Search results for: proposed drought severity index
2449 An Application of Vector Error Correction Model to Assess Financial Innovation Impact on Economic Growth of Bangladesh
Authors: Md. Qamruzzaman, Wei Jianguo
Abstract:
Over the decade, it is observed that financial development, through financial innovation, not only accelerated development of efficient and effective financial system but also act as a catalyst in the economic development process. In this study, we try to explore insight about how financial innovation causes economic growth in Bangladesh by using Vector Error Correction Model (VECM) for the period of 1990-2014. Test of Cointegration confirms the existence of a long-run association between financial innovation and economic growth. For investigating directional causality, we apply Granger causality test and estimation explore that long-run growth will be affected by capital flow from non-bank financial institutions and inflation in the economy but changes of growth rate do not have any impact on Capital flow in the economy and level of inflation in long-run. Whereas, growth and Market capitalization, as well as market capitalization and capital flow, confirm feedback hypothesis. Variance decomposition suggests that any innovation in the financial sector can cause GDP variation fluctuation in both long run and short run. Financial innovation promotes efficiency and cost in financial transactions in the financial system, can boost economic development process. The study proposed two policy recommendations for further development. First, innovation friendly financial policy should formulate to encourage adaption and diffusion of financial innovation in the financial system. Second, operation of financial market and capital market should be regulated with implementation of rules and regulation to create conducive environment.Keywords: financial innovation, economic growth, GDP, financial institution, VECM
Procedia PDF Downloads 2722448 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications
Authors: Atish Bagchi, Siva Chandrasekaran
Abstract:
Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning
Procedia PDF Downloads 1502447 Direct Measurement of Pressure and Temperature Variations During High-Speed Friction Experiments
Authors: Simon Guerin-Marthe, Marie Violay
Abstract:
Thermal Pressurization (TP) has been proposed as a key mechanism involved in the weakening of faults during dynamic ruptures. Theoretical and numerical studies clearly show how frictional heating can lead to an increase in pore fluid pressure due to the rapid slip along faults occurring during earthquakes. In addition, recent laboratory studies have evidenced local pore pressure or local temperature variation during rotary shear tests, which are consistent with TP theoretical and numerical models. The aim of this study is to complement previous ones by measuring both local pore pressure and local temperature variations in the vicinity of a water-saturated calcite gouge layer subjected to a controlled slip velocity in direct double shear configuration. Laboratory investigation of TP process is crucial in order to understand the conditions at which it is likely to become a dominant mechanism controlling dynamic friction. It is also important in order to understand the timing and magnitude of temperature and pore pressure variations, to help understanding when it is negligible, and how it competes with other rather strengthening-mechanisms such as dilatancy, which can occur during rock failure. Here we present unique direct measurements of temperature and pressure variations during high-speed friction experiments under various load point velocities and show the timing of these variations relatively to the slip event.Keywords: thermal pressurization, double-shear test, high-speed friction, dilatancy
Procedia PDF Downloads 632446 Impact of Lifestyle and User Expectations on the Demand of Compact Living Spaces in the Home Interiors in Indian Cities
Authors: Velly Kapadia, Reenu Singh
Abstract:
This report identifies the long-term driving forces behind urbanization and the impact of compact living on both society and the home and proposes a concept to create smarter and more sustainable homes. Compact living has been trending across India as a sustainable housing solution, and the reality is that India is currently facing a housing shortage in urban areas of around 10 million units. With the rising demand for housing, urban land prices have been rising and the cost of homes. The paper explores how and why the interior design of the homes can be improved to relieve the housing demand in an environmentally, socially and economically sustainable manner. A questionnaire survey was conducted to determine living patterns, area requirements, ecological footprints, energy consumption, purchasing patterns, and various pro-environmental behaviors of people who downsize to compact homes. Quantitative research explores sustainable material choices, durability, functionality, cost, and reusability of furniture. Besides addressing the need for smart and sustainable designed compact homes, a conceptual model is proposed, including options of ideal schematic layouts for homes in urban areas. In the conclusions, suggestions to improve space planning and suitable interior entities have been made to support the fact that compact homes are an eminently practical and sensible solution for the urban citizen.Keywords: compact living, housing shortage, lifestyle, sustainable interior design
Procedia PDF Downloads 2022445 Productivity-Emotiveness Model of School Students’ Capacity Levels
Authors: Ivan Samokhin
Abstract:
A new two-factor model of school students’ capacity levels is proposed. It considers the academic productivity and emotional condition of children taking part in the study process. Each basic level reflects the correlation of these two factors. The teacher decides whether the required result is achieved or not and write down the grade (from 'A' to 'F') in the register. During the term, the teacher can estimate the students’ progress with any intervals, but it is not desirable to exceed a two-week period (with primary school being an exception). Each boy or girl should have a special notebook to record the emotions which they feel studying a subject. The children can make their notes the way they like it – for example, using a ten-point scale or a short verbal description. It is recommended to record the emotions twice a day: after the lesson and after doing the homework. Before the students start doing this, they should be instructed by a school psychologist, who has to emphasize that an attitude to the subject – not to a person in charge of it – is relevant. At the end of the term, the notebooks are given to the teacher, who is now able to make preliminary conclusions about academic results and psychological comfort of each student. If necessary, some pedagogical measures can be taken. The data about a supposed capacity level is available for the teacher and the school administration. In certain cases, this information can be also revealed to the student’s parents, while the student learns it only after receiving a school-leaving certificate (until this moment, the results are not considered ultimate). Then a person may take these data into consideration when choosing his/her future area of higher education. We single out four main capacity levels: 'nominally low', 'inclination', 'ability' and 'gift'.Keywords: academic productivity, capacity level, emotional condition, school students
Procedia PDF Downloads 2252444 A Location-based Authentication and Key Management Scheme for Border Surveillance Wireless Sensor Networks
Authors: Walid Abdallah, Noureddine Boudriga
Abstract:
Wireless sensor networks have shown their effectiveness in the deployment of many critical applications especially in the military domain. Border surveillance is one of these applications where a set of wireless sensors are deployed along a country border line to detect illegal intrusion attempts to the national territory and report this to a control center to undergo the necessary measures. Regarding its nature, this wireless sensor network can be the target of many security attacks trying to compromise its normal operation. Particularly, in this application the deployment and location of sensor nodes are of great importance for detecting and tracking intruders. This paper proposes a location-based authentication and key distribution mechanism to secure wireless sensor networks intended for border surveillance where the key establishment is performed using elliptic curve cryptography and identity-based public key scheme. In this scheme, the public key of each sensor node will be authenticated by keys that depend on its position in the monitored area. Before establishing a pairwise key between two nodes, each one of them must verify the neighborhood location of the other node using a message authentication code (MAC) calculated on the corresponding public key and keys derived from encrypted beacon messages broadcast by anchor nodes. We show that our proposed public key authentication and key distribution scheme is more resilient to node capture and node replication attacks than currently available schemes. Also, the achievement of the key distribution between nodes in our scheme generates less communication overhead and hence increases network performances.Keywords: wireless sensor networks, border surveillance, security, key distribution, location-based
Procedia PDF Downloads 6602443 A Hybrid Genetic Algorithm and Neural Network for Wind Profile Estimation
Authors: M. Saiful Islam, M. Mohandes, S. Rehman, S. Badran
Abstract:
Increasing necessity of wind power is directing us to have precise knowledge on wind resources. Methodical investigation of potential locations is required for wind power deployment. High penetration of wind energy to the grid is leading multi megawatt installations with huge investment cost. This fact appeals to determine appropriate places for wind farm operation. For accurate assessment, detailed examination of wind speed profile, relative humidity, temperature and other geological or atmospheric parameters are required. Among all of these uncertainty factors influencing wind power estimation, vertical extrapolation of wind speed is perhaps the most difficult and critical one. Different approaches have been used for the extrapolation of wind speed to hub height which are mainly based on Log law, Power law and various modifications of the two. This paper proposes a Artificial Neural Network (ANN) and Genetic Algorithm (GA) based hybrid model, namely GA-NN for vertical extrapolation of wind speed. This model is very simple in a sense that it does not require any parametric estimations like wind shear coefficient, roughness length or atmospheric stability and also reliable compared to other methods. This model uses available measured wind speeds at 10m, 20m and 30m heights to estimate wind speeds up to 100m. A good comparison is found between measured and estimated wind speeds at 30m and 40m with approximately 3% mean absolute percentage error. Comparisons with ANN and power law, further prove the feasibility of the proposed method.Keywords: wind profile, vertical extrapolation of wind, genetic algorithm, artificial neural network, hybrid machine learning
Procedia PDF Downloads 4902442 An Efficient Traceability Mechanism in the Audited Cloud Data Storage
Authors: Ramya P, Lino Abraham Varghese, S. Bose
Abstract:
By cloud storage services, the data can be stored in the cloud, and can be shared across multiple users. Due to the unexpected hardware/software failures and human errors, which make the data stored in the cloud be lost or corrupted easily it affected the integrity of data in cloud. Some mechanisms have been designed to allow both data owners and public verifiers to efficiently audit cloud data integrity without retrieving the entire data from the cloud server. But public auditing on the integrity of shared data with the existing mechanisms will unavoidably reveal confidential information such as identity of the person, to public verifiers. Here a privacy-preserving mechanism is proposed to support public auditing on shared data stored in the cloud. It uses group signatures to compute verification metadata needed to audit the correctness of shared data. The identity of the signer on each block in shared data is kept confidential from public verifiers, who are easily verifying shared data integrity without retrieving the entire file. But on demand, the signer of the each block is reveal to the owner alone. Group private key is generated once by the owner in the static group, where as in the dynamic group, the group private key is change when the users revoke from the group. When the users leave from the group the already signed blocks are resigned by cloud service provider instead of owner is efficiently handled by efficient proxy re-signature scheme.Keywords: data integrity, dynamic group, group signature, public auditing
Procedia PDF Downloads 3922441 MIM and Experimental Studies of the Thermal Drift in an Ultra-High Precision Instrument for Dimensional Metrology
Authors: Kamélia Bouderbala, Hichem Nouira, Etienne Videcoq, Manuel Girault, Daniel Petit
Abstract:
Thermal drifts caused by the power dissipated by the mechanical guiding systems constitute the main limit to enhance the accuracy of an ultra-high precision cylindricity measuring machine. For this reason, a high precision compact prototype has been designed to simulate the behaviour of the instrument. It ensures in situ calibration of four capacitive displacement probes by comparison with four laser interferometers. The set-up includes three heating wires for simulating the powers dissipated by the mechanical guiding systems, four additional heating wires located between each laser interferometer head and its respective holder, 19 Platinum resistance thermometers (Pt100) to observe the temperature evolution inside the set-up and four Pt100 sensors to monitor the ambient temperature. Both a Reduced Model (RM), based on the Modal Identification Method (MIM) was developed and optimized by comparison with the experimental results. Thereafter, time dependent tests were performed under several conditions to measure the temperature variation at 19 fixed positions in the system and compared to the calculated RM results. The RM results show good agreement with experiment and reproduce as well the temperature variations, revealing the importance of the RM proposed for the evaluation of the thermal behaviour of the system.Keywords: modal identification method (MIM), thermal behavior and drift, dimensional metrology, measurement
Procedia PDF Downloads 3962440 Modelling Biological Treatment of Dye Wastewater in SBR Systems Inoculated with Bacteria by Artificial Neural Network
Authors: Yasaman Sanayei, Alireza Bahiraie
Abstract:
This paper presents a systematic methodology based on the application of artificial neural networks for sequencing batch reactor (SBR). The SBR is a fill-and-draw biological wastewater technology, which is specially suited for nutrient removal. Employing reactive dye by Sphingomonas paucimobilis bacteria at sequence batch reactor is a novel approach of dye removal. The influent COD, MLVSS, and reaction time were selected as the process inputs and the effluent COD and BOD as the process outputs. The best possible result for the discrete pole parameter was a= 0.44. In orderto adjust the parameters of ANN, the Levenberg-Marquardt (LM) algorithm was employed. The results predicted by the model were compared to the experimental data and showed a high correlation with R2> 0.99 and a low mean absolute error (MAE). The results from this study reveal that the developed model is accurate and efficacious in predicting COD and BOD parameters of the dye-containing wastewater treated by SBR. The proposed modeling approach can be applied to other industrial wastewater treatment systems to predict effluent characteristics. Note that SBR are normally operated with constant predefined duration of the stages, thus, resulting in low efficient operation. Data obtained from the on-line electronic sensors installed in the SBR and from the control quality laboratory analysis have been used to develop the optimal architecture of two different ANN. The results have shown that the developed models can be used as efficient and cost-effective predictive tools for the system analysed.Keywords: artificial neural network, COD removal, SBR, Sphingomonas paucimobilis
Procedia PDF Downloads 4132439 Physical Habitat Simulation and Comparison within a Lerma River Reach, with Respect to the Same but Modified Reach, to Create a Linear Park
Authors: Garcia-Rodriguez Ezequiel, Luis A. Ochoa-Franco, Adrian I. Cervantes-Servin
Abstract:
In this work, the Ictalurus punctatus species estimated available physical habitat is compared with the estimated physical habitat for the same but modified river reach, with the aim of creating a linear park, along a length of 5 500 m. To determine the effect of ecological park construction, on physical habitat of the Lerma river stretch of study, first, the available habitat for the Ictalurus punctatus species was estimated through the simulation of the physical habitat, by using surveying, hydraulics, and habitat information gotten at the river reach in its actual situation. Second, it was estimated the available habitat for the above species, upon the simulation of the physical habitat through the proposed modification for the ecological park creation. Third, it is presented a comparison between both scenarios in terms of available habitat estimated for Ictalurus punctatus species, concluding that in cases of adult and spawning life stages, changes in the channel to create an ecological park would produce a considerable loss of potentially usable habitat (PUH), while in the case of the juvenile life stage PUH remains virtually unchanged, and in the case of life stage fry the PUH would increase due to the presence of velocities and depths of lesser magnitude, due to the presence of minor flow rates and lower volume of the wet channel. It is expected that habitat modification for linear park construction may produce the lack of Ictalurus punktatus species conservation at the river reach of the study.Keywords: Habitat modification, Ictalurus punctatus, Lerma, river, linear park
Procedia PDF Downloads 4752438 Research and Development of Methodology, Tools, Techniques and Methods to Analyze and Design Interface, Media, Pedagogy for Educational Topics to be Delivered via Mobile Technology
Authors: Shimaa Nagro, Russell Campion
Abstract:
Mobile devices are becoming ever more widely available, with growing functionality, and they are increasingly used as enabling technology to give students access to educational material anytime and anywhere. However, the design of educational material's user interfaces for mobile devices is beset by many unresolved research problems such as those arising from constraints associated with mobile devices or from issues linked to effective learning. The proposed research aims to produce: (i) a method framework for the design and evaluation of educational material’s interfaces to be delivered on mobile devices, in multimedia form based on Human Computer Interaction strategies; and (ii) a software tool implemented as a fast-track alternative to use the method framework in full. The investigation will combine qualitative and quantitative methods, including interviews and questionnaires for data collection and three case studies for validating the method framework. The method framework is a framework to enable an educational designer to effectively and efficiently create educational multimedia interfaces to be used on mobile devices by following a particular methodology that contains practical and usable tools and techniques. It is a method framework that accepts any educational material in its final lesson plan and deals with this plan as a static element, it will not suggest any changes in any information given in the lesson plan but it will help the instructor to design his final lesson plan in a multimedia format to be presented in mobile devices.Keywords: mobile learning, M-Learn, HCI, educational multimedia, interface design
Procedia PDF Downloads 3722437 Smart Water Main Inspection and Condition Assessment Using a Systematic Approach for Pipes Selection
Authors: Reza Moslemi, Sebastien Perrier
Abstract:
Water infrastructure deterioration can result in increased operational costs owing to increased repair needs and non-revenue water and consequently cause a reduced level of service and customer service satisfaction. Various water main condition assessment technologies have been introduced to the market in order to evaluate the level of pipe deterioration and to develop appropriate asset management and pipe renewal plans. One of the challenges for any condition assessment and inspection program is to determine the percentage of the water network and the combination of pipe segments to be inspected in order to obtain a meaningful representation of the status of the entire water network with a desirable level of accuracy. Traditionally, condition assessment has been conducted by selecting pipes based on age or location. However, this may not necessarily offer the best approach, and it is believed that by using a smart sampling methodology, a better and more reliable estimate of the condition of a water network can be achieved. This research investigates three different sampling methodologies, including random, stratified, and systematic. It is demonstrated that selecting pipes based on the proposed clustering and sampling scheme can considerably improve the ability of the inspected subset to represent the condition of a wider network. With a smart sampling methodology, a smaller data sample can provide the same insight as a larger sample. This methodology offers increased efficiency and cost savings for condition assessment processes and projects.Keywords: condition assessment, pipe degradation, sampling, water main
Procedia PDF Downloads 1502436 Risk Management in Industrial Supervision Projects
Authors: Érick Aragão Ribeiro, George André Pereira Thé, José Marques Soares
Abstract:
Several problems in industrial supervision software development projects may lead to the delay or cancellation of projects. These problems can be avoided or contained by using identification methods, analysis and control of risks. These procedures can give an overview of the possible problems that can happen in the projects and what are the immediate solutions. Therefore, we propose a risk management method applied to the teaching and development of industrial supervision software. The method is developed through a literature review and previous projects can be divided into phases of management and have basic features that are validated with experimental research carried out by mechatronics engineering students and professionals. The management is conducted through the stages of identification, analysis, planning, monitoring, control and communication of risks. Programmers use a method of prioritizing risks considering the gravity and the possibility of occurrence of the risk. The outputs of the method indicate which risks occurred or are about to happen. The first results indicate which risks occur at different stages of the project and what risks have a high probability of occurring. The results show the efficiency of the proposed method compared to other methods, showing the improvement of software quality and leading developers in their decisions. This new way of developing supervision software helps students identify design problems, evaluate software developed and propose effective solutions. We conclude that the risk management optimizes the development of the industrial process control software and provides higher quality to the product.Keywords: supervision software, risk management, industrial supervision, project management
Procedia PDF Downloads 3562435 Comparative Study of Vertical and Horizontal Triplex Tube Latent Heat Storage Units
Authors: Hamid El Qarnia
Abstract:
This study investigates the impact of the eccentricity of the central tube on the thermal and fluid characteristics of a triplex tube used in latent heat energy storage technologies. Two triplex tube orientations are considered in the proposed study: vertical and horizontal. The energy storage material, which is a phase change material (PCM), is placed in the space between the inside and outside tubes. During the thermal energy storage period, a heat transfer fluid (HTF) flows inside the two tubes, transmitting the heat to the PCM through two heat exchange surfaces instead of one heat exchange surface as it is the case for double tube heat storage systems. A CFD model is developed and validated against experimental data available in the literature. The mesh independency study is carried out to select the appropriate mesh. In addition, different time steps are examined to determine a time step ensuring accuracy of the numerical results and reduction in the computational time. The numerical model is then used to conduct numerical investigations of the thermal behavior and thermal performance of the storage unit. The effects of eccentricity of the central tube and HTF mass flow rate on thermal characteristics and performance indicators are examined for two flow arrangements: co-current and counter current flows. The results are given in terms of isotherm plots, streamlines, melting time and thermal energy storage efficiency.Keywords: energy storage, heat transfer, melting, solidification
Procedia PDF Downloads 562434 Pattern Discovery from Student Feedback: Identifying Factors to Improve Student Emotions in Learning
Authors: Angelina A. Tzacheva, Jaishree Ranganathan
Abstract:
Interest in (STEM) Science Technology Engineering Mathematics education especially Computer Science education has seen a drastic increase across the country. This fuels effort towards recruiting and admitting a diverse population of students. Thus the changing conditions in terms of the student population, diversity and the expected teaching and learning outcomes give the platform for use of Innovative Teaching models and technologies. It is necessary that these methods adapted should also concentrate on raising quality of such innovations and have positive impact on student learning. Light-Weight Team is an Active Learning Pedagogy, which is considered to be low-stake activity and has very little or no direct impact on student grades. Emotion plays a major role in student’s motivation to learning. In this work we use the student feedback data with emotion classification using surveys at a public research institution in the United States. We use Actionable Pattern Discovery method for this purpose. Actionable patterns are patterns that provide suggestions in the form of rules to help the user achieve better outcomes. The proposed method provides meaningful insight in terms of changes that can be incorporated in the Light-Weight team activities, resources utilized in the course. The results suggest how to enhance student emotions to a more positive state, in particular focuses on the emotions ‘Trust’ and ‘Joy’.Keywords: actionable pattern discovery, education, emotion, data mining
Procedia PDF Downloads 982433 Reverse Supply Chain Analysis of Lithium-Ion Batteries Considering Economic and Environmental Aspects
Authors: Aravind G., Arshinder Kaur, Pushpavanam S.
Abstract:
There is a strong emphasis on shifting to electric vehicles (EVs) throughout the globe for reducing the impact on global warming following the Paris climate accord. Lithium-ion batteries (LIBs) are predominantly used in EVs, and these can be a significant threat to the environment if not disposed of safely. Lithium is also a valuable resource not widely available. There are several research groups working on developing an efficient recycling process for LIBs. Two routes - pyrometallurgical and hydrometallurgical processes have been proposed for recycling LIBs. In this paper, we focus on life cycle assessment (LCA) as a tool to quantify the environmental impact of these recycling processes. We have defined the boundary of the LCA to include only the recycling phase of the end-of-life (EoL) of the battery life cycle. The analysis is done assuming ideal conditions for the hydrometallurgical and a combined hydrometallurgical and pyrometallurgical process in the inventory analysis. CML-IA method is used for quantifying the impact assessment across eleven indicators. Our results show that cathode, anode, and foil contribute significantly to the impact. The environmental impacts of both hydrometallurgical and combined recycling processes are similar across all the indicators. Further, the results of LCA are used in developing a multi-objective optimization model for the design of lithium-ion battery recycling network. Greenhouse gas emissions and cost are the two parameters minimized for the optimization study.Keywords: life cycle assessment, lithium-ion battery recycling, multi-objective optimization, network design, reverse supply chain
Procedia PDF Downloads 1572432 Technical, Environmental and Financial Assessment for Optimal Sizing of Run-of-River Small Hydropower Project: Case Study in Colombia
Authors: David Calderon Villegas, Thomas Kaltizky
Abstract:
Run-of-river (RoR) hydropower projects represent a viable, clean, and cost-effective alternative to dam-based plants and provide decentralized power production. However, RoR schemes cost-effectiveness depends on the proper selection of site and design flow, which is a challenging task because it requires multivariate analysis. In this respect, this study presents the development of an investment decision support tool for assessing the optimal size of an RoR scheme considering the technical, environmental, and cost constraints. The net present value (NPV) from a project perspective is used as an objective function for supporting the investment decision. The tool has been tested by applying it to an actual RoR project recently proposed in Colombia. The obtained results show that the optimum point in financial terms does not match the flow that maximizes energy generation from exploiting the river's available flow. For the case study, the flow that maximizes energy corresponds to a value of 5.1 m3/s. In comparison, an amount of 2.1 m3/s maximizes the investors NPV. Finally, a sensitivity analysis is performed to determine the NPV as a function of the debt rate changes and the electricity prices and the CapEx. Even for the worst-case scenario, the optimal size represents a positive business case with an NPV of 2.2 USD million and an IRR 1.5 times higher than the discount rate.Keywords: small hydropower, renewable energy, RoR schemes, optimal sizing, objective function
Procedia PDF Downloads 1322431 Expanding Entrepreneurial Capabilities through Business Incubators: A Case Study of Idea Hub Nigeria
Authors: Kenechukwu Ikebuaku
Abstract:
Entrepreneurship has long been offered as the panacea for poor economic growth and high rate of unemployment. Business incubation is considered an effective means for enhancing entrepreneurial actitivities while engendering socio-economic development. Information Technology Developers Entrepreneurship Accelerator (iDEA), is a software business incubation programme established by the Nigerian government as a means of boosting digital entrepreneurship activities and reducing unemployment in the country. This study assessed the contribution of iDEA Nigeria’s entrepreneurship programmes towards enhancing the capabilities of its tenants. Using the capability approach and the sustainable livelihoods approach, the study analysed iDEA programmes’ contribution towards the expansion of participants’ entrepreneurial capabilities. Apart from identifying a set of entrepreneurial capabilities from both the literature and empirical analysis, the study went further to ascertain how iDEA incubation has helped to enhance those capabilities for its tenants. It also examined digital entrepreneurship as a valued functioning and as an intermediate functioning leading to other valuable functioning. Furthermore, the study examined gender as a conversion factor in digital entrepreneurship. Both qualitative and quantitative research methods were used for the study, and measurement of key variables was made. While the entire population was utilised to collect data for the quantitative research, purposive sampling was used to select respondents for semi-structured interviews in the qualitative research. However, only 40 beneficiaries agreed to take part in the survey while 10 respondents were interviewed for the study. Responses collected from questionnaires administered were subjected to statistical analysis using SPSS. The study developed indexes to measure the perception of the respondents, on how iDEA programmes have enhanced their entrepreneurial capabilities. The Capabilities Enhancement Perception Index (CEPI) computed indicated that the respondents believed that iDEA programmes enhanced their entrepreneurial capabilities. While access to power supply and reliable internet have the highest positive deviations around mean, negotiation skills and access to customers/clients have the highest negative deviation. These were well supported by the findings of the qualitative analysis in which the participants unequivocally narrated how the resources provided by iDEA aid them in their entrepreneurial endeavours. It was also found that iDEA programmes have a significant effect on the tenants’ access to networking opportunities, both with other emerging entrepreneurs and established entrepreneurs. While assessing gender as a conversion factor, it was discovered that there was very low female participation within the digital entrepreneurship ecosystem. The root cause of this gender disparity was found in unquestioned cultural beliefs and social norms which relegate women to a subservient position and household duties. The findings also showed that many of the entrepreneurs could be considered opportunity-based entrepreneurs rather than necessity entrepreneurs, and that digital entrepreneurship is a valued functioning for iDEA tenants. With regards to challenges facing digital entrepreneurship in Nigeria, infrastructural/institutional inadequacies, lack of funding opportunities, and unfavourable government policies, were considered inimical to entrepreneurial capabilities in the country.Keywords: entrepreneurial capabilities, unemployment, business incubators, development
Procedia PDF Downloads 2362430 Web Service Architectural Style Selection in Multi-Criteria Requirements
Authors: Ahmad Mohsin, Syda Fatima, Falak Nawaz, Aman Ullah Khan
Abstract:
Selection of an appropriate architectural style is vital to the success of target web service under development. The nature of architecture design and selection for service-oriented computing applications is quite different as compared to traditional software. Web Services have complex and rigorous architectural styles to choose. Due to this, selection for accurate architectural style for web services development has become a more complex decision to be made by architects. Architectural style selection is a multi-criteria decision and demands lots of experience in service oriented computing. Decision support systems are good solutions to simplify the selection process of a particular architectural style. Our research suggests a new approach using DSS for selection of architectural styles while developing a web service to cater FRs and NFRs. Our proposed DSS helps architects to select right web service architectural pattern according to the domain and non-functional requirements. In this paper, a rule base DSS has been developed using CLIPS (C Language Integrated Production System) to support decisions using multi-criteria requirements. This DSS takes architectural characteristics, domain requirements and software architect preferences for NFRs as input for different architectural styles in use today in service-oriented computing. Weighted sum model has been applied to prioritize quality attributes and domain requirements. Scores are calculated using multiple criterions to choose the final architecture style.Keywords: software architecture, web-service, rule-based, DSS, multi-criteria requirements, quality attributes
Procedia PDF Downloads 3652429 Automated Monitoring System to Support Investigation of Contributing Factors of Work-Related Disorders and Accidents
Authors: Erika R. Chambriard, Sandro C. Izidoro, Davidson P. Mendes, Douglas E. V. Pires
Abstract:
Work-related illnesses and disorders have been a constant aspect of work. Although their nature has changed over time, from musculoskeletal disorders to illnesses related to psychosocial aspects of work, its impact on the life of workers remains significant. Despite significant efforts worldwide to protect workers, the disparity between changes in work legislation and actual benefit for workers’ health has been creating a significant economic burden for social security and health systems around the world. In this context, this study aims to propose, test and validate a modular prototype that allows for work environmental aspects to be assessed, monitored and better controlled. The main focus is also to provide a historical record of working conditions and the means for workers to obtain comprehensible and useful information regarding their work environment and legal limits of occupational exposure to different types of environmental variables, as means to improve prevention of work-related accidents and disorders. We show the developed prototype provides useful and accurate information regarding the work environmental conditions, validating them with standard occupational hygiene equipment. We believe the proposed prototype is a cost-effective and adequate approach to work environment monitoring that could help elucidate the links between work and occupational illnesses, and that different industry sectors, as well as developing countries, could benefit from its capabilities.Keywords: Arduino prototyping, occupational health and hygiene, work environment, work-related disorders prevention
Procedia PDF Downloads 1262428 Biosynthesis of Silver Nanoparticles Using Zataria multiflora Extract, and Study of Antibacterial Effects on UTI Bacteria (MDR)
Authors: Mohammad Hossein Pazandeh, Monir Doudi, Sona Rostampour Yasouri
Abstract:
Irregular consumption of current antibiotic makes increases of antibiotic resistance between urin pathogens on all worlds. This study selected based on this great community problem. The aim of this study was the biosynthesis of silver nanoparticles from Zataria multiflora extract and then to investigate its antibacterial effect on gram-negative bacilli common in Urinary Tract Infections (UTI) and MDR. The plant used in the present research was Zataria multiflora whose extract was prepared through Soxhlet extraction method. Green synthesis condition of silver nanoparticles was investigated in terms of three parameters including the extract amount, concentration of silver nitrate salt, and temperature. The seizes of nanoparticles were determined by Zetasizer. In order to identify synthesized silver nanoparticles Transmission Electron Microscopy (TEM) and X-ray Diffraction (XRD) methods were used. For evaluating the antibacterial effects of nanoparticles synthesized through biological method different concentrations of silver nanoparticles were studied on 140 cases of Muliple Drug Resistance (MDR) bacteria strains Escherichia coli, Klebsiella pneumoniae, Enterobacter aerogenes, Proteus vulgaris,Citrobacter freundii, Acinetobacter bumanii and Pseudomonas aeruginosa, (each genus of bacteria, 20 samples), which all were MDR and cause urinary tract infections , for identification of bacteria were used of Polymerase Chain Reaction (PCR) test and laboratory methods (Agar well diffusion and Microdilution methods) to assess their sensitivity to Nanoparticles. The data were analyzed using SPSS software by nonparametric Kruskal-Wallis and Mann-Whitney tests. Significant results were found about the effects of silver nitrate concentration, different amounts of Zataria multiflora extract, and temperature on nanoparticles; that is, by increasing the concentration of silver nitrate, extract amount, and temperature, the sizes of synthesized nanoparticles declined. However, the effect of above mentioned factors on particles diffusion index was not significant. Based on the TEM results, particles were mainly spherical shape with a diameter range of 25 to 50 nm. The results of XRD Analysis indicated the formation of Nanostructures and Nanocrystals of silver.. The obtained results of antibacterial effects of different concentrations of silver nanoparticles on according to agar well diffusion and microdilution method, biologically synthesized nanoparticles showed 1000 mg /ml highest and lowest mean inhibition zone diameter in E.coli , Acinetobacter bumanii 23 and 15mm, respectively. MIC was observed for all of bacteria 125mg/ml and for Acinetobacter bumanii 250mg/ml.Comparing the growth inhibitory effect of chemically synthesized Nanoparticles and biologically synthesized Nanoparticles showed that in the chemical method the highest growth inhibition belonged to the concentration of 62.5 mg /ml. The inhibitory effect on the growth all of bacteria causes of urine infection and MDR was observed and by increasing silver ion concentration in Nanoparticles, antibacterial activity increased. Generally, the biological synthesis can be considered an efficient way not only in making Nanoparticles but also for having anti-bacterial properties. It is more biocompatible and may be possess less toxicity than the Nanoparticles synthesized chemically.Keywords: biosynthesis, MDR bacteria, silver nanoparticles, UTI
Procedia PDF Downloads 532427 Design and Implementation of PD-NN Controller Optimized Neural Networks for a Quad-Rotor
Authors: Chiraz Ben Jabeur, Hassene Seddik
Abstract:
In this paper, a full approach of modeling and control of a four-rotor unmanned air vehicle (UAV), known as quad-rotor aircraft, is presented. In fact, a PD and a PD optimized Neural Networks Approaches (PD-NN) are developed to be applied to control a quad-rotor. The goal of this work is to concept a smart self-tuning PD controller based on neural networks able to supervise the quad-rotor for an optimized behavior while tracking the desired trajectory. Many challenges could arise if the quad-rotor is navigating in hostile environments presenting irregular disturbances in the form of wind added to the model on each axis. Thus, the quad-rotor is subject to three-dimensional unknown static/varying wind disturbances. The quad-rotor has to quickly perform tasks while ensuring stability and accuracy and must behave rapidly with regard to decision-making facing disturbances. This technique offers some advantages over conventional control methods such as PD controller. Simulation results are obtained with the use of Matlab/Simulink environment and are founded on a comparative study between PD and PD-NN controllers based on wind disturbances. These later are applied with several degrees of strength to test the quad-rotor behavior. These simulation results are satisfactory and have demonstrated the effectiveness of the proposed PD-NN approach. In fact, this controller has relatively smaller errors than the PD controller and has a better capability to reject disturbances. In addition, it has proven to be highly robust and efficient, facing turbulences in the form of wind disturbances.Keywords: hostile environment, PD and PD-NN controllers, quad-rotor control, robustness against disturbance
Procedia PDF Downloads 1372426 One Species into Five: Nucleo-Mito Barcoding Reveals Cryptic Species in 'Frankliniella Schultzei Complex': Vector for Tospoviruses
Authors: Vikas Kumar, Kailash Chandra, Kaomud Tyagi
Abstract:
The insect order Thysanoptera includes small insects commonly called thrips. As insect vectors, only thrips are capable of Tospoviruses transmission (genus Tospovirus, family Bunyaviridae) affecting various crops. Currently, fifteen species of subfamily Thripinae (Thripidae) have been reported as vectors for tospoviruses. Frankliniella schultzei, which is reported as act as a vector for at least five tospovirses, have been suspected to be a species complex with more than one species. It is one of the historical unresolved issues where, two species namely, F. schultzei Trybom and F. sulphurea Schmutz were erected from South Africa and Srilanaka respectively. These two species were considered to be valid until 1968 when sulphurea was treated as colour morph (pale form) and synonymised under schultzei (dark form) However, these two have been considered as valid species by some of the thrips workers. Parallel studies have indicated that brown form of schultzei is a vector for tospoviruses while yellow form is a non-vector. However, recent studies have shown that yellow populations have also been documented as vectors. In view of all these facts, it is highly important to have a clear understanding whether these colour forms represent true species or merely different populations with different vector carrying capacities and whether there is some hidden diversity in 'Frankliniella schultzei species complex'. In this study, we aim to study the 'Frankliniella schultzei species complex' with molecular spectacles with DNA data from India and Australia and Africa. A total of fifty-five specimens was collected from diverse locations in India and Australia. We generated molecular data using partial fragments of mitochondrial cytochrome c oxidase I gene (mtCOI) and 28S rRNA gene. For COI dataset, there were seventy-four sequences, out of which data on fifty-five was generated in the current study and others were retrieved from NCBI. All the four different tree construction methods: neighbor-joining, maximum parsimony, maximum likelihood and Bayesian analysis, yielded the same tree topology and produced five cryptic species with high genetic divergence. For, rDNA, there were forty-five sequences, out of which data on thirty-nine was generated in the current study and others were retrieved from NCBI. The four tree building methods yielded four cryptic species with high bootstrap support value/posterior probability. Here we could not retrieve one cryptic species from South Africa as we could not generate data on rDNA from South Africa and sequence for rDNA from African region were not available in the database. The results of multiple species delimitation methods (barcode index numbers, automatic barcode gap discovery, general mixed Yule-coalescent, and Poisson-tree-processes) also supported the phylogenetic data and produced 5 and 4 Molecular Operational Taxonomic Units (MOTUs) for mtCOI and 28S dataset respectively. These results of our study indicate the likelihood that F. sulphurea may be a valid species, however, more morphological and molecular data is required on specimens from type localities of these two species and comparison with type specimens.Keywords: DNA barcoding, species complex, thrips, species delimitation
Procedia PDF Downloads 1282425 Numerical Analysis of the Aging Effects of RC Shear Walls Repaired by CFRP Sheets: Application of CEB-FIP MC 90 Model
Authors: Yeghnem Redha, Guerroudj Hicham Zakaria, Hanifi Hachemi Amar Lemiya, Meftah Sid Ahmed, Tounsi Abdelouahed, Adda Bedia El Abbas
Abstract:
Creep deformation of concrete is often responsible for excessive deflection at service loads which can compromise the performance of elements within a structure. Although laboratory test may be undertaken to determine the deformation properties of concrete, these are time-consuming, often expensive and generally not a practical option. Therefore, relatively simple empirically design code models are relied to predict the creep strain. This paper reviews the accuracy of creep and shrinkage predictions of reinforced concrete (RC) shear walls structures strengthened with carbon fibre reinforced polymer (CFRP) sheets, which is characterized by a widthwise varying fibre volume fraction. This review is yielded by CEB-FIB MC90 model. The time-dependent behavior was investigated to analyze their static behavior. In the numerical formulation, the adherents and the adhesives are all modelled as shear wall elements, using the mixed finite element method. Several tests were used to dem¬onstrate the accuracy and effectiveness of the proposed method. Numerical results from the present analysis are presented to illustrate the significance of the time-dependency of the lateral displacements.Keywords: RC shear walls strengthened, CFRP sheets, creep and shrinkage, CEB-FIP MC90 model, finite element method, static behavior
Procedia PDF Downloads 3092424 Design and Fabrication of a Smart Quadruped Robot
Authors: Shivani Verma, Amit Agrawal, Pankaj Kumar Meena, Ashish B. Deoghare
Abstract:
Over the decade robotics has been a major area of interest among the researchers and scientists in reducing human efforts. The need for robots to replace human work in different dangerous fields such as underground mining, nuclear power station and war against terrorist attack has gained huge attention. Most of the robot design is based on human structure popularly known as humanoid robots. However, the problems encountered in humanoid robots includes low speed of movement, misbalancing in structure, poor load carrying capacity, etc. The simplification and adaptation of the fundamental design principles seen in animals have led to the creation of bio-inspired robots. But the major challenges observed in naturally inspired robot include complexity in structure, several degrees of freedom and energy storage problem. The present work focuses on design and fabrication of a bionic quadruped walking robot which is based on different joint of quadruped mammals like a dog, cheetah, etc. The design focuses on the structure of the robot body which consists of four legs having three degrees of freedom per leg and the electronics system involved in it. The robot is built using readily available plastics and metals. The proposed robot is simple in construction and is able to move through uneven terrain, detect and locate obstacles and take images while carrying additional loads which may include hardware and sensors. The robot will find possible application in the artificial intelligence sector.Keywords: artificial intelligence, bionic, quadruped robot, degree of freedom
Procedia PDF Downloads 2152423 The Effect of Music Therapy on Anxiety, Fear and Pain Management in 6-12 Year Old Children Undergoing Surgery
Authors: Özgür Bahadir, Meltem Kurtuncu
Abstract:
The study was designed as quasi-experimental and conducted to determine the effect of music therapy on anxiety, fear and pain management in 6-12-year-old children undergoing surgery. The present study was carried out between 01.01.2016 and 19.08.2016 in BEU. Application and Research Center. The children aged 6 -12 who applied for surgery between the mentioned dates constituted the universe of the study. In the quasi-experimental study that was conducted in the clinics where children received operational treatment, two groups were formed: experimental group (the children who received musical therapy before the surgery) and control group (the children who were administered surveys and the surgery service routines only). Each group consisted of 30 children, and the participants of the study were 60 children in total. Necessary permissions were obtained from the parents of the children hospitalized before the beginning of the implementation. The data was collected through Child Anxiety Sensitivity Index (CASI), “Fear In Medical Treatment Scale”, Face, Legs, Activity, Cry, Consolability Scale (FLACC), Visual Analog Scale (VAS) and Participant Information Form. In the analysis of the data, Kolmogorov-Smirnov distribution scale was used to examine the normality of the distribution along with descriptive statistics methods (Frequency, Percentage, Mean, Standard Deviation). Data was presented in the tables in numbers and percentages. Means were demonstrated along with the standard deviations. The research compared children received; case and control groups include socio-demographic perspective, non-significant difference statistically among similar groups are intertwined. The general level of fear regarding the medical processes before returning to service after the operation and 30 minutes before getting discharged was found to be significantly low in the experimental group compared to control group (p<0.05). No statistically significant difference was found between experimental and control groups in terms of general level of fear regarding the medical processes before the operation, during the operation day and in the recovery room after the operation (p>0.05). Total CASI AD (anxiety sensitivity) levels before the operation, day of the operation and 30 minutes before the discharge for patients in experimental group was found to be significantly higher than the control group (p>0.05). There was no statistically significant difference between the experimental and control groups in the total CASI AD levels for the post-operative recovery room and for returning to the service room after the operation (p>0.05). VAS levels for patients in the experimental group in the post-operative recovery room was significantly higher than the control group (p>0.05). There was no statistically significant difference between the groups in terms of VAS findings in returning to service room after the operation and in 30 minutes before the discharge (p>0.05). As a result of the research; applied children music therapy in the experimental group anxiety, fear, and pain of the scales, their scores average, is lower than the control group children in this situation an increase in the satisfaction of children and parents was observed. In line with this, music therapy preoperative anxiety, fear, and can be used as an effective method of decreasing postoperative pain clinics is suggested.Keywords: anxiety, children, fear, music therapy, pain
Procedia PDF Downloads 2232422 Investigating Knowledge Management in Financial Organisation: Proposing a New Model for Implementing Knowledge Management
Authors: Ziba R. Tehrani, Sanaz Moayer
Abstract:
In the age of the knowledge-based economy, knowledge management has become a key factor in sustainable competitive advantage. Knowledge management is discovering, acquiring, developing, sharing, maintaining, evaluating, and using right knowledge in right time by right person in organization; which is accomplished by creating a right link between human resources, information technology, and appropriate structure, to achieve organisational goals. Studying knowledge management financial institutes shows the knowledge management in banking system is not different from other industries but because of complexity of bank’s environment, the implementation is more difficult. The bank managers found out that implementation of knowledge management will bring many advantages to financial institutes, one of the most important of which is reduction of threat to lose subsequent information of personnel job quit. Also Special attention to internal conditions and environment of the financial institutes and avoidance from copy-making in designing the knowledge management is a critical issue. In this paper, it is tried first to define knowledge management concept and introduce existing models of knowledge management; then some of the most important models which have more similarities with other models will be reviewed. In second step according to bank requirements with focus on knowledge management approach, most major objectives of knowledge management are identified. For gathering data in this stage face to face interview is used. Thirdly these specified objectives are analysed with the response of distribution of questionnaire which is gained through managers and expert staffs of ‘Karafarin Bank’. Finally based on analysed data, some features of exiting models are selected and a new conceptual model will be proposed.Keywords: knowledge management, financial institute, knowledge management model, organisational knowledge
Procedia PDF Downloads 3602421 Reliability Modeling on Drivers’ Decision during Yellow Phase
Authors: Sabyasachi Biswas, Indrajit Ghosh
Abstract:
The random and heterogeneous behavior of vehicles in India puts up a greater challenge for researchers. Stop-and-go modeling at signalized intersections under heterogeneous traffic conditions has remained one of the most sought-after fields. Vehicles are often caught up in the dilemma zone and are unable to take quick decisions whether to stop or cross the intersection. This hampers the traffic movement and may lead to accidents. The purpose of this work is to develop a stop and go prediction model that depicts the drivers’ decision during the yellow time at signalised intersections. To accomplish this, certain traffic parameters were taken into account to develop surrogate model. This research investigated the Stop and Go behavior of the drivers by collecting data from 4-signalized intersections located in two major Indian cities. Model was developed to predict the drivers’ decision making during the yellow phase of the traffic signal. The parameters used for modeling included distance to stop line, time to stop line, speed, and length of the vehicle. A Kriging base surrogate model has been developed to investigate the drivers’ decision-making behavior in amber phase. It is observed that the proposed approach yields a highly accurate result (97.4 percent) by Gaussian function. It was observed that the accuracy for the crossing probability was 95.45, 90.9 and 86.36.11 percent respectively as predicted by the Kriging models with Gaussian, Exponential and Linear functions.Keywords: decision-making decision, dilemma zone, surrogate model, Kriging
Procedia PDF Downloads 3092420 Efficient Wind Fragility Analysis of Concrete Chimney under Stochastic Extreme Wind Incorporating Temperature Effects
Authors: Soumya Bhattacharjya, Avinandan Sahoo, Gaurav Datta
Abstract:
Wind fragility analysis of chimney is often carried out disregarding temperature effect. However, the combined effect of wind and temperature is the most critical limit state for chimney design. Hence, in the present paper, an efficient fragility analysis for concrete chimney is explored under combined wind and temperature effect. Wind time histories are generated by Davenports Power Spectral Density Function and using Weighed Amplitude Wave Superposition Technique. Fragility analysis is often carried out in full Monte Carlo Simulation framework, which requires extensive computational time. Thus, in the present paper, an efficient adaptive metamodelling technique is adopted to judiciously approximate limit state function, which will be subsequently used in the simulation framework. This will save substantial computational time and make the approach computationally efficient. Uncertainty in wind speed, wind load related parameters, and resistance-related parameters is considered. The results by the full simulation approach, conventional metamodelling approach and proposed adaptive metamodelling approach will be compared. Effect of disregarding temperature in wind fragility analysis will be highlighted.Keywords: adaptive metamodelling technique, concrete chimney, fragility analysis, stochastic extreme wind load, temperature effect
Procedia PDF Downloads 215