-level heterogeneous cluster computing topology, a training method based on the 2-level stage division of neural network modeling and partitioning is designed to improve the parallelism. Additionally, a multi-forward 1F1B scheduling strategy is designed to accelerate the training time of each stage by executing the computation units in advance to maximize the overlap between the forward propagation communication and backward propagation computation. Finally, a dynamic recomputation strategy based on task memory requirement prediction is proposed to improve the fitness ratio of task and memory, which improves the throughput of the cluster and solves the memory shortfall problem caused by memory differences in heterogeneous clusters. The empirical results show that HePipe improves the training speed by 1.6×−2.2× over the existing asynchronous pipeline baselines.Keywords: pipeline parallelism, heterogeneous cluster, model training, 2-level stage partitioning
Procedia PDF Downloads 1822056 Developing Interactive Media for Piston Engine Lectures to Improve Cadets Learning Outcomes: Literature Study
Authors: Jamaludin Jamaludin, Suparji Suparji, Lilik Anifah, I. Gusti Putu Asto Buditjahjanto, Eppy Yundra
Abstract:
Learning media is an important and main component in the learning process. By using currently available media, cadets still have difficulty understanding how the piston engine works, so they are not able to apply these concepts appropriately. This study aims to examine the development of interactive media for piston engine courses in order to improve student learning outcomes. The research method used is a literature study of several articles, journals and proceedings of interactive media development results from 2010-2020. The results showed that the development of interactive media is needed to support the learning process and influence the cognitive abilities of students. With this interactive media, learning outcomes can be improved and the learning process can be effective.Keywords: interactive media, learning outcomes, learning process, literature study
Procedia PDF Downloads 15122055 Francophone University Students' Attitudes Towards English Accents in Cameroon
Authors: Eric Agrie Ambele
Abstract:
The norms and models for learning pronunciation in relation to the teaching and learning of English pronunciation are key issues nowadays in English Language Teaching in ESL contexts. This paper discusses these issues based on a study on the attitudes of some Francophone university students in Cameroon towards three English accents spoken in Cameroon: Cameroon Francophone English (CamFE), Cameroon English (CamE), and Hyperlectal Cameroon English (near standard British English). With the desire to know more about the treatment that these English accents receive among these students, an aspect that had hitherto received little attention in the literature, a language attitude questionnaire, and the matched-guise technique was used to investigate this phenomenon. Two methods of data analysis were employed: (1) the percentage count procedure, and (2) the semantic differential scale. The findings reveal that the participants’ attitudes towards the selected accents vary in degree. Though Hyperlectal CamE emerged first, CamE second and CamFE third, no accent, on average, received a negative evaluation. It can be deduced from this findings that, first, CamE is gaining more and more recognition and can stand as an autonomous accent; second, that the participants all rated Hyperlectal CamE higher than CamE implies that they would be less motivated in a context where CamE is the learning model. By implication, in the teaching of English pronunciation to francophone learners learning English in Cameroon, Hyperlectal Cameroon English should be the model.Keywords: teaching pronunciation, English accents, Francophone learners, attitudes
Procedia PDF Downloads 19722054 A Call for Transformative Learning Experiences to Facilitate Student Workforce Diversity Learning in the United States
Authors: Jeanetta D. Sims, Chaunda L. Scott, Hung-Lin Lai, Sarah Neese, Atoya Sims, Angelia Barrera-Medina
Abstract:
Given the call for increased transformative learning experiences and the demand for academia to prepare students to enter workforce diversity careers, this study explores the landscape of workforce diversity learning in the United States. Using a multi-disciplinary syllabi browsing process and a content analysis method, the most prevalent instructional activities being used in workforce-diversity related courses in the United States are identified. In addition, the instructional activities are evaluated based on transformative learning tenants.Keywords: workforce diversity, workforce diversity learning, transformative learning, diversity education, U. S. workforce diversity, workforce diversity assignments
Procedia PDF Downloads 50522053 The Impact of Usefulness and Ease of Using Mobile Learning Technology on Faculty Acceptance
Authors: Leena Ahmad Khaleel Alfarani, Maggie McPherson, Neil Morris
Abstract:
Over the last decade, m-learning has been widely accepted and utilized by many western universities. However, Saudi universities face many challenges in utilizing such technology, a central one being to encourage teachers to use such technology. Although there are several factors that affect faculty members’ participation in the adoption of m-learning, this paper focuses merely on two factors, the usefulness and ease of using m-learning. A sample of 279 faculty members in one Saudi university has responded to the online survey. The results of the study have revealed that there is a statistically significant relationship (at the 0.05 level) between both usefulness and ease of using m-learning factors and the intention of teachers to use m-learning currently and in the future.Keywords: mobile learning, diffusion of innovation theory, technology acceptance, faculty adoption
Procedia PDF Downloads 54522052 Design of the Ubiquitous Cloud Learning Management System
Authors: Panita Wannapiroon, Noppadon Phumeechanya, Sitthichai Laisema
Abstract:
This study is the research and development which is intended to: 1) design the ubiquitous cloud learning management system and: 2) assess the suitability of the design of the ubiquitous cloud learning management system. Its methods are divided into 2 phases. Phase 1 is the design of the ubiquitous cloud learning management system, phase 2 is the assessment of the suitability of the design the samples used in this study are work done by 25 professionals in the field of Ubiquitous cloud learning management systems and information and communication technology in education selected using the purposive sampling method. Data analyzed by arithmetic mean and standard deviation. The results showed that the ubiquitous cloud learning management system consists of 2 main components which are: 1) the ubiquitous cloud learning management system server (u-Cloud LMS Server) including: cloud repository, cloud information resources, social cloud network, cloud context awareness, cloud communication, cloud collaborative tools, and: 2) the mobile client. The result of the system suitability assessment from the professionals is in the highest range.Keywords: learning management system, cloud computing, ubiquitous learning, ubiquitous learning management system
Procedia PDF Downloads 52022051 Perceptions of Higher Education Online Learning Faculty in Lebanon
Authors: Noha Hamie Haidar
Abstract:
The purpose of this case study was to explore faculty attitudes toward online learning in a Lebanese Higher Education Institution (HEI). The research problem addressed the disinterest among faculty at the Arts, Sciences, and Technology University of Lebanon (AUL) in enhancing learning using online technology. The research questions for the study examined the attitudes of the faculty toward applying online learning and the extent of the faculty readiness to adopt this technological change. A qualitative case study design was used that employed multiple sources of information including semi-structured interviews and existing literature. The target population was AUL faculty including full-time instructors and administration (n=25). Data analysis was guided by the lens of Kanter’s theoretical approach, which focused on faculty’s awareness, desire, knowledge, ability, and reinforcement model (ADKAR) for adopting change. Key findings indicated negative impressions concerning online learning such as authority (ministry of education, culture, and rules); and change (increased enrollment and different teaching styles). Yet, within AUL’s academic environment, the opportunity for the adoption of online learning was identified; faculty showed positive elements, such as the competitive advantage to first enter the Lebanese Market, and higher student enrollment. These results may encourage AUL’s faculty to adopt online learning and to achieve a positive social change by expanding the ability of students in HEIs to compete globally.Keywords: faculty, higher education, technology, online learning
Procedia PDF Downloads 40622050 Machine Learning Model to Predict TB Bacteria-Resistant Drugs from TB Isolates
Authors: Rosa Tsegaye Aga, Xuan Jiang, Pavel Vazquez Faci, Siqing Liu, Simon Rayner, Endalkachew Alemu, Markos Abebe
Abstract:
Tuberculosis (TB) is a major cause of disease globally. In most cases, TB is treatable and curable, but only with the proper treatment. There is a time when drug-resistant TB occurs when bacteria become resistant to the drugs that are used to treat TB. Current strategies to identify drug-resistant TB bacteria are laboratory-based, and it takes a longer time to identify the drug-resistant bacteria and treat the patient accordingly. But machine learning (ML) and data science approaches can offer new approaches to the problem. In this study, we propose to develop an ML-based model to predict the antibiotic resistance phenotypes of TB isolates in minutes and give the right treatment to the patient immediately. The study has been using the whole genome sequence (WGS) of TB isolates as training data that have been extracted from the NCBI repository and contain different countries’ samples to build the ML models. The reason that different countries’ samples have been included is to generalize the large group of TB isolates from different regions in the world. This supports the model to train different behaviors of the TB bacteria and makes the model robust. The model training has been considering three pieces of information that have been extracted from the WGS data to train the model. These are all variants that have been found within the candidate genes (F1), predetermined resistance-associated variants (F2), and only resistance-associated gene information for the particular drug. Two major datasets have been constructed using these three information. F1 and F2 information have been considered as two independent datasets, and the third information is used as a class to label the two datasets. Five machine learning algorithms have been considered to train the model. These are Support Vector Machine (SVM), Random forest (RF), Logistic regression (LR), Gradient Boosting, and Ada boost algorithms. The models have been trained on the datasets F1, F2, and F1F2 that is the F1 and the F2 dataset merged. Additionally, an ensemble approach has been used to train the model. The ensemble approach has been considered to run F1 and F2 datasets on gradient boosting algorithm and use the output as one dataset that is called F1F2 ensemble dataset and train a model using this dataset on the five algorithms. As the experiment shows, the ensemble approach model that has been trained on the Gradient Boosting algorithm outperformed the rest of the models. In conclusion, this study suggests the ensemble approach, that is, the RF + Gradient boosting model, to predict the antibiotic resistance phenotypes of TB isolates by outperforming the rest of the models.Keywords: machine learning, MTB, WGS, drug resistant TB
Procedia PDF Downloads 5222049 Electrical Machine Winding Temperature Estimation Using Stateful Long Short-Term Memory Networks (LSTM) and Truncated Backpropagation Through Time (TBPTT)
Authors: Yujiang Wu
Abstract:
As electrical machine (e-machine) power density re-querulents become more stringent in vehicle electrification, mounting a temperature sensor for e-machine stator windings becomes increasingly difficult. This can lead to higher manufacturing costs, complicated harnesses, and reduced reliability. In this paper, we propose a deep-learning method for predicting electric machine winding temperature, which can either replace the sensor entirely or serve as a backup to the existing sensor. We compare the performance of our method, the stateful long short-term memory networks (LSTM) with truncated backpropagation through time (TBTT), with that of linear regression, as well as stateless LSTM with/without residual connection. Our results demonstrate the strength of combining stateful LSTM and TBTT in tackling nonlinear time series prediction problems with long sequence lengths. Additionally, in industrial applications, high-temperature region prediction accuracy is more important because winding temperature sensing is typically used for derating machine power when the temperature is high. To evaluate the performance of our algorithm, we developed a temperature-stratified MSE. We propose a simple but effective data preprocessing trick to improve the high-temperature region prediction accuracy. Our experimental results demonstrate the effectiveness of our proposed method in accurately predicting winding temperature, particularly in high-temperature regions, while also reducing manufacturing costs and improving reliability.Keywords: deep learning, electrical machine, functional safety, long short-term memory networks (LSTM), thermal management, time series prediction
Procedia PDF Downloads 9922048 Collaboration and Automatic Tutoring as a Learning Strategy: A Case Study in Programming Courses
Authors: Luis H. Gonzalez-Guerra, Armandina J. Leal-Flores
Abstract:
Students attending classrooms nowadays are habituated to use digital devices all the time and for multiple things. They have been familiar with digital technology throughout their lives so they have developed skills that should be naturally adopted as part of their study strategies. New learning styles require taking in consideration the use of models that support and promote student motivation for learning and development of their creative thinking skills. To achieve student learning in programming courses, different strategies are used. One of them is a collaboration between students, which is a tool which faculty can take advantage of when teaching these kinds of courses. Moreover, cooperation is an essential skill that society should reinforce in order to promote a healthy social environment and cohabitation. Nevertheless, students will still require support and advice to get a complete and correct programming solution to successfully address and solve the problems given throughout the course. This paper present a model where collaboration between students is associated with an automatic tutoring platform providing an excellent approach for the individual learning in collaborative activities in programming courses, and also motivates students to increase their knowledge regarding the topics covered in the classroom.Keywords: automatic tutoring, collaboration learning, creative thinking, motivation
Procedia PDF Downloads 27222047 Competences for Learning beyond the Academic Context
Authors: Cristina Galván-Fernández
Abstract:
Students differentiate the different contexts of their lives as well as employment, hobbies or studies. In higher education is needed to transfer the experiential knowledge to theory and viceversa. However, is difficult to achieve than students use their personal experiences and social readings for get the learning evidences. In an experience with 178 education students from Chile and Spain we have used an e-portfolio system and a methodology for 4 years with the aims of help them to: 1) self-regulate their learning process and 2) use social networks and professional experiences for make the learning evidences. These two objectives have been controlled by interviews to the same students in different moments and two questionnaires. The results of this study show that students recognize the ownership of their learning and progress in planning and reflection of their own learning.Keywords: competences, e-portfolio, higher education, self-regulation
Procedia PDF Downloads 29922046 Determination of Water Pollution and Water Quality with Decision Trees
Authors: Çiğdem Bakır, Mecit Yüzkat
Abstract:
With the increasing emphasis on water quality worldwide, the search for and expanding the market for new and intelligent monitoring systems has increased. The current method is the laboratory process, where samples are taken from bodies of water, and tests are carried out in laboratories. This method is time-consuming, a waste of manpower, and uneconomical. To solve this problem, we used machine learning methods to detect water pollution in our study. We created decision trees with the Orange3 software we used in our study and tried to determine all the factors that cause water pollution. An automatic prediction model based on water quality was developed by taking many model inputs such as water temperature, pH, transparency, conductivity, dissolved oxygen, and ammonia nitrogen with machine learning methods. The proposed approach consists of three stages: preprocessing of the data used, feature detection, and classification. We tried to determine the success of our study with different accuracy metrics and the results. We presented it comparatively. In addition, we achieved approximately 98% success with the decision tree.Keywords: decision tree, water quality, water pollution, machine learning
Procedia PDF Downloads 8322045 Web-Based Learning in Nursing: The Sample of Delivery Lesson Program
Authors: Merve Kadioğlu, Nevin H. Şahin
Abstract:
Purpose: This research is organized to determine the influence of the web-based learning program. The program has been developed to gain information about normal delivery skill that is one of the topics of nursing students who take the woman health and illness. Material and Methods: The methodology of this study was applied as pre-test post-test single-group quasi-experimental. The pilot study consisted of 28 nursing student study groups who agreed to participate in the study. The findings were gathered via web-based technologies: student information form, information evaluation tests, Web Based Training Material Evaluation Scale and web-based learning environment feedback form. In the analysis of the data, the percentage, frequency and Wilcoxon Signed Ranks Test were used. The Web Based Instruction Program was developed in the light of full learning model, Mayer's research-based multimedia development principles and Gagne's Instructional Activities Model. Findings: The average scores of it was determined in accordance with the web-based educational material evaluation scale: ‘Instructional Suitability’ 4.45, ‘Suitability to Educational Program’ 4.48, ‘Visual Adequacy’ 4.53, ‘Programming Eligibility / Technical Adequacy’ 4.00. Also, the participants mentioned that the program is successful and useful. A significant difference was found between the pre-test and post-test results of the seven modules (p < 0.05). Results: According to pilot study data, the program was rated ‘very good’ by the study group. It was also found to be effective in increasing knowledge about normal labor.Keywords: normal delivery, web-based learning, nursing students, e-learning
Procedia PDF Downloads 17822044 Learning Instructional Managements between the Problem-Based Learning and Stem Education Methods for Enhancing Students Learning Achievements and their Science Attitudes toward Physics the 12th Grade Level
Authors: Achirawatt Tungsombatsanti, Toansakul Santiboon, Kamon Ponkham
Abstract:
Strategies of the STEM education was aimed to prepare of an interdisciplinary and applied approach for the instructional of science, technology, engineering, and mathematics in an integrated students for enhancing engagement of their science skills to the Problem-Based Learning (PBL) method in Borabu School with a sample consists of 80 students in 2 classes at the 12th grade level of their learning achievements on electromagnetic issue. Research administrations were to separate on two different instructional model groups, the 40-experimental group was designed with the STEM instructional experimenting preparation and induction in a 40-student class and the controlling group using the PBL was designed to students identify what they already know, what they need to know, and how and where to access new information that may lead to the resolution of the problem in other class. The learning environment perceptions were obtained using the 35-item Physics Laboratory Environment Inventory (PLEI). Students’ creating attitude skills’ sustainable development toward physics were assessed with the Test Of Physics-Related Attitude (TOPRA) The term scaling was applied to the attempts to measure the attitude objectively with the TOPRA was used to assess students’ perceptions of their science attitude toward physics. Comparisons between pretest and posttest techniques were assessed students’ learning achievements on each their outcomes from each instructional model, differently. The results of these findings revealed that the efficiency of the PLB and the STEM based on criteria indicate that are higher than the standard level of the 80/80. Statistically, significant of students’ learning achievements to their later outcomes on the controlling and experimental physics class groups with the PLB and the STEM instructional designs were differentiated between groups at the .05 level, evidently. Comparisons between the averages mean scores of students’ responses to their instructional activities in the STEM education method are higher than the average mean scores of the PLB model. Associations between students’ perceptions of their physics classes to their attitudes toward physics, the predictive efficiency R2 values indicate that 77%, and 83% of the variances in students’ attitudes for the PLEI and the TOPRA in physics environment classes were attributable to their perceptions of their physics PLB and the STEM instructional design classes, consequently. An important of these findings was contributed to student understanding of scientific concepts, attitudes, and skills as evidence with STEM instructional ought to higher responding than PBL educational teaching. Statistically significant between students’ learning achievements were differentiated of pre and post assessments which overall on two instructional models.Keywords: learning instructional managements, problem-based learning, STEM education, method, enhancement, students learning achievements, science attitude, physics classes
Procedia PDF Downloads 22822043 20 Definitions in 20 Years: Exploring the Evolution of Blended Learning Definitions from 2003-2022
Authors: Damian Gordon, Paul Doyle, Anna Becevel, Tina Baloh
Abstract:
The goal of this research is to explore the evolution of the concept of “blended learning” over a twenty-year period, to see whether or not the conceptualization has remained consistent or if it has become either more specific or more general. To achieve this goal, the term “blended learning” (and variations) was searched for in various bibliographical repositories for each year 2003-2022 to locate a highly cited paper that is not behind a paywall, to locate unique definitions that would be freely available to all academics each year. Each of the twenty unique definitions is explored to identify how they categorize both the Classroom Component and the Computer Component of blended learning, as well as identify which discipline each definition originates from and which country it comes from to see if there are any significant geographical variations. Based on this analysis, trends that appear in the definitions are noted, as well as an overall interpretation of the notion of “Blended Learning.”Keywords: blended learning, definitions of blended learning, e-learning, thematic searches
Procedia PDF Downloads 12922042 Chinese Vocabulary Acquisition and Mobile Assisted Language Learning
Authors: Yuqing Sun
Abstract:
Chinese has been regarded as one of the most difficult languages in learning due to its complex spelling structure, difficult pronunciation, as well as its varying forms. Since vocabulary acquisition is the basic process to acquire a language, to express yourself, to compose a sentence, and to conduct a communication, so learning the vocabulary is of great importance. However, the vocabulary contains pronunciation, spelling, recognition and application which may seem as a huge work. This may pose a question for the language teachers (language teachers in China who teach Chinese to the foreign students): How to teach them in an effective way? Traditionally, teachers have no choice but teach it all by themselves, then with the development of technology, they can use computer as a tool to help them (Computer Assisted Language Learning or CALL). Now, they move into the Mobile Assisted Language Learning (MALL) method to guide their teaching, upon which the appraisal is convincing. It diversifies the learning material and the way of output, which can activate learners’ curiosity and accelerate their understanding. This paper will focus on actual case studies occurring in the universities in China of teaching the foreign students to learn Chinese, and the analysis of the utilization of WeChat channel as an example of MALL model to explore the active role of MALL to enhance the effectiveness of Chinese vocabulary acquisition.Keywords: Chinese, vocabulary acquisition, MALL, case
Procedia PDF Downloads 41422041 Predicting Shot Making in Basketball Learnt Fromadversarial Multiagent Trajectories
Authors: Mark Harmon, Abdolghani Ebrahimi, Patrick Lucey, Diego Klabjan
Abstract:
In this paper, we predict the likelihood of a player making a shot in basketball from multiagent trajectories. Previous approaches to similar problems center on hand-crafting features to capture domain-specific knowledge. Although intuitive, recent work in deep learning has shown, this approach is prone to missing important predictive features. To circumvent this issue, we present a convolutional neural network (CNN) approach where we initially represent the multiagent behavior as an image. To encode the adversarial nature of basketball, we use a multichannel image which we then feed into a CNN. Additionally, to capture the temporal aspect of the trajectories, we use “fading.” We find that this approach is superior to a traditional FFN model. By using gradient ascent, we were able to discover what the CNN filters look for during training. Last, we find that a combined FFN+CNN is the best performing network with an error rate of 39%.Keywords: basketball, computer vision, image processing, convolutional neural network
Procedia PDF Downloads 15322040 Optimization Modeling of the Hybrid Antenna Array for the DoA Estimation
Authors: Somayeh Komeylian
Abstract:
The direction of arrival (DoA) estimation is the crucial aspect of the radar technologies for detecting and dividing several signal sources. In this scenario, the antenna array output modeling involves numerous parameters including noise samples, signal waveform, signal directions, signal number, and signal to noise ratio (SNR), and thereby the methods of the DoA estimation rely heavily on the generalization characteristic for establishing a large number of the training data sets. Hence, we have analogously represented the two different optimization models of the DoA estimation; (1) the implementation of the decision directed acyclic graph (DDAG) for the multiclass least-squares support vector machine (LS-SVM), and (2) the optimization method of the deep neural network (DNN) radial basis function (RBF). We have rigorously verified that the LS-SVM DDAG algorithm is capable of accurately classifying DoAs for the three classes. However, the accuracy and robustness of the DoA estimation are still highly sensitive to technological imperfections of the antenna arrays such as non-ideal array design and manufacture, array implementation, mutual coupling effect, and background radiation and thereby the method may fail in representing high precision for the DoA estimation. Therefore, this work has a further contribution on developing the DNN-RBF model for the DoA estimation for overcoming the limitations of the non-parametric and data-driven methods in terms of array imperfection and generalization. The numerical results of implementing the DNN-RBF model have confirmed the better performance of the DoA estimation compared with the LS-SVM algorithm. Consequently, we have analogously evaluated the performance of utilizing the two aforementioned optimization methods for the DoA estimation using the concept of the mean squared error (MSE).Keywords: DoA estimation, Adaptive antenna array, Deep Neural Network, LS-SVM optimization model, Radial basis function, and MSE
Procedia PDF Downloads 10022039 The Potentials of Online Learning and the Challenges towards Its Adoption in Nigeria's Higher Institutions of Learning
Authors: Kuliya Muhammed
Abstract:
This paper examines the potentials of online learning and the challenges to its adoption in Nigeria’s higher institutions of learning. The research would assist in tackling the challenges of online learning adoption and enlighten institutions on the numerous benefits of online learning in Nigeria. The researcher used survey method for the study and questionnaires were used to obtain the needed data from 230 respondents cut across 20 higher institutions in the country. The findings revealed that online learning has the prospect to boost access to learning tools, assist students’ to learn from the comfort of their offices or homes, reduce the cost of learning, and enable individuals to gain self-knowledge. The major challenges in the adoption of e-learning are poor Information and Communication Technology infrastructures, poor internet connectivity where available, lack of Information and Communication Technology background, problem of power supply, lack of commitment by institutions, poor maintenance of Information and Communication Technology tools, inadequate facilities, lack of government funding and fraud. Recommendations were also made at the end of the research work.Keywords: electronic, ICT, institution, internet, learning, technology
Procedia PDF Downloads 38822038 Predictive Machine Learning Model for Assessing the Impact of Untreated Teeth Grinding on Gingival Recession and Jaw Pain
Authors: Joseph Salim
Abstract:
This paper proposes the development of a supervised machine learning system to predict the consequences of untreated bruxism (teeth grinding) on gingival (gum) recession and jaw pain (most often bilateral jaw pain with possible headaches and limited ability to open the mouth). As a general dentist in a multi-specialty practice, the author has encountered many patients suffering from these issues due to uncontrolled bruxism (teeth grinding) at night. The most effective treatment for managing this problem involves wearing a nightguard during sleep and receiving therapeutic Botox injections to relax the muscles (the masseter muscle) responsible for grinding. However, some patients choose to postpone these treatments, leading to potentially irreversible and costlier consequences in the future. The proposed machine learning model aims to track patients who forgo the recommended treatments and assess the percentage of individuals who will experience worsening jaw pain, gingival (gum) recession, or both within a 3-to-5-year timeframe. By accurately predicting these outcomes, the model seeks to motivate patients to address the root cause proactively, ultimately saving time and pain while improving quality of life and avoiding much costlier treatments such as full-mouth rehabilitation to help recover the loss of vertical dimension of occlusion due to shortened clinical crowns because of bruxism, gingival grafts, etc.Keywords: artificial intelligence, machine learning, predictive insights, bruxism, teeth grinding, therapeutic botox, nightguard, gingival recession, gum recession, jaw pain
Procedia PDF Downloads 93