Search results for: cointegration approach in panel data
33573 Working in Multidisciplinary Care Teams: Perspectives from Health Care and Social Service Providers
Authors: Lindy Van Vliet, Saloni Phadke, Anthea Nelson, Ann Gallant
Abstract:
Holistic and patient-centred palliative care and support require an integrated system of care that includes health and social service providers working together to ensure that patients and families have access to the care they need. The objective of this study is to further explore and understand the benefits and challenges of mobilizing multidisciplinary care teams for health care professionals and social service providers. Drawing on an interpretivist, exploratory, qualitative design, our multidisciplinary research team (medicine, nursing and social work) conducted interviews with 15 health care and social service providers in the Ottawa region. Interview data was audio-recorded, transcribed, and analyzed using a reflexive thematic analysis approach. The data deepens our understandings of the facilitators and barriers posed by multidisciplinary care teams. Three main findings emerged: First, the data highlighted the benefits of multidisciplinary care teams for both patient outcomes and quality of life and provider mental health; second, the data showed that the lack of a system-wide integrated communication system reduces the quality of patient care and increases provider stress while working in multidisciplinary care teams; finally, the data demonstrated the existence of implicit hierarchies between disciplines, this coupled with different disciplinary perspectives of palliative care provision can lead to friction and challenges within care teams. These findings will have important implications for the future of palliative care as they will help to facilitate and build stronger person-centred/relationship-centred palliative care practices by naming the challenges faced by multidisciplinary palliative care teams and providing examples of best practices.Keywords: public health palliative care, palliative care nursing, care networks, integrated health care, palliative care approach, public health, multidisciplinary work, care teams
Procedia PDF Downloads 8633572 An Approach for Reliably Transforming Habits Towards Environmental Sustainability Behaviors Among Young Adults
Authors: Dike Felix Okechukwu
Abstract:
Studies and reports from authoritative sources such as the Intergovernmental Panel on Climate Change (IPCC) have stated that to effectively solve environmental sustainability challenges such as pollution, inappropriate waste disposal, and unsustainable consumption, there is a need for more research to seek solutions towards environmentally sustainable behavior. However, literature thus far reports only sporadic developments of TL in Environmental Sustainability because there are scarce reports showing the reliable process(es) to produce TL - for sustainability projects or otherwise. Nonetheless, a recently published article demonstrates how TL can be used to help young adults gain transformed mindsets and habits toward environmental sustainability behaviors and practices. This study, however, does not demonstrate, on a repeated basis, the dependability of the method or reliability of the procedures in using its proposed methodology to help young adults achieve transformed habits towards environmental sustainability behaviors, especially in diverse contexts. In this study, it is demonstrated, through repeated measures, a reliable process that can be used to achieve transformations in habits and mindsets toward environmental sustainability behaviors. To achieve this, the design adopted is multiple case studies and a thematic analysis techniques. Five cases in diverse contexts were used to analyze pieces of evidence of Transformative Learning Outcomes toward environmentally sustainable behaviors. Results from the study offer fresh perspectives on a reliable methodology that can be adopted to achieve Transformations in Habits and mindsets toward environmental sustainability behaviors.Keywords: environmental sustainability, transformative learning, behaviour, learning, education
Procedia PDF Downloads 9333571 Predicting Factors of Hearing Protection Device Use of Workers in Kaolin Mineral Dressing Factories, Thailand
Authors: Watcharapong Yaowarat, Thanee Kaewthummanukul, Waruntorn Jongrungrotsakul
Abstract:
Noise-induced hearing loss, the most significant occupational and safety problem among the working population, can be effectively prevented through hearing protection devices (HPDs) use. This study aimed to examine whether the following factors, perceived benefits, perceived barriers, perceived self-efficacy, and interpersonal and situational influences about using hearing protection could predict HPD use among 132 qualified workers in production lines at Kaolin Mineral Dressing factories, Uttaradit and Lampang provinces. Data collection was undertaken from August to September 2020 according to the interview form developed by Yaruang et al. (2010), which was assured by a panel of experts and its reliability value was at an acceptable level. Data analysis was performed using logistic regression analysis. The results revealed that only the situational factor of using hearing protection could predict HPD use, which accounted for 21.80 percent of the total variance for HPD use. It was also found that the study sample who had a score for the situational factors on using hearing protection greater than or equal to the median was 4.16 times more likely to use HPDs than those who had lower median scores. (OR = 4.16, p < .05). The results, thus, indicate that organization policies addressing worker health along with enhancing a supportive environment for HPD use, in particular, the provision of various HPDs, are of great importance. Therefore, occupational health nurses and related health teams should enhance workers’ use of HPDs effectively through knowledge dissemination by adopting strategies appropriate to the workplace context leading to an achievement of worker health policy focusing on work safety.Keywords: predicting factors, hearing protection device, factors predicting hearing protection device use, kaolin mineral dressing factories
Procedia PDF Downloads 14133570 A Biometric Template Security Approach to Fingerprints Based on Polynomial Transformations
Authors: Ramon Santana
Abstract:
The use of biometric identifiers in the field of information security, access control to resources, authentication in ATMs and banking among others, are of great concern because of the safety of biometric data. In the general architecture of a biometric system have been detected eight vulnerabilities, six of them allow obtaining minutiae template in plain text. The main consequence of obtaining minutia templates is the loss of biometric identifier for life. To mitigate these vulnerabilities several models to protect minutiae templates have been proposed. Several vulnerabilities in the cryptographic security of these models allow to obtain biometric data in plain text. In order to increase the cryptographic security and ease of reversibility, a minutiae templates protection model is proposed. The model aims to make the cryptographic protection and facilitate the reversibility of data using two levels of security. The first level of security is the data transformation level. In this level generates invariant data to rotation and translation, further transformation is irreversible. The second level of security is the evaluation level, where the encryption key is generated and data is evaluated using a defined evaluation function. The model is aimed at mitigating known vulnerabilities of the proposed models, basing its security on the impossibility of the polynomial reconstruction.Keywords: fingerprint, template protection, bio-cryptography, minutiae protection
Procedia PDF Downloads 17033569 Impacts of Urbanization on Forest and Agriculture Areas in Savannakhet Province, Lao People's Democratic Republic
Authors: Chittana Phompila
Abstract:
The current increased population pushes increasing demands for natural resources and living space. In Laos, urban areas have been expanding rapidly in recent years. The rapid urbanization can have negative impacts on landscapes, including forest and agriculture lands. The primary objective of this research were to map current urban areas in a large city in Savannakhet province, in Laos, 2) to compare changes in urbanization between 1990 and 2018, and 3) to estimate forest and agriculture areas lost due to expansions of urban areas during the last over twenty years within study area. Landsat 8 data was used and existing GIS data was collected including spatial data on rivers, lakes, roads, vegetated areas and other land use/land covers). GIS data was obtained from the government sectors. Object based classification (OBC) approach was applied in ECognition for image processing and analysis of urban area using. Historical data from other Landsat instruments (Landsat 5 and 7) were used to allow us comparing changes in urbanization in 1990, 2000, 2010 and 2018 in this study area. Only three main land cover classes were focused and classified, namely forest, agriculture and urban areas. Change detection approach was applied to illustrate changes in built-up areas in these periods. Our study shows that the overall accuracy of map was 95% assessed, kappa~ 0.8. It is found that that there is an ineffective control over forest and land-use conversions from forests and agriculture to urban areas in many main cities across the province. A large area of agriculture and forest has been decreased due to this conversion. Uncontrolled urban expansion and inappropriate land use planning can lead to creating a pressure in our resource utilisation. As consequence, it can lead to food insecurity and national economic downturn in a long term.Keywords: urbanisation, forest cover, agriculture areas, Landsat 8 imagery
Procedia PDF Downloads 16033568 Index t-SNE: Tracking Dynamics of High-Dimensional Datasets with Coherent Embeddings
Authors: Gaelle Candel, David Naccache
Abstract:
t-SNE is an embedding method that the data science community has widely used. It helps two main tasks: to display results by coloring items according to the item class or feature value; and for forensic, giving a first overview of the dataset distribution. Two interesting characteristics of t-SNE are the structure preservation property and the answer to the crowding problem, where all neighbors in high dimensional space cannot be represented correctly in low dimensional space. t-SNE preserves the local neighborhood, and similar items are nicely spaced by adjusting to the local density. These two characteristics produce a meaningful representation, where the cluster area is proportional to its size in number, and relationships between clusters are materialized by closeness on the embedding. This algorithm is non-parametric. The transformation from a high to low dimensional space is described but not learned. Two initializations of the algorithm would lead to two different embeddings. In a forensic approach, analysts would like to compare two or more datasets using their embedding. A naive approach would be to embed all datasets together. However, this process is costly as the complexity of t-SNE is quadratic and would be infeasible for too many datasets. Another approach would be to learn a parametric model over an embedding built with a subset of data. While this approach is highly scalable, points could be mapped at the same exact position, making them indistinguishable. This type of model would be unable to adapt to new outliers nor concept drift. This paper presents a methodology to reuse an embedding to create a new one, where cluster positions are preserved. The optimization process minimizes two costs, one relative to the embedding shape and the second relative to the support embedding’ match. The embedding with the support process can be repeated more than once, with the newly obtained embedding. The successive embedding can be used to study the impact of one variable over the dataset distribution or monitor changes over time. This method has the same complexity as t-SNE per embedding, and memory requirements are only doubled. For a dataset of n elements sorted and split into k subsets, the total embedding complexity would be reduced from O(n²) to O(n²=k), and the memory requirement from n² to 2(n=k)², which enables computation on recent laptops. The method showed promising results on a real-world dataset, allowing to observe the birth, evolution, and death of clusters. The proposed approach facilitates identifying significant trends and changes, which empowers the monitoring high dimensional datasets’ dynamics.Keywords: concept drift, data visualization, dimension reduction, embedding, monitoring, reusability, t-SNE, unsupervised learning
Procedia PDF Downloads 14433567 The Impact of Internal Dynamics of Standing Committees on Legislative Productivity in the Korean National Assembly
Authors: Lee Da Hyun
Abstract:
The purpose of this study is to explore the relation between the internal dynamics of standing committees and legislative productivity of the Korean National Assembly using statistical methods. Studies on legislation in South Korea have been largely revolved around political parties due to the uniqueness of its political context including strong party cohesion and party’s nomination right. However, as standing committees have been at the center of legislatures since the 6th National Assembly, there is a growing need for studying the operation and effectiveness of standing committees in legislation process. Thus, through panel data analysis for the sixteen standing committees across the four terms of the Korean National Assembly-from the 16th to the 19th-this article attempts to reveal that legislators’ bill passing rate is not a sole function of factors pertaining to political party as the existing studies have believed. By measuring the ideological distribution within a committee and the bill passing rate, this article provides differentiated interpretation from established theories of standing committees and presents compelling evidence describing complex interactions and independent operation of the standing committees with the subsequent legislative results.Keywords: collective decision-making, lawmaking, legislation, political polarization, standing committees
Procedia PDF Downloads 14433566 Mecano-Reliability Approach Applied to a Water Storage Tank Placed on Ground
Authors: Amar Aliche, Hocine Hammoum, Karima Bouzelha, Arezki Ben Abderrahmane
Abstract:
Traditionally, the dimensioning of storage tanks is conducted with a deterministic approach based on partial coefficients of safety. These coefficients are applied to take into account the uncertainties related to hazards on properties of materials used and applied loads. However, the use of these safety factors in the design process does not assure an optimal and reliable solution and can sometimes lead to a lack of robustness of the structure. The reliability theory based on a probabilistic formulation of constructions safety can respond in an adapted manner. It allows constructing a modelling in which uncertain data are represented by random variables, and therefore allows a better appreciation of safety margins with confidence indicators. The work presented in this paper consists of a mecano-reliability analysis of a concrete storage tank placed on ground. The classical method of Monte Carlo simulation is used to evaluate the failure probability of concrete tank by considering the seismic acceleration as random variable.Keywords: reliability approach, storage tanks, monte carlo simulation, seismic acceleration
Procedia PDF Downloads 31033565 An Application of Vector Error Correction Model to Assess Financial Innovation Impact on Economic Growth of Bangladesh
Authors: Md. Qamruzzaman, Wei Jianguo
Abstract:
Over the decade, it is observed that financial development, through financial innovation, not only accelerated development of efficient and effective financial system but also act as a catalyst in the economic development process. In this study, we try to explore insight about how financial innovation causes economic growth in Bangladesh by using Vector Error Correction Model (VECM) for the period of 1990-2014. Test of Cointegration confirms the existence of a long-run association between financial innovation and economic growth. For investigating directional causality, we apply Granger causality test and estimation explore that long-run growth will be affected by capital flow from non-bank financial institutions and inflation in the economy but changes of growth rate do not have any impact on Capital flow in the economy and level of inflation in long-run. Whereas, growth and Market capitalization, as well as market capitalization and capital flow, confirm feedback hypothesis. Variance decomposition suggests that any innovation in the financial sector can cause GDP variation fluctuation in both long run and short run. Financial innovation promotes efficiency and cost in financial transactions in the financial system, can boost economic development process. The study proposed two policy recommendations for further development. First, innovation friendly financial policy should formulate to encourage adaption and diffusion of financial innovation in the financial system. Second, operation of financial market and capital market should be regulated with implementation of rules and regulation to create conducive environment.Keywords: financial innovation, economic growth, GDP, financial institution, VECM
Procedia PDF Downloads 27233564 Cloud-Based Multiresolution Geodata Cube for Efficient Raster Data Visualization and Analysis
Authors: Lassi Lehto, Jaakko Kahkonen, Juha Oksanen, Tapani Sarjakoski
Abstract:
The use of raster-formatted data sets in geospatial analysis is increasing rapidly. At the same time, geographic data are being introduced into disciplines outside the traditional domain of geoinformatics, like climate change, intelligent transport, and immigration studies. These developments call for better methods to deliver raster geodata in an efficient and easy-to-use manner. Data cube technologies have traditionally been used in the geospatial domain for managing Earth Observation data sets that have strict requirements for effective handling of time series. The same approach and methodologies can also be applied in managing other types of geospatial data sets. A cloud service-based geodata cube, called GeoCubes Finland, has been developed to support online delivery and analysis of most important geospatial data sets with national coverage. The main target group of the service is the academic research institutes in the country. The most significant aspects of the GeoCubes data repository include the use of multiple resolution levels, cloud-optimized file structure, and a customized, flexible content access API. Input data sets are pre-processed while being ingested into the repository to bring them into a harmonized form in aspects like georeferencing, sampling resolutions, spatial subdivision, and value encoding. All the resolution levels are created using an appropriate generalization method, selected depending on the nature of the source data set. Multiple pre-processed resolutions enable new kinds of online analysis approaches to be introduced. Analysis processes based on interactive visual exploration can be effectively carried out, as the level of resolution most close to the visual scale can always be used. In the same way, statistical analysis can be carried out on resolution levels that best reflect the scale of the phenomenon being studied. Access times remain close to constant, independent of the scale applied in the application. The cloud service-based approach, applied in the GeoCubes Finland repository, enables analysis operations to be performed on the server platform, thus making high-performance computing facilities easily accessible. The developed GeoCubes API supports this kind of approach for online analysis. The use of cloud-optimized file structures in data storage enables the fast extraction of subareas. The access API allows for the use of vector-formatted administrative areas and user-defined polygons as definitions of subareas for data retrieval. Administrative areas of the country in four levels are available readily from the GeoCubes platform. In addition to direct delivery of raster data, the service also supports the so-called virtual file format, in which only a small text file is first downloaded. The text file contains links to the raster content on the service platform. The actual raster data is downloaded on demand, from the spatial area and resolution level required in each stage of the application. By the geodata cube approach, pre-harmonized geospatial data sets are made accessible to new categories of inexperienced users in an easy-to-use manner. At the same time, the multiresolution nature of the GeoCubes repository facilitates expert users to introduce new kinds of interactive online analysis operations.Keywords: cloud service, geodata cube, multiresolution, raster geodata
Procedia PDF Downloads 13933563 Climate Change Adaptation Strategy Recommended for the Conservation of Biodiversity in Western Ghats, India
Authors: Mukesh Lal Das, Muthukumar Muthuchamy
Abstract:
Climate change Adaptation strategy (AS) is a scientific approach to dealing with the impacts of climate change (CC). Efforts are being made to contain the global emission of greenhouse gas within threshold limits, thereby limiting the rise of global temperature to an optimal level. Global Climate change is a spontaneous process; therefore, reversing the damage would take decades. The climate change adaptation strategy recommended by various stakeholders could be a key to resilience for biodiversity. The Indian Government has constituted the panel to synthesize the climate change action report at the federal and state levels. This review scavenged the published literature on the Western Ghats hotspots. And highlight the adaptation strategy recommended by diverse scientific actors to conserve biodiversity. It also reviews the grey literature adopted by state and federal governments and its effectiveness in mitigating the impacts on biodiversity. We have narrowed the scope of interest to the state action report by 6 Indian states such as Gujarat, Maharashtra, Goa, Karnataka, Kerala and Tamil Nadu, which host Western Ghats global biodiversity hotspot. Western Ghats(WGs) act as the water tower to the peninsular part of India, and its extensive watershed caters to the water demand of the Industry sector, Agriculture and urban community. Conservation of WGs is the key to the prosperity of Peninsular India. The global scientific community suggested more than 600+ Climate change adaptation strategies for the policymakers, stakeholders, and other state actors to take proactive actions. The preliminary analysis of the federal and the state action plan on climate change in the wake of CC indicate inadequacy in motion as per recommended scientific adaptation strategies. Tamil Nadu and Kerala state constitute nine effective adaptation strategies out of the 40+ recommended for Western Ghats conservation. And other four states' adaptation strategies are deficient, confusing and vague. Western Ghats' resilience capacity will soon or might have reached its threshold, and the frequency of severe drought and flash floods might upsurge manifold in the decades to come. The lack of a clear roadmap to climate change adaptation strategies in the federal and state action stirred us to identify the gap and address it by offering a holistic approach to WGs biodiversity conservation.Keywords: adaptation strategy, biodiversity conservation, climate change, resilience, Western Ghats
Procedia PDF Downloads 10633562 Improving Chest X-Ray Disease Detection with Enhanced Data Augmentation Using Novel Approach of Diverse Conditional Wasserstein Generative Adversarial Networks
Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Daniyal Haider, Xiaodong Yang
Abstract:
Chest X-rays are instrumental in the detection and monitoring of a wide array of diseases, including viral infections such as COVID-19, tuberculosis, pneumonia, lung cancer, and various cardiac and pulmonary conditions. To enhance the accuracy of diagnosis, artificial intelligence (AI) algorithms, particularly deep learning models like Convolutional Neural Networks (CNNs), are employed. However, these deep learning models demand a substantial and varied dataset to attain optimal precision. Generative Adversarial Networks (GANs) can be employed to create new data, thereby supplementing the existing dataset and enhancing the accuracy of deep learning models. Nevertheless, GANs have their limitations, such as issues related to stability, convergence, and the ability to distinguish between authentic and fabricated data. In order to overcome these challenges and advance the detection and classification of CXR normal and abnormal images, this study introduces a distinctive technique known as DCWGAN (Diverse Conditional Wasserstein GAN) for generating synthetic chest X-ray (CXR) images. The study evaluates the effectiveness of this Idiosyncratic DCWGAN technique using the ResNet50 model and compares its results with those obtained using the traditional GAN approach. The findings reveal that the ResNet50 model trained on the DCWGAN-generated dataset outperformed the model trained on the classic GAN-generated dataset. Specifically, the ResNet50 model utilizing DCWGAN synthetic images achieved impressive performance metrics with an accuracy of 0.961, precision of 0.955, recall of 0.970, and F1-Measure of 0.963. These results indicate the promising potential for the early detection of diseases in CXR images using this Inimitable approach.Keywords: CNN, classification, deep learning, GAN, Resnet50
Procedia PDF Downloads 8933561 Multi-Agent Approach for Monitoring and Control of Biotechnological Processes
Authors: Ivanka Valova
Abstract:
This paper is aimed at using a multi-agent approach to monitor and diagnose a biotechnological system in order to validate certain control actions depending on the process development and the operating conditions. A multi-agent system is defined as a network of interacting software modules that collectively solve complex tasks. Remote monitoring and control of biotechnological processes is a necessity when automated and reliable systems operating with no interruption of certain activities are required. The advantage of our approach is in its flexibility, modularity and the possibility of improving by acquiring functionalities through the integration of artificial intelligence.Keywords: multi-agent approach, artificial intelligence, biotechnological processes, anaerobic biodegradation
Procedia PDF Downloads 9033560 Data-Driven Performance Evaluation of Surgical Doctors Based on Fuzzy Analytic Hierarchy Processes
Authors: Yuguang Gao, Qiang Yang, Yanpeng Zhang, Mingtao Deng
Abstract:
To enhance the safety, quality and efficiency of healthcare services provided by surgical doctors, we propose a comprehensive approach to the performance evaluation of individual doctors by incorporating insights from performance data as well as views of different stakeholders in the hospital. Exploratory factor analysis was first performed on collective multidimensional performance data of surgical doctors, where key factors were extracted that encompass assessment of professional experience and service performance. A two-level indicator system was then constructed, for which we developed a weighted interval-valued spherical fuzzy analytic hierarchy process to analyze the relative importance of the indicators while handling subjectivity and disparity in the decision-making of multiple parties involved. Our analytical results reveal that, for the key factors identified as instrumental for evaluating surgical doctors’ performance, the overall importance of clinical workload and complexity of service are valued more than capacity of service and professional experience, while the efficiency of resource consumption ranks comparatively the lowest in importance. We also provide a retrospective case study to illustrate the effectiveness and robustness of our quantitative evaluation model by assigning meaningful performance ratings to individual doctors based on the weights developed through our approach.Keywords: analytic hierarchy processes, factor analysis, fuzzy logic, performance evaluation
Procedia PDF Downloads 5833559 Develop a Conceptual Data Model of Geotechnical Risk Assessment in Underground Coal Mining Using a Cloud-Based Machine Learning Platform
Authors: Reza Mohammadzadeh
Abstract:
The major challenges in geotechnical engineering in underground spaces arise from uncertainties and different probabilities. The collection, collation, and collaboration of existing data to incorporate them in analysis and design for given prospect evaluation would be a reliable, practical problem solving method under uncertainty. Machine learning (ML) is a subfield of artificial intelligence in statistical science which applies different techniques (e.g., Regression, neural networks, support vector machines, decision trees, random forests, genetic programming, etc.) on data to automatically learn and improve from them without being explicitly programmed and make decisions and predictions. In this paper, a conceptual database schema of geotechnical risks in underground coal mining based on a cloud system architecture has been designed. A new approach of risk assessment using a three-dimensional risk matrix supported by the level of knowledge (LoK) has been proposed in this model. Subsequently, the model workflow methodology stages have been described. In order to train data and LoK models deployment, an ML platform has been implemented. IBM Watson Studio, as a leading data science tool and data-driven cloud integration ML platform, is employed in this study. As a Use case, a data set of geotechnical hazards and risk assessment in underground coal mining were prepared to demonstrate the performance of the model, and accordingly, the results have been outlined.Keywords: data model, geotechnical risks, machine learning, underground coal mining
Procedia PDF Downloads 27533558 Deriving Generic Transformation Matrices for Multi-Axis Milling Machine
Authors: Alan C. Lin, Tzu-Kuan Lin, Tsong Der Lin
Abstract:
This paper proposes a new method to find the equations of transformation matrix for the rotation angles of the two rotational axes and the coordinates of the three linear axes of an orthogonal multi-axis milling machine. This approach provides intuitive physical meanings for rotation angles of multi-axis machines, which can be used to evaluate the accuracy of the conversion from CL data to NC data.Keywords: CAM, multi-axis milling machining, transformation matrix, rotation angles
Procedia PDF Downloads 48333557 The Assessment of the Comparative Efficiency of Reforms through the Integral Index of Transformation
Authors: Samson Davoyan, Ashot Davoyan, Ani Khachatryan
Abstract:
The indexes (Global Competitiveness Index, Economic Freedom Index, Human Development Index, etc.) developed by different international and non-government organizations in time and space express the quantitative and qualitative features of different fields of various reforms implemented in different countries. The main objective of our research is to develop new methodology that we will use to create integral index based on many indexes and that will include many areas of reforms. To achieve our aim we have used econometric methods (regression model for panel data method). The basis of our methodology is the development of the new integral index based on quantitative assessment of the change of two main parameters: the score of the countries by different indexes and the change of the ranks of countries for following two periods of time. As a result of the usage of methods for analyzes we have defined the indexes that are used to create the new integral index and the scales for each of them. Analyzing quantitatively and qualitatively analysis through the integral index for more than 100 countries for 2009-2014, we have defined comparative efficiency that helps to conclude in which directions countries have implemented reforms more effectively compared to others and in which direction reforms have implemented less efficiently.Keywords: development, rank, reforms, comparative, index, economic, corruption, social, program
Procedia PDF Downloads 32833556 Triangular Hesitant Fuzzy TOPSIS Approach in Investment Projects Management
Authors: Irina Khutsishvili
Abstract:
The presented study develops a decision support methodology for multi-criteria group decision-making problem. The proposed methodology is based on the TOPSIS (Technique for Order Performance by Similarity to Ideal Solution) approach in the hesitant fuzzy environment. The main idea of decision-making problem is a selection of one best alternative or several ranking alternatives among a set of feasible alternatives. Typically, the process of decision-making is based on an evaluation of certain criteria. In many MCDM problems (such as medical diagnosis, project management, business and financial management, etc.), the process of decision-making involves experts' assessments. These assessments frequently are expressed in fuzzy numbers, confidence intervals, intuitionistic fuzzy values, hesitant fuzzy elements and so on. However, a more realistic approach is using linguistic expert assessments (linguistic variables). In the proposed methodology both the values and weights of the criteria take the form of linguistic variables, given by all decision makers. Then, these assessments are expressed in triangular fuzzy numbers. Consequently, proposed approach is based on triangular hesitant fuzzy TOPSIS decision-making model. Following the TOPSIS algorithm, first, the fuzzy positive ideal solution (FPIS) and the fuzzy negative-ideal solution (FNIS) are defined. Then the ranking of alternatives is performed in accordance with the proximity of their distances to the both FPIS and FNIS. Based on proposed approach the software package has been developed, which was used to rank investment projects in the real investment decision-making problem. The application and testing of the software were carried out based on the data provided by the ‘Bank of Georgia’.Keywords: fuzzy TOPSIS approach, investment project, linguistic variable, multi-criteria decision making, triangular hesitant fuzzy set
Procedia PDF Downloads 43033555 Healthcare Seeking Behaviors of Parents Who Have Children with Disabilities: A Case Study at the Effutu Municipality, Winneba-Central Region, Ghana-West Africa
Authors: Priscilla Deede Hammond
Abstract:
Healthcare seeking behaviour has emerged as a tool to tackle perceived ill-health by taking remedial actions. And currently, efforts are being directed towards encouraging people (especially parents) to learn and use health-promoting behaviours in seeking their children’s healthcare. Regardless of these efforts, most parents encounter challenges with raising a child with a disability. The purpose of the study was to explore the healthcare-seeking behaviours of parents of children with disabilities. In order to achieve the purpose of the study, a case study design was employed where the researcher used a qualitative approach such as semi-structured interview to gather the required data. Data from participants were analysed using a thematic analysis approach. It was revealed from the findings of the study that, some of the parents after the first diagnosis by health professionals consulted a spiritualist or a herbalist for help. Also, some parents stated that their response to their children’s healthcare depended on the severity of the sickness. The study recommends the Ministry of Gender, Children and Social Protection and other social agencies such as the Social Welfare Department to provide health assessment and financial support to families of children with disabilities.Keywords: healthcare, health, parents, disabilities
Procedia PDF Downloads 22533554 Developing and Standardizing Individual Care Plan for Children in Conflict with Law in the State of Kerala
Authors: Kavitha Puthanveedu, Kasi Sekar, Preeti Jacob, Kavita Jangam
Abstract:
In India, The Juvenile Justice (Care and Protection of Children) Act, 2015, the law related to children alleged and found to be in conflict with law, proposes to address to the rehabilitation of children in conflict with law by catering to the basic rights by providing care and protection, development, treatment, and social re-integration. A major concern in addressing the issues of children in conflict with law in Kerala the southernmost state in India identified were: 1. Lack of psychological assessment for children in conflict with law, 2. Poor psychosocial intervention for children in conflict with law on bail, 3. Lack of psychosocial intervention or proper care and protection of CCL residing at observation and special home, 4. Lack convergence with systems related with mental health care. Aim: To develop individual care plan for children in conflict with law. Methodology: NIMHANS a premier Institute of Mental Health and Neurosciences, collaborated with Social Justice Department, Govt. of Kerala to address this issue by developing a participatory methodology to implement psychosocial care in the existing services by integrating the activities through multidisciplinary and multisectoral approach as per the Sec. 18 of JJAct 2015. Developing individual care plan: Key informant interviews, focus group discussion with multiple stakeholders consisting of legal officers, police, child protection officials, counselors, and home staff were conducted. Case studies were conducted among children in conflict with law. A checklist on 80 psychosocial problems among children in conflict with law was prepared with eight major issues identified through the quantitative process such as family and parental characteristic, family interactions and relationships, stressful life event, social and environmental factors, child’s individual characteristics, education, child labour and high-risk behavior. Standardised scales were used to identify the anxiety, caseness, suicidality and substance use among the children. This provided a background data understand the psychosocial problems experienced by children in conflict with law. In the second stage, a detailed plan of action was developed involving multiple stakeholders that include Special juvenile police unit, DCPO, JJB, and NGOs. The individual care plan was reviewed by a panel of 4 experts working in the area of children, followed by the review by multiple stakeholders in juvenile justice system such as Magistrates, JJB members, legal cum probation officers, district child protection officers, social workers and counselors. Necessary changes were made in the individual care plan in each stage which was pilot tested with 45 children for a period of one month and standardized for administering among children in conflict with law. Result: The individual care plan developed through scientific process was standardized and currently administered among children in conflict with law in the state of Kerala in the 3 districts that will be further implemented in other 14 districts. The program was successful in developing a systematic approach for the psychosocial intervention of children in conflict with law that can be a forerunner for other states in India.Keywords: psychosocial care, individual care plan, multidisciplinary, multisectoral
Procedia PDF Downloads 28433553 Planning for Brownfield Regeneration in Malaysia: An Integrated Approach in Creating Sustainable Ex-Landfill Redevelopment
Authors: Mazifah Simis, Azahan Awang, Kadir Arifin
Abstract:
The brownfield regeneration is being implemented in developped countries. However, as a group 1 developing country in the South East Asia, the rapid development and increasing number of urban population in Malaysia have urged the needs to incorporate the brownfield regeneration into its physical planning development. The increasing number of urban ex-landfills is seen as a new resource that could overcome the issues of inadequate urban green space provisions. With regards to the new development approach in urban planning, this perception study aims to identify the sustainable planning approach based on what the stakeholders have in mind. Respondents consist of 375 local communities within four urban ex-landfill areas and 61 landscape architect and town planner officers in the Malaysian Local Authorities. Three main objectives are set to be achieved, which are (i) to identify ex-landfill issues that need to be overcome prior to the ex-landfill redevelopment (ii) to identify the most suitable types of ex-landfill redevelopment, and (iii) to identify the priority function for ex-landfill redevelopment as the public parks. From the data gathered through the survey method, the order of priorities based on stakeholders' perception was produced. The results show different perception among the stakeholders, but they agreed to the development of the public park as the main development. Hence, this study attempts to produce an integrated approach as a model for sustainable ex-landfill redevelopment that could be accepted by the stakeholders as a beneficial future development that could change the image of 296 ex-landfills in Malaysia into the urban public parks by the year 2020.Keywords: brownfield regeneration, ex-landfill redevelopment, integrated approach, stakeholders' perception
Procedia PDF Downloads 35533552 Statistically Accurate Synthetic Data Generation for Enhanced Traffic Predictive Modeling Using Generative Adversarial Networks and Long Short-Term Memory
Authors: Srinivas Peri, Siva Abhishek Sirivella, Tejaswini Kallakuri, Uzair Ahmad
Abstract:
Effective traffic management and infrastructure planning are crucial for the development of smart cities and intelligent transportation systems. This study addresses the challenge of data scarcity by generating realistic synthetic traffic data using the PeMS-Bay dataset, improving the accuracy and reliability of predictive modeling. Advanced synthetic data generation techniques, including TimeGAN, GaussianCopula, and PAR Synthesizer, are employed to produce synthetic data that replicates the statistical and structural characteristics of real-world traffic. Future integration of Spatial-Temporal Generative Adversarial Networks (ST-GAN) is planned to capture both spatial and temporal correlations, further improving data quality and realism. The performance of each synthetic data generation model is evaluated against real-world data to identify the best models for accurately replicating traffic patterns. Long Short-Term Memory (LSTM) networks are utilized to model and predict complex temporal dependencies within traffic patterns. This comprehensive approach aims to pinpoint areas with low vehicle counts, uncover underlying traffic issues, and inform targeted infrastructure interventions. By combining GAN-based synthetic data generation with LSTM-based traffic modeling, this study supports data-driven decision-making that enhances urban mobility, safety, and the overall efficiency of city planning initiatives.Keywords: GAN, long short-term memory, synthetic data generation, traffic management
Procedia PDF Downloads 2933551 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow
Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat
Abstract:
Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.Keywords: affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, student engagement
Procedia PDF Downloads 9533550 A Deep Learning Based Approach for Dynamically Selecting Pre-processing Technique for Images
Authors: Revoti Prasad Bora, Nikita Katyal, Saurabh Yadav
Abstract:
Pre-processing plays an important role in various image processing applications. Most of the time due to the similar nature of images, a particular pre-processing or a set of pre-processing steps are sufficient to produce the desired results. However, in the education domain, there is a wide variety of images in various aspects like images with line-based diagrams, chemical formulas, mathematical equations, etc. Hence a single pre-processing or a set of pre-processing steps may not yield good results. Therefore, a Deep Learning based approach for dynamically selecting a relevant pre-processing technique for each image is proposed. The proposed method works as a classifier to detect hidden patterns in the images and predicts the relevant pre-processing technique needed for the image. This approach experimented for an image similarity matching problem but it can be adapted to other use cases too. Experimental results showed significant improvement in average similarity ranking with the proposed method as opposed to static pre-processing techniques.Keywords: deep-learning, classification, pre-processing, computer vision, image processing, educational data mining
Procedia PDF Downloads 16633549 Direct Translation vs. Pivot Language Translation for Persian-Spanish Low-Resourced Statistical Machine Translation System
Authors: Benyamin Ahmadnia, Javier Serrano
Abstract:
In this paper we compare two different approaches for translating from Persian to Spanish, as a language pair with scarce parallel corpus. The first approach involves direct transfer using an statistical machine translation system, which is available for this language pair. The second approach involves translation through English, as a pivot language, which has more translation resources and more advanced translation systems available. The results show that, it is possible to achieve better translation quality using English as a pivot language in either approach outperforms direct translation from Persian to Spanish. Our best result is the pivot system which scores higher than direct translation by (1.12) BLEU points.Keywords: statistical machine translation, direct translation approach, pivot language translation approach, parallel corpus
Procedia PDF Downloads 48833548 Imputation Technique for Feature Selection in Microarray Data Set
Authors: Younies Saeed Hassan Mahmoud, Mai Mabrouk, Elsayed Sallam
Abstract:
Analysing DNA microarray data sets is a great challenge, which faces the bioinformaticians due to the complication of using statistical and machine learning techniques. The challenge will be doubled if the microarray data sets contain missing data, which happens regularly because these techniques cannot deal with missing data. One of the most important data analysis process on the microarray data set is feature selection. This process finds the most important genes that affect certain disease. In this paper, we introduce a technique for imputing the missing data in microarray data sets while performing feature selection.Keywords: DNA microarray, feature selection, missing data, bioinformatics
Procedia PDF Downloads 57433547 Probabilistic Approach to the Spatial Identification of the Environmental Sources behind Mortality Rates in Europe
Authors: Alina Svechkina, Boris A. Portnov
Abstract:
In line with a rapid increase in pollution sources and enforcement of stricter air pollution regulation, which lowers pollution levels, it becomes more difficult to identify actual risk sources behind the observed morbidity patterns, and new approaches are required to identify potential risks and take preventive actions. In the present study, we discuss a probabilistic approach to the spatial identification of a priori unidentified environmental health hazards. The underlying assumption behind the tested approach is that the observed adverse health patterns (morbidity, mortality) can become a source of information on the geographic location of environmental risk factors that stand behind them. Using this approach, we analyzed sources of environmental exposure using data on mortality rates available for the year 2015 for NUTS 3 (Nomenclature of Territorial Units for Statistics) subdivisions of the European Union. We identified several areas in the southwestern part of Europe as primary risk sources for the observed mortality patterns. Multivariate regressions, controlled by geographical location, climate conditions, GDP (gross domestic product) per capita, dependency ratios, population density, and the level of road freight revealed that mortality rates decline as a function of distance from the identified hazard location. We recommend the proposed approach an exploratory analysis tool for initial investigation of regional patterns of population morbidity patterns and factors behind it.Keywords: mortality, environmental hazards, air pollution, distance decay gradient, multi regression analysis, Europe, NUTS3
Procedia PDF Downloads 16733546 The Influence of Construction Workers Wages and Working Conditions on Productivity in Ghana
Authors: Emmanuel Donkor
Abstract:
Aim/Purpose – This paper examines the influence of construction workers wages and working conditions on productivity in Ghana. Design/methodology/Approach - The study adopted a quantitative research approach with purposive sampling techniques where data was collected using surveys. The data were analyzed using SPSS software version 20.0, which enables the findings of the study to be examined under thematic areas.Findings: - The study revealed that good wages and working condition of workers have a positive correlation on productivity in the construction industry. Increase and improved wages and working conditions can results in higher productivity in the construction industry.Originality/value - This paper is exceptional in the sense that, it does examine the influence of construction workers wages and working conditions on productivity in Ghana. Social value/implications - The paper concludes that workers’ wages and their conditions have a high influence on productivity. It is then recommended that government should train, educate, give good wages to workers and improve on their working condition, give incentives and reduce tax importation on building or construction materials to aid in good productivity of construction firms.Keywords: construction firms, construction industry, productivity, workers’ wages, working conditions
Procedia PDF Downloads 13533545 Architectural Framework to Preserve Information of Cardiac Valve Control
Authors: Lucia Carrion Gordon, Jaime Santiago Sanchez Reinoso
Abstract:
According to the relation of Digital Preservation and the Health field as a case of study, the architectural model help us to explain that definitions. .The principal goal of Data Preservation is to keep information for a long term. Regarding of Mediacal information, in order to perform a heart transplant, physicians need to preserve this organ in an adequate way. This approach between the two perspectives, the medical and the technological allow checking the similarities about the concepts of preservation. Digital preservation and medical advances are related in the same level as knowledge improvement.Keywords: medical management, digital, data, heritage, preservation
Procedia PDF Downloads 42033544 A Novel Probabilistic Spatial Locality of Reference Technique for Automatic Cleansing of Digital Maps
Authors: A. Abdullah, S. Abushalmat, A. Bakshwain, A. Basuhail, A. Aslam
Abstract:
GIS (Geographic Information System) applications require geo-referenced data, this data could be available as databases or in the form of digital or hard-copy agro-meteorological maps. These parameter maps are color-coded with different regions corresponding to different parameter values, converting these maps into a database is not very difficult. However, text and different planimetric elements overlaid on these maps makes an accurate image to database conversion a challenging problem. The reason being, it is almost impossible to exactly replace what was underneath the text or icons; thus, pointing to the need for inpainting. In this paper, we propose a probabilistic inpainting approach that uses the probability of spatial locality of colors in the map for replacing overlaid elements with underlying color. We tested the limits of our proposed technique using non-textual simulated data and compared text removing results with a popular image editing tool using public domain data with promising results.Keywords: noise, image, GIS, digital map, inpainting
Procedia PDF Downloads 353