Search results for: Thunbergia laurifolia extract
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2100

Search results for: Thunbergia laurifolia extract

1050 Cells Detection and Recognition in Bone Marrow Examination with Deep Learning Method

Authors: Shiyin He, Zheng Huang

Abstract:

In this paper, deep learning methods are applied in bio-medical field to detect and count different types of cells in an automatic way instead of manual work in medical practice, specifically in bone marrow examination. The process is mainly composed of two steps, detection and recognition. Mask-Region-Convolutional Neural Networks (Mask-RCNN) was used for detection and image segmentation to extract cells and then Convolutional Neural Networks (CNN), as well as Deep Residual Network (ResNet) was used to classify. Result of cell detection network shows high efficiency to meet application requirements. For the cell recognition network, two networks are compared and the final system is fully applicable.

Keywords: cell detection, cell recognition, deep learning, Mask-RCNN, ResNet

Procedia PDF Downloads 190
1049 Antimicrobial Value of Olax subscorpioidea and Bridelia ferruginea on Micro-Organism Isolates of Dental Infection

Authors: I. C. Orabueze, A. A. Amudalat, S. A. Adesegun, A. A. Usman

Abstract:

Dental and associated oral diseases are increasingly affecting a considerable portion of the population and are considered some of the major causes of tooth loss, discomfort, mouth odor and loss of confidence. This study focused on the ethnobotanical survey of medicinal plants used in oral therapy and evaluation of the antimicrobial activities of methanolic extracts of two selected plants from the survey for their efficacy against dental microorganisms. The ethnobotanical survey was carried out in six herbal markets in Lagos State, Nigeria by oral interviewing and information obtained from an old family manually complied herbal medication book. Methanolic extracts of Olax subscorpioidea (stem bark) and Bridelia ferruginea (stem bark) were assayed for their antimicrobial activities against clinical oral isolates (Aspergillus fumigatus, Candida albicans, Streptococcus spp, Staphylococcus aureus, Lactobacillus acidophilus and Pseudomonas aeruginosa). In vitro microbial technique (agar well diffusion method and minimum inhibitory concentration (MIC) assay) were employed for the assay. Chlorhexidine gluconate was used as the reference drug for comparison with the extract results. And the preliminary phytochemical screening of the constituents of the plants were done. The ethnobotanical survey produced plants (28) of diverse family. Different parts of plants (seed, fruit, leaf, root, bark) were mentioned but 60% mentioned were either the stem or the bark. O. subscorpioidea showed considerable antifungal activity with zone of inhibition ranging from 2.650 – 2.000 cm against Aspergillus fumigatus but no such encouraging inhibitory activity was observed in the other assayed organisms. B. ferruginea showed antibacterial sensitivity against Streptococcus spp, Staphylococcus aureus, Lactobacillus acidophilus and Pseudomonas aeruginosa with zone of inhibitions ranging from 3.400 - 2.500, 2.250 - 1.600, 2.700 - 1.950, 2.225 – 1.525 cm respectively. The minimum inhibitory concentration of O. subscorpioidea against Aspergillus fumigatus was 51.2 mg ml-1 while that of B. ferruginea against Streptococcus spp was 0.1mg ml-1 and for Staphylococcus aureus, Lactobacillus acidophilus and Pseudomonas aeruginosa were 25.6 mg ml-1. A phytochemical analysis reveals the presence of alkaloids, saponins, cardiac glycoside, tannins, phenols and terpenoids in both plants, with steroids only in B. ferruginea. No toxicity was observed among mice given the two methanolic extracts (1000 mg Kg-1) after 21 days. The barks of both plants exhibited antimicrobial properties against periodontal diseases causing organisms assayed, thus up-holding their folkloric use in oral disorder management. Further research could be done viewing these extracts as combination therapy, checking for possible synergistic value in toothpaste and oral rinse formulations for reducing oral bacterial flora and fungi load.

Keywords: antimicrobial activities, Bridelia ferruginea, dental disinfection, methanolic extract, Olax subscorpioidea, ethnobotanical survey

Procedia PDF Downloads 244
1048 2.5D Face Recognition Using Gabor Discrete Cosine Transform

Authors: Ali Cheraghian, Farshid Hajati, Soheila Gheisari, Yongsheng Gao

Abstract:

In this paper, we present a novel 2.5D face recognition method based on Gabor Discrete Cosine Transform (GDCT). In the proposed method, the Gabor filter is applied to extract feature vectors from the texture and the depth information. Then, Discrete Cosine Transform (DCT) is used for dimensionality and redundancy reduction to improve computational efficiency. The system is combined texture and depth information in the decision level, which presents higher performance compared to methods, which use texture and depth information, separately. The proposed algorithm is examined on publically available Bosphorus database including models with pose variation. The experimental results show that the proposed method has a higher performance compared to the benchmark.

Keywords: Gabor filter, discrete cosine transform, 2.5d face recognition, pose

Procedia PDF Downloads 328
1047 Toxicity and Larvicidal Activity of Cholesta-β-D-Glucopyranoside Isolated from Combretum molle R.

Authors: Abdu Zakari, Sai’d Jibril, Adoum A. Omar

Abstract:

The leaves of Combretum molle was selected on the basis of its uses in folk medicine as insecticides. The leave extracts of Combretum molle was tested against the larvae of Artemia salina, i.e. Brine Shrimp Lethality Test (BST), Culex quinquefasciatus Say (Filaria disease vector) i.e. Larvicidal Test, using crude ethanol, n-hexane, chloroform, ethyl acetate, and methanol extracts. The methanolic extract proved to be the most effective in inducing complete lethality at minimum doses both in the BST and the Larvicidal activity test. The LC50¬ values obtained are 24.85 µg/ml and 0.4µg/ml respectively. The bioactivity-guided column chromatography afforded the pure compound ACM–3. ACM-3 was not active in the BST with LC50 value >1000µg/ml, but was active in the Larvicidal activity test with LC50 value 4.0µg/ml. ACM-3 was proposed to have the structure I, (Cholesta-β-D-Glucopyranoside).

Keywords: toxicity, larvicidal, Combretum molle, Artemia salina, Culex quinquefasciatus Say.

Procedia PDF Downloads 398
1046 Modelling and Simulation of Biomass Pyrolysis

Authors: P. Ahuja, K. S. S. Sai Krishna

Abstract:

There is a concern over the energy shortage in the modern societies as it is one of the primary necessities. Renewable energy, mainly biomass, is found to be one feasible solution as it is inexhaustible and clean energy source all over the world. Out of various methods, thermo chemical conversion is considered to be the most common and convenient method to extract energy from biomass. The thermo-chemical methods that are employed are gasification, liquefaction and combustion. On gasification biomass yields biogas, on liquefaction biomass yields bio-oil and on combustion biomass yields bio-char. Any attempt to biomass gasification, liquefaction or combustion calls for a good understanding of biomass pyrolysis. So, Irrespective of the method used the first step towards the thermo-chemical treatment of biomass is pyrolysis. Pyrolysis mainly converts the solid mass into liquid with gas and residual char as the byproducts. Liquid is used for the production of heat, power and many other chemicals whereas the gas and char can be used as fuels to generate heat.

Keywords: biomass, fluidisation, pyrolysis, simulation

Procedia PDF Downloads 342
1045 Performance Evaluation of Moringa Oleifera as Coagulant for Treating Abattoir Wastewater

Authors: Adesiji Adeolu Richard, Hassa Musa, Osita Evaritus Asogwa, Mary Oluwatobi Odekunle, Mangey Jarumi Akila

Abstract:

In this paper, extract from raw Moringa Oleifera seeds for the treatment of 40 liters of abattoir wastewater was studied for a period of ten (10) weeks. A completely randomized design with loading dosages of 10, 12, 14, 16, 18, and 20g of processed Moringa Oleifera seed was used in the treatment. A control sample (with no Moringa Oleifera treatment) was also included. The physical and chemical properties of abattoir wastewater were investigated before and after treatment. The turbidity value was reduced drastically after the treatments from 15.40 to 7.63 mg/l for 16g dosage in week 7. Total alkalinity, Total hardness, Conductivity, Calcium, and Biological Oxygen Demand were all found to be reduced in concentration within the second and fourth weeks of the experiment with 14 to 16g of Moringa Oleifera dosage. The results generally showed that 16g/500ml of Moringa Oleifera was able to treat abattoir wastewater after weeks of the experiment.

Keywords: Moringa Oleifera, abattoir wastewater, turbidity, conductivity, pH

Procedia PDF Downloads 120
1044 Mining Multicity Urban Data for Sustainable Population Relocation

Authors: Xu Du, Aparna S. Varde

Abstract:

In this research, we propose to conduct diagnostic and predictive analysis about the key factors and consequences of urban population relocation. To achieve this goal, urban simulation models extract the urban development trends as land use change patterns from a variety of data sources. The results are treated as part of urban big data with other information such as population change and economic conditions. Multiple data mining methods are deployed on this data to analyze nonlinear relationships between parameters. The result determines the driving force of population relocation with respect to urban sprawl and urban sustainability and their related parameters. Experiments so far reveal that data mining methods discover useful knowledge from the multicity urban data. This work sets the stage for developing a comprehensive urban simulation model for catering to specific questions by targeted users. It contributes towards achieving sustainability as a whole.

Keywords: data mining, environmental modeling, sustainability, urban planning

Procedia PDF Downloads 308
1043 Analysis of the Significance of Multimedia Channels Using Sparse PCA and Regularized SVD

Authors: Kourosh Modarresi

Abstract:

The abundance of media channels and devices has given users a variety of options to extract, discover, and explore information in the digital world. Since, often, there is a long and complicated path that a typical user may venture before taking any (significant) action (such as purchasing goods and services), it is critical to know how each node (media channel) in the path of user has contributed to the final action. In this work, the significance of each media channel is computed using statistical analysis and machine learning techniques. More specifically, “Regularized Singular Value Decomposition”, and “Sparse Principal Component” has been used to compute the significance of each channel toward the final action. The results of this work are a considerable improvement compared to the present approaches.

Keywords: multimedia attribution, sparse principal component, regularization, singular value decomposition, feature significance, machine learning, linear systems, variable shrinkage

Procedia PDF Downloads 309
1042 Crude Palm Oil Antioxidant Extraction and the Antioxidation Activity

Authors: Supriyono Supriyono, Sumardiyono Sumardiyono, Peni Pujiastuti, Dian Indriana Hapsari

Abstract:

Crude palm oil (CPO) is a vegetable oil that came from a palm tree bunch. The productivity of the oil is 12 ton/hectare/year. Thus palm oil tree was known as highest vegetable oil yield. It was grown across Equatorial County, especially in Malaysia and Indonesia. The greenish-red color on CPO was come from carotenoid. Carotenoid is one of the antioxidants that could be extracted. Carotenoid could be used as functional food and other purposes. Another antioxidant that also found in CPO is tocopherol. The aim of the research work is to find antioxidant activity on CPO comparing to the synthetic antioxidant that available in a market. In this research work, antioxidant was extracted by a mixture of acetone and n.hexane, while the activity of the antioxidant extract was determined by DPPH method. Antioxidant activity of the extracted compound about 46% compared to pure tocopherol. While the solvent mixture compose by 90% acetone and 10% n. hexane meet the best on the antioxidant activity.

Keywords: antioxidant, beta carotene, crude palm oil, DPPH, tocopherol

Procedia PDF Downloads 214
1041 Robust Features for Impulsive Noisy Speech Recognition Using Relative Spectral Analysis

Authors: Hajer Rahali, Zied Hajaiej, Noureddine Ellouze

Abstract:

The goal of speech parameterization is to extract the relevant information about what is being spoken from the audio signal. In speech recognition systems Mel-Frequency Cepstral Coefficients (MFCC) and Relative Spectral Mel-Frequency Cepstral Coefficients (RASTA-MFCC) are the two main techniques used. It will be shown in this paper that it presents some modifications to the original MFCC method. In our work the effectiveness of proposed changes to MFCC called Modified Function Cepstral Coefficients (MODFCC) were tested and compared against the original MFCC and RASTA-MFCC features. The prosodic features such as jitter and shimmer are added to baseline spectral features. The above-mentioned techniques were tested with impulsive signals under various noisy conditions within AURORA databases.

Keywords: auditory filter, impulsive noise, MFCC, prosodic features, RASTA filter

Procedia PDF Downloads 425
1040 An Ensemble-based Method for Vehicle Color Recognition

Authors: Saeedeh Barzegar Khalilsaraei, Manoocheher Kelarestaghi, Farshad Eshghi

Abstract:

The vehicle color, as a prominent and stable feature, helps to identify a vehicle more accurately. As a result, vehicle color recognition is of great importance in intelligent transportation systems. Unlike conventional methods which use only a single Convolutional Neural Network (CNN) for feature extraction or classification, in this paper, four CNNs, with different architectures well-performing in different classes, are trained to extract various features from the input image. To take advantage of the distinct capability of each network, the multiple outputs are combined using a stack generalization algorithm as an ensemble technique. As a result, the final model performs better than each CNN individually in vehicle color identification. The evaluation results in terms of overall average accuracy and accuracy variance show the proposed method’s outperformance compared to the state-of-the-art rivals.

Keywords: Vehicle Color Recognition, Ensemble Algorithm, Stack Generalization, Convolutional Neural Network

Procedia PDF Downloads 85
1039 Anticancer Activity of Gnidia glauca Extracts in Human Breast Cancer Cells

Authors: Vandana Gawande, Chandani Satija

Abstract:

Gnidia glauca is a semi-woody herb of thymelaeaceae family traditionally used as fish poison in India. It is also found in Sri lanka and Africa. In the present study, potential anticancer effect of n-hexane and ethanolic extracts of Gnidia glauca in human breast cancer cells was investigated. Human breast cancer cells (MCF-7) were cultured as monolayers in RPMI 1640 medium. The cells were cultured for 48 hours to allow growth and achieve about 80% confluence in 96-well culture plates. The cells were treated with various concentrations of Gnidia glauca (0.1-100 mg/mL) for 72 hours. Percentage of viable cells after treatment was assessed using a sulforhodamine B colorimetric assay. Both n-hexane and ethanolic extract showed significant cytotoxic activity on MCF-7 cancer cells. This study supports the notion of using Gnidia glauca as a novel anticancer agent for breast cancer.

Keywords: 96 well plate, anticancer activity, Gnidia glauca, MCF-7

Procedia PDF Downloads 290
1038 Timing and Noise Data Mining Algorithm and Software Tool in Very Large Scale Integration (VLSI) Design

Authors: Qing K. Zhu

Abstract:

Very Large Scale Integration (VLSI) design becomes very complex due to the continuous integration of millions of gates in one chip based on Moore’s law. Designers have encountered numerous report files during design iterations using timing and noise analysis tools. This paper presented our work using data mining techniques combined with HTML tables to extract and represent critical timing/noise data. When we apply this data-mining tool in real applications, the running speed is important. The software employs table look-up techniques in the programming for the reasonable running speed based on performance testing results. We added several advanced features for the application in one industry chip design.

Keywords: VLSI design, data mining, big data, HTML forms, web, VLSI, EDA, timing, noise

Procedia PDF Downloads 254
1037 Classification Rule Discovery by Using Parallel Ant Colony Optimization

Authors: Waseem Shahzad, Ayesha Tahir Khan, Hamid Hussain Awan

Abstract:

Ant-Miner algorithm that lies under ACO algorithms is used to extract knowledge from data in the form of rules. A variant of Ant-Miner algorithm named as cAnt-MinerPB is used to generate list of rules using pittsburgh approach in order to maintain the rule interaction among the rules that are generated. In this paper, we propose a parallel Ant MinerPB in which Ant colony optimization algorithm runs parallel. In this technique, a data set is divided vertically (i-e attributes) into different subsets. These subsets are created based on the correlation among attributes using Mutual Information (MI). It generates rules in a parallel manner and then merged to form a final list of rules. The results have shown that the proposed technique achieved higher accuracy when compared with original cAnt-MinerPB and also the execution time has also reduced.

Keywords: ant colony optimization, parallel Ant-MinerPB, vertical partitioning, classification rule discovery

Procedia PDF Downloads 295
1036 Level Set and Morphological Operation Techniques in Application of Dental Image Segmentation

Authors: Abdolvahab Ehsani Rad, Mohd Shafry Mohd Rahim, Alireza Norouzi

Abstract:

Medical image analysis is one of the great effects of computer image processing. There are several processes to analysis the medical images which the segmentation process is one of the challenging and most important step. In this paper the segmentation method proposed in order to segment the dental radiograph images. Thresholding method has been applied to simplify the images and to morphologically open binary image technique performed to eliminate the unnecessary regions on images. Furthermore, horizontal and vertical integral projection techniques used to extract the each individual tooth from radiograph images. Segmentation process has been done by applying the level set method on each extracted images. Nevertheless, the experiments results by 90% accuracy demonstrate that proposed method achieves high accuracy and promising result.

Keywords: integral production, level set method, morphological operation, segmentation

Procedia PDF Downloads 317
1035 Preparation of Metallic Nanoparticles with the Use of Reagents of Natural Origin

Authors: Anna Drabczyk, Sonia Kudlacik-Kramarczyk, Dagmara Malina, Bozena Tyliszczak, Agnieszka Sobczak-Kupiec

Abstract:

Nowadays, nano-size materials are very popular group of materials among scientists. What is more, these materials find an application in a wide range of various areas. Therefore constantly increasing demand for nanomaterials including metallic nanoparticles such as silver of gold ones is observed. Therefore, new routes of their preparation are sought. Considering potential application of nanoparticles, it is important to select an adequate methodology of their preparation because it determines their size and shape. Among the most commonly applied methods of preparation of nanoparticles chemical and electrochemical techniques are leading. However, currently growing attention is directed into the biological or biochemical aspects of syntheses of metallic nanoparticles. This is associated with a trend of developing of new routes of preparation of given compounds according to the principles of green chemistry. These principles involve e.g. the reduction of the use of toxic compounds in the synthesis as well as the reduction of the energy demand or minimization of the generated waste. As a result, a growing popularity of the use of such components as natural plant extracts, infusions or essential oils is observed. Such natural substances may be used both as a reducing agent of metal ions and as a stabilizing agent of formed nanoparticles therefore they can replace synthetic compounds previously used for the reduction of metal ions or for the stabilization of obtained nanoparticles suspension. Methods that proceed in the presence of previously mentioned natural compounds are environmentally friendly and proceed without the application of any toxic reagents. Methodology: Presented research involves preparation of silver nanoparticles using selected plant extracts, e.g. artichoke extract. Extracts of natural origin were used as reducing and stabilizing agents at the same time. Furthermore, syntheses were carried out in the presence of additional polymeric stabilizing agent. Next, such features of obtained suspensions of nanoparticles as total antioxidant activity as well as content of phenolic compounds have been characterized. First of the mentioned studies involved the reaction with DPPH (2,2-Diphenyl-1-picrylhydrazyl) radical. The content of phenolic compounds was determined using Folin-Ciocalteu technique. Furthermore, an essential issue was also the determining of the stability of formed suspensions of nanoparticles. Conclusions: In the research it was demonstrated that metallic nanoparticles may be obtained using plant extracts or infusions as stabilizing or reducing agent. The methodology applied, i.e. a type of plant extract used during the synthesis, had an impact on the content of phenolic compounds as well as on the size and polydispersity of obtained nanoparticles. What is more, it is possible to prepare nano-size particles that will be characterized by properties desirable from the viewpoint of their potential application and such an effect may be achieved with the use of non-toxic reagents of natural origin. Furthermore, proposed methodology stays in line with the principles of green chemistry.

Keywords: green chemistry principles, metallic nanoparticles, plant extracts, stabilization of nanoparticles

Procedia PDF Downloads 125
1034 The Use of Microorganisms in the Bioleaching of Soils Polluted with Heavy Metals

Authors: I. M. Sur, A. M. Chirila-Babau, T. Gabor, V. Micle

Abstract:

This paper shows researches in order to extract Cr, Cu and Ni from the polluted soils. Research is based on preliminary studies regarding the usage of Thiobacillus ferrooxidans bacterium (9K medium) for bioleaching of soil polluted with heavy metal (Cu, Cr and Ni). The microorganisms (Thiobacillus ferooxidans) selected directly from polluted soil samples were used in this experimental work. Soil samples used in the experimental research were taken from an area polluted with heavy metals from Romania. The soil samples are subjected to the cleaning process using the 9K medium solution (20 mL and 40 mL, respectively), stirred 200 rpm for 20 hours at a controlled temperature (30 ˚C). During the experiment (0, 2, 4, 8 and 20 h), liquid samples have been extracted and analyzed using the Atomic Absorption Spectrophotometer AA-6800 (AAS) in order to determine the Cr, Cu and Ni concentration. Experiments led to the conclusion that these soils can be depolluted by bioleaching, being a biological treatment method involving the use of microorganisms to favor the extraction of Cr, Cu and Ni from polluted soils.

Keywords: bioleaching, extraction, microorganisms, soil, polluted, Thiobacillus ferooxidans

Procedia PDF Downloads 161
1033 Generation of Photo-Mosaic Images through Block Matching and Color Adjustment

Authors: Hae-Yeoun Lee

Abstract:

Mosaic refers to a technique that makes image by gathering lots of small materials in various colours. This paper presents an automatic algorithm that makes the photomosaic image using photos. The algorithm is composed of four steps: Partition and feature extraction, block matching, redundancy removal and colour adjustment. The input image is partitioned in the small block to extract feature. Each block is matched to find similar photo in database by comparing similarity with Euclidean difference between blocks. The intensity of the block is adjusted to enhance the similarity of image by replacing the value of light and darkness with that of relevant block. Further, the quality of image is improved by minimizing the redundancy of tiles in the adjacent blocks. Experimental results support that the proposed algorithm is excellent in quantitative analysis and qualitative analysis.

Keywords: photomosaic, Euclidean distance, block matching, intensity adjustment

Procedia PDF Downloads 279
1032 Assessment of DNA Sequence Encoding Techniques for Machine Learning Algorithms Using a Universal Bacterial Marker

Authors: Diego Santibañez Oyarce, Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán

Abstract:

The advent of high-throughput sequencing technologies has revolutionized genomics, generating vast amounts of genetic data that challenge traditional bioinformatics methods. Machine learning addresses these challenges by leveraging computational power to identify patterns and extract information from large datasets. However, biological sequence data, being symbolic and non-numeric, must be converted into numerical formats for machine learning algorithms to process effectively. So far, some encoding methods, such as one-hot encoding or k-mers, have been explored. This work proposes additional approaches for encoding DNA sequences in order to compare them with existing techniques and determine if they can provide improvements or if current methods offer superior results. Data from the 16S rRNA gene, a universal marker, was used to analyze eight bacterial groups that are significant in the pulmonary environment and have clinical implications. The bacterial genes included in this analysis are Prevotella, Abiotrophia, Acidovorax, Streptococcus, Neisseria, Veillonella, Mycobacterium, and Megasphaera. These data were downloaded from the NCBI database in Genbank file format, followed by a syntactic analysis to selectively extract relevant information from each file. For data encoding, a sequence normalization process was carried out as the first step. From approximately 22,000 initial data points, a subset was generated for testing purposes. Specifically, 55 sequences from each bacterial group met the length criteria, resulting in an initial sample of approximately 440 sequences. The sequences were encoded using different methods, including one-hot encoding, k-mers, Fourier transform, and Wavelet transform. Various machine learning algorithms, such as support vector machines, random forests, and neural networks, were trained to evaluate these encoding methods. The performance of these models was assessed using multiple metrics, including the confusion matrix, ROC curve, and F1 Score, providing a comprehensive evaluation of their classification capabilities. The results show that accuracies between encoding methods vary by up to approximately 15%, with the Fourier transform obtaining the best results for the evaluated machine learning algorithms. These findings, supported by the detailed analysis using the confusion matrix, ROC curve, and F1 Score, provide valuable insights into the effectiveness of different encoding methods and machine learning algorithms for genomic data analysis, potentially improving the accuracy and efficiency of bacterial classification and related genomic studies.

Keywords: DNA encoding, machine learning, Fourier transform, Fourier transformation

Procedia PDF Downloads 23
1031 Liver Tumor Detection by Classification through FD Enhancement of CT Image

Authors: N. Ghatwary, A. Ahmed, H. Jalab

Abstract:

In this paper, an approach for the liver tumor detection in computed tomography (CT) images is represented. The detection process is based on classifying the features of target liver cell to either tumor or non-tumor. Fractional differential (FD) is applied for enhancement of Liver CT images, with the aim of enhancing texture and edge features. Later on, a fusion method is applied to merge between the various enhanced images and produce a variety of feature improvement, which will increase the accuracy of classification. Each image is divided into NxN non-overlapping blocks, to extract the desired features. Support vector machines (SVM) classifier is trained later on a supplied dataset different from the tested one. Finally, the block cells are identified whether they are classified as tumor or not. Our approach is validated on a group of patients’ CT liver tumor datasets. The experiment results demonstrated the efficiency of detection in the proposed technique.

Keywords: fractional differential (FD), computed tomography (CT), fusion, aplha, texture features.

Procedia PDF Downloads 359
1030 Jet-Stream Airsail: Study of the Shape and the Behavior of the Connecting Cable

Authors: Christopher Frank, Yoshiki Miyairi

Abstract:

A jet-stream airsail concept takes advantage of aerology in order to fly without propulsion. Weather phenomena, especially jet streams, are relatively permanent high winds blowing from west to east, located at average altitudes and latitudes in both hemispheres. To continuously extract energy from the jet-stream, the system is composed of a propelled plane and a wind turbine interconnected by a cable. This work presents the aerodynamic characteristics and the behavior of the cable that links the two subsystems and transmits energy from the turbine to the aircraft. Two ways of solving this problem are explored: numerically and analytically. After obtaining the optimal shape of the cross-section of the cable, its behavior is analyzed as a 2D problem solved numerically and analytically. Finally, a 3D extension could be considered by adding lateral forces. The results of this work can be further used in the design process of the overall system: aircraft-turbine.

Keywords: jet-stream, cable, tether, aerodynamics, aircraft, airsail, wind

Procedia PDF Downloads 370
1029 Measurement of Coal Fineness, Air Fuel Ratio, and Fuel Weight Distribution in a Vertical Spindle Mill’s Pulverized Fuel Pipes at Classifier Vane 40%

Authors: Jayasiler Kunasagaram

Abstract:

In power generation, coal fineness is crucial to maintain flame stability, ensure combustion efficiency, and lower emissions to the environment. In order for the pulverized coal to react effectively in the boiler furnace, the size of coal particles needs to be at least 70% finer than 74 μm. This paper presents the experiment results of coal fineness, air fuel ratio and fuel weight distribution in pulverized fuel pipes at classifier vane 40%. The aim of this experiment is to extract the pulverized coal is kinetically and investigate the data accordingly. Dirty air velocity, coal sample extraction, and coal sieving experiments were performed to measure coal fineness. The experiment results show that required coal fineness can be achieved at 40 % classifier vane. However, this does not surpass the desired value by a great margin.

Keywords: coal power, emissions, isokinetic sampling, power generation

Procedia PDF Downloads 609
1028 Event Extraction, Analysis, and Event Linking

Authors: Anam Alam, Rahim Jamaluddin Kanji

Abstract:

With the rapid growth of event in everywhere, event extraction has now become an important matter to retrieve the information from the unstructured data. One of the challenging problems is to extract the event from it. An event is an observable occurrence of interaction among entities. The paper investigates the effectiveness of event extraction capabilities of three software tools that are Wandora, Nitro and SPSS. We performed standard text mining techniques of these tools on the data sets of (i) Afghan War Diaries (AWD collection), (ii) MUC4 and (iii) WebKB. Information retrieval measures such as precision and recall which are computed under extensive set of experiments for Event Extraction. The experimental study analyzes the difference between events extracted by the software and human. This approach helps to construct an algorithm that will be applied for different machine learning methods.

Keywords: event extraction, Wandora, nitro, SPSS, event analysis, extraction method, AFG, Afghan War Diaries, MUC4, 4 universities, dataset, algorithm, precision, recall, evaluation

Procedia PDF Downloads 596
1027 Secondary Metabolites from Turkish Marine-Derived Fungi Hypocrea nigricans

Authors: H. Heydari, B. Konuklugil, P. Proksch

Abstract:

Marine-derived fungi can produce interesting bioactive secondary metabolites that can be considered the potential for drug development. Turkey is a country of a peninsula surrounded by the Black Sea at the north, the Aegean Sea at the west, and the Mediterranean Sea at the south. Despite the approximately 8400 km of coastline, studies on marine secondary metabolites and their biological activity are limited. In our ongoing search for new natural products with different bioactivities produced by the marine-derived fungi, we have investigated secondary metabolites of Turkish collection of the marine sea slug (Peltodoris atromaculata) associated fungi Hypocrea nigricans collected from Seferihisar in the Egean sea. According to the author’s best knowledge, no study was found on this fungal species in terms of secondary metabolites. Isolated from ethyl acetate extract of the culture of Hypocrea nigricans were (isodihydroauroglaucin,tetrahydroauroglaucin and dihydroauroglaucin. The structures of the compounds were established based on an NMR and MS analysis. Structural elucidation of another isolated secondary metabolite/s continues.

Keywords: Hypocrea nigricans, isolation, marine fungi, secondary metabolites

Procedia PDF Downloads 162
1026 A POX Controller Module to Prepare a List of Flow Header Information Extracted from SDN Traffic

Authors: Wisam H. Muragaa, Kamaruzzaman Seman, Mohd Fadzli Marhusin

Abstract:

Software Defined Networking (SDN) is a paradigm designed to facilitate the way of controlling the network dynamically and with more agility. Network traffic is a set of flows, each of which contains a set of packets. In SDN, a matching process is performed on every packet coming to the network in the SDN switch. Only the headers of the new packets will be forwarded to the SDN controller. In terminology, the flow header fields are called tuples. Basically, these tuples are 5-tuple: the source and destination IP addresses, source and destination ports, and protocol number. This flow information is used to provide an overview of the network traffic. Our module is meant to extract this 5-tuple with the packets and flows numbers and show them as a list. Therefore, this list can be used as a first step in the way of detecting the DDoS attack. Thus, this module can be considered as the beginning stage of any flow-based DDoS detection method.

Keywords: matching, OpenFlow tables, POX controller, SDN, table-miss

Procedia PDF Downloads 199
1025 Intelligent Grading System of Apple Using Neural Network Arbitration

Authors: Ebenezer Obaloluwa Olaniyi

Abstract:

In this paper, an intelligent system has been designed to grade apple based on either its defective or healthy for production in food processing. This paper is segmented into two different phase. In the first phase, the image processing techniques were employed to extract the necessary features required in the apple. These techniques include grayscale conversion, segmentation where a threshold value is chosen to separate the foreground of the images from the background. Then edge detection was also employed to bring out the features in the images. These extracted features were then fed into the neural network in the second phase of the paper. The second phase is a classification phase where neural network employed to classify the defective apple from the healthy apple. In this phase, the network was trained with back propagation and tested with feed forward network. The recognition rate obtained from our system shows that our system is more accurate and faster as compared with previous work.

Keywords: image processing, neural network, apple, intelligent system

Procedia PDF Downloads 398
1024 Recycling of Sclareolide in the Crystallization Mother Liquid of Sclareolide by Adsorption and Chromatography

Authors: Xiang Li, Kui Chen, Bin Wu, Min Zhou

Abstract:

Sclareolide is made from sclareol by oxidiative synthesis and subsequent crystallization, while the crystallization mother liquor still contains 15%~30%wt of sclareolide to be reclaimed. With the reaction material of sclareol is provided as plant extract, many sorts of complex impurities exist in the mother liquor. Due to the difficulty in recycling sclareolide after solvent recovery, it is common practice for the factories to discard the mother liquor, which not only results in loss of sclareolide, but also contributes extra environmental burden. In this paper, a process based on adsorption and elution has been presented for recycling of sclareolide from mother liquor. After pretreatment of the crystallization mother liquor by HZ-845 resin to remove parts of impurities, sclareolide is adsorbed by HZ-816 resin. The HZ-816 resin loaded with sclareolide is then eluted by elution solvent. Finally, the eluent containing sclareolide is concentrated and fed into the crystallization step in the process. By adoption of the recycle from mother liquor, total yield of sclareolide increases from 86% to 90% with a stable purity of the final sclareolide products maintained.

Keywords: sclareolide, resin, adsorption, chromatography

Procedia PDF Downloads 239
1023 Using Phase Equilibrium Theory to Calculate Solubility of γ-Oryzanol in Supercritical CO2

Authors: Boy Arief Fachri

Abstract:

Even its content is rich in antioxidants ϒ-oryzanol, rice bran is not used properly as functional food. This research aims to (1) extract ϒ-oryzanol; (2) determine the solubility of ϒ-oryzanol in supercritical CO2 based on phase equilibrium theory; and (3) study the effect of process variables on solubility. Extraction experiments were carried out for rice bran (5 g) at various extraction pressures, temperatures and reaction times. The flowrate of supercritical fluid through the extraction vessel was 25 g/min. The extracts were collected and analysed with high-pressure liquid chromatography (HPLC). The conclusion based on the experiments are as: (1) The highest experimental solubility was 0.303 mcg/mL RBO at T= 60°C, P= 90 atm, t= 30 min; (2) Solubility of ϒ-oryzanol was influenced by pressure and temperature. As the pressure and temperature increase, the solubility increases; (3) The solubility data of supercritical extraction can be successfully determined using phase equilibrium theory. Meanwhile, tocopherol was found and slightly investigated in this work.

Keywords: rice bran, solubility, supercritical CO2, ϒ-orizanol

Procedia PDF Downloads 387
1022 Tax Morale Dimensions Analysis in Portugal and Spain

Authors: Cristina Sá, Carlos Gomes, António Martins

Abstract:

The reasons that explain different behaviors towards tax obligations in similar countries are not completely understood yet. The main purpose of this paper is to identify and compare the factors that influence tax morale levels in Portugal and Spain. We use data from European Values Study (EVS). Using a sample of 2,652 individuals, a factor analysis was used to extract the underlying dimensions of tax morale of Portuguese and Spanish taxpayers. Based on a factor analysis, the results of this paper show that sociological and behavioral factors, psychological factors and political factors are important for a good understanding of taxpayers’ behavior in Iberian Peninsula. This paper added value relies on the analyses of a wide range of variables and on the comparison between Portugal and Spain. Our conclusions provided insights that tax authorities and politicians can use to better focus their strategies and actions in order to increase compliance, reduce tax evasion, fight underground economy and increase country´s competitiveness.

Keywords: compliance, tax morale, Portugal, Spain

Procedia PDF Downloads 308
1021 Active Disturbance Rejection Control for Maximization of Generated Power from Wind Energy Conversion Systems using a Doubly Fed Induction Generator

Authors: Tamou Nasser, Ahmed Essadki, Ali Boukhriss

Abstract:

This paper presents the control of doubly fed induction generator (DFIG) used in the wind energy conversion systems. Maximum power point tracking (MPPT) strategy is used to extract the maximum of power during the conversion and taking care that the system does not exceed the operating limits. This is done by acting on the pitch angle to control the orientation of the turbine's blades. Having regard to its robustness and performance, active disturbance rejection control (ADRC) based on the extended state observer (ESO) is employed to achieve the control of both rotor and grid side converters. Simulations are carried out using matlab simulink.

Keywords: active disturbance rejection control, extended state observer, doubly fed induction generator, maximum power point tracking

Procedia PDF Downloads 564