Search results for: water management technology
21917 Pollution by Iron of the Quaternary Drinking Water and its Effect on Human Health
Authors: Raafat A. Mandour
Abstract:
Background; Water may be regarded as polluted if it contains substances that render it unsafe for public use. The surface, subsoil waters and the shallow water-bearing geologic formation are more subjected to pollution due to its closeness to the human daily work. Aim of the work; determine the distribution of iron level in drinking water and its relation to iron level in blood patients suffering from liver diseases. Materials and Methods; For the present study, a total number of (71) drinking water samples (surface, wells and tap) have been collected and Blood samples were carried out on (71) selected inhabitants who attended in different hospitals, from different localities and suffering from liver diseases. Serum iron level in these patients was estimated by using IRON-B kit, Biocon company (Germany) and the 1, 10-phenanthroline method. Results; The water samples analyzed for iron are found suitable for drinking except two samples at Mit-Ghamr district showing values higher than the permissible limit of Egyptian Ministry of Health (EMH) and World Health Organization (WHO).The comparison between iron concentrations in drinking water and human blood samples shows a positive relationship. Conclusion; groundwater samples from the polluted areas should have special attention for treatment.Keywords: water samples, blood samples, EMH, WHO
Procedia PDF Downloads 46821916 Application of DSSAT-CSM Model for Estimating Rain-Water Productivity of Maize (Zea Mays L.) Under Changing Climate of Central Rift Valley, Ethiopia
Authors: Fitih Ademe, Kibebew Kibret, Sheleme Beyene, Mezgebu Getnet, Gashaw Meteke
Abstract:
Pressing demands for agricultural products and its associated pressure on water availability in the semi-arid areas demanded information for strategic decision-making in the changing climate conditions of Ethiopia. Availing such information through traditional agronomic research methods is not sufficient unless supported through the application of decision-support tools. The CERES (Crop Environmental Resource Synthesis) model in DSSAT-CSM was evaluated for estimating yield and water productivity of maize under two soil types (Andosol and Luvisol) of the Central Rift Valley of Ethiopia. A six-year data (2010 – 2017) obtained from national fertilizer determination experiments were used for model evaluation. Pertinent statistical indices were employed to evaluate model performance. Following model evaluation, yield and rain-water productivity of maize was assessed for the baseline (1981-2010) and future climate (2050’s and 2080’s) scenario. The model performed well in predicting phenology, growth, and yield of maize for the different seasons and phosphorous rates. A good agreement between simulated and observed grain yield was indicated by low values of the RMSE (0.15 - 0.37 Mg/ha) and other indices for the two soil types. The evaluated model predicted a decline in the potential (23.8 to 26.7% at Melkassa and from 21.7 to 26.1% at Ziway under RCP4.5 and RCP8.5 climate change scenarios, respectively) and water-limited yield (15 to 18.3% at Melkassa and by 6.5 to 10.5% at Ziway) in the mid-century due to climate change. Consequently, a decline in water productivity was projected in the future periods that necessitate availing options to improve water productivity in the region. In conclusion, the DSSAT-CERES-maize model can be used to simulate maize (Melkassa-2) phenology, growth and grain yield, as well as simulate water productivity under different management scenarios that can help to identify options to improve water productivity in the changing climate of the semi-arid central Rift valley of Ethiopia.Keywords: andosol, CERES-maize, luvisol, model evaluation, water productivity
Procedia PDF Downloads 7521915 Assessment of Water Quality Network in Karoon River by Dynamic Programming Approach (DPA)
Authors: M. Nasri Nasrabadi, A. A. Hassani
Abstract:
Karoon is one of the greatest and longest rivers of Iran, which because of the existence of numerous industrial, agricultural centers and drinking usage, has a strategic situation in the west and southwest parts of Iran, and the optimal monitoring of its water quality is an essential and indispensable national issue. Due to financial constraints, water quality monitoring network design is an efficient way to manage water quality. The most crucial part is to find appropriate locations for monitoring stations. Considering the objectives of water usage, we evaluate existing water quality sampling stations of this river. There are several methods for assessment of existing monitoring stations such as Sanders method, multiple criteria decision making and dynamic programming approach (DPA) which DPA opted in this study. The results showed that due to the drinking water quality index out of 20 existing monitoring stations, nine stations should be retained on the river, that include of Gorgor-Band-Ghir of A zone, Dez-Band-Ghir of B zone, Teir, Pole Panjom and Zargan of C zone, Darkhoein, Hafar, Chobade, and Sabonsazi of D zone. In additional, stations of Dez river have the best conditions.Keywords: DPA, karoon river, network monitoring, water quality, sampling site
Procedia PDF Downloads 37721914 Energy Unchained: An Analysis of Affordances of the Blockchain Technology in the Energy Sector
Authors: Jonas Kahlert
Abstract:
Blockchain technology has gained importance and momentum in the energy sector. Yet, there is no structured analysis of how specific features of the blockchain technology can create value in the energy sector. We employ a qualitative analysis on insights gained from the current literature and expert interviews. Along the four most prevalent use cases of blockchain technology in the energy sector, we discuss the potential of blockchain technology to support a transition to a more affordable, sustainable and reliable energy system. We show that in its current state, blockchain and adjacent technologies are not a necessity but a sufficiency towards this transition. We also show how current limitations of the blockchain and adjacent technologies can be even counterproductive. Finally, we discuss implications for policy makers and managers.Keywords: blockchain technology, affordance theory, energy trilemma, sustainability
Procedia PDF Downloads 48421913 The Effect of Artificial Intelligence on Urbanism, Architecture and Environmental Conditions
Authors: Abanoub Rady Shaker Saleb
Abstract:
Nowadays, design and architecture are being affected and underwent change with the rapid advancements in technology, economics, politics, society and culture. Architecture has been transforming with the latest developments after the inclusion of computers into design. Integration of design into the computational environment has revolutionized the architecture and new perspectives in architecture have been gained. The history of architecture shows the various technological developments and changes in which the architecture has transformed with time. Therefore, the analysis of integration between technology and the history of the architectural process makes it possible to build a consensus on the idea of how architecture is to proceed. In this study, each period that occurs with the integration of technology into architecture is addressed within historical process. At the same time, changes in architecture via technology are identified as important milestones and predictions with regards to the future of architecture have been determined. Developments and changes in technology and the use of technology in architecture within years are analyzed in charts and graphs comparatively. The historical process of architecture and its transformation via technology are supported with detailed literature review and they are consolidated with the examination of focal points of 20th-century architecture under the titles; parametric design, genetic architecture, simulation, and biomimicry. It is concluded that with the historical research between past and present; the developments in architecture cannot keep up with the advancements in technology and recent developments in technology overshadow the architecture, even the technology decides the direction of architecture. As a result, a scenario is presented with regards to the reach of technology in the future of architecture and the role of the architect.Keywords: design and development the information technology architecture, enterprise architecture, enterprise architecture design result, TOGAF architecture development method (ADM)
Procedia PDF Downloads 6921912 Towards a Vulnerability Model Assessment of The Alexandra Jukskei Catchment in South Africa
Authors: Vhuhwavho Gadisi, Rebecca Alowo, German Nkhonjera
Abstract:
This article sets out to detail an investigation of groundwater management in the Juksei Catchment of South Africa through spatial mapping of key hydrological relationships, interactions, and parameters in catchments. The Department of Water Affairs (DWA) noted gaps in the implementation of the South African National Water Act 1998: article 16, including the lack of appropriate models for dealing with water quantity parameters. For this reason, this research conducted a drastic GIS-based groundwater assessment to improve groundwater monitoring system in the Juksei River basin catchment of South Africa. The methodology employed was a mixed-methods approach/design that involved the use of DRASTIC analysis, questionnaire, literature review and observations to gather information on how to help people who use the Juskei River. GIS (geographical information system) mapping was carried out using a three-parameter DRASTIC (Depth to water, Recharge, Aquifer media, Soil media, Topography, Impact of the vadose zone, Hydraulic conductivity) vulnerability methodology. In addition, the developed vulnerability map was subjected to sensitivity analysis as a validation method. This approach included single-parameter sensitivity, sensitivity to map deletion, and correlation analysis of DRASTIC parameters. The findings were that approximately 5.7% (45km2) of the area in the northern part of the Juksei watershed is highly vulnerable. Approximately 53.6% (428.8 km^2) of the basin is also at high risk of groundwater contamination. This area is mainly located in the central, north-eastern, and western areas of the sub-basin. The medium and low vulnerability classes cover approximately 18.1% (144.8 km2) and 21.7% (168 km2) of the Jukskei River, respectively. The shallow groundwater of the Jukskei River belongs to a very vulnerable area. Sensitivity analysis indicated that water depth, water recharge, aquifer environment, soil, and topography were the main factors contributing to the vulnerability assessment. The conclusion is that the final vulnerability map indicates that the Juksei catchment is highly susceptible to pollution, and therefore, protective measures are needed for sustainable management of groundwater resources in the study area.Keywords: contamination, DRASTIC, groundwater, vulnerability, model
Procedia PDF Downloads 8321911 CDIO-Based Teaching Reform for Software Project Management Course
Authors: Liping Li, Wenan Tan, Na Wang
Abstract:
With the rapid development of information technology, project management has gained more and more attention recently. Based on CDIO, this paper proposes some teaching reform ideas for software project management curriculum. We first change from Teacher-centered classroom to Student-centered and adopt project-driven, scenario animation show, teaching rhythms, case study and team work practice to improve students' learning enthusiasm. Results showed these attempts have been well received and very effective; as well, students prefer to learn with this curriculum more than before the reform.Keywords: CDIO, teaching reform, engineering education, project-driven, scenario animation simulation
Procedia PDF Downloads 42921910 Developing a Research Culture in the Faculty of Engineering and Information Technology at the Central University of Technology, Free State: Implications for Knowledge Management
Authors: Mpho Agnes Mbeo, Patient Rambe
Abstract:
The thirteenth year of the Central University of Technology, Free State’s (CUT) transition from a vocational and professional training orientation institution (i.e. a technikon) into a university with a strong research focus has neither been a smooth nor an easy one. At the heart of this transition was the need to transform the psychological faculties of academic and research staffs compliment who were accustomed to training graduates for industrial placement. The lack of a culture of research that fully embraces a strong ethos of conducting world-class research needed to be addressed. The induction and socialisation of academic staff into the development and execution of cutting-edge research also required the provision of research support and the creation of a conducive academic environment for research, both for emerging and non-research active academics. Drawing on ten cases, comprising four heads of departments, three prolific established researchers, and three emerging researchers, this study explores the challenges faced in establishing a strong research culture at the university. Furthermore, it gives an account of the extent to which the current research interventions have addressed the perceivably “missing research culture”, and the implications of these interventions for knowledge management. Evidence suggests that the endowment of an ideal institutional research environment (comprising strong internet networks, persistent connectivity on and off campus), research peer mentorship, and growing publication outputs should be matched by a coherent research incentive culture and strong research leadership. This is critical to building new knowledge and entrenching knowledge management founded on communities of practice and scholarly networking through the documentation and communication of research findings. The study concludes that the multiple policy documents set for the different domains of research may be creating pressure on researchers to engage research activities and increase output at the expense of research quality.Keywords: Central University of Technology, performance, publication, research culture, university
Procedia PDF Downloads 17321909 A Study on Utilizing Temporary Water Treatment Facilities to Tackle Century-Long Drought and Emergency Water Supply
Authors: Yu-Che Cheng, Min-Lih Chang, Ke-Hao Cheng, Chuan-Cheng Wang
Abstract:
Taiwan is an island located along the southeastern coast of the Asian continent, located between Japan and the Philippines. It is surrounded by the sea on all sides. However, due to the presence of the Central Mountain Range, the rivers on the east and west coasts of Taiwan are relatively short. This geographical feature results in a phenomenon where, despite having rainfall that is 2.6 times the world average, 58.5% of the rainwater flows into the ocean. Moreover, approximately 80% of the annual rainfall occurs between May and October, leading to distinct wet and dry periods. To address these challenges, Taiwan relies on large reservoirs, storage ponds, and groundwater extraction for water resource allocation. It is necessary to construct water treatment facilities at suitable locations to provide the population with a stable and reliable water supply. In general, the construction of a new water treatment plant requires careful planning and evaluation. The process involves acquiring land and issuing contracts for construction in a sequential manner. With the increasing severity of global warming and climate change, there is a heightened risk of extreme hydrological events and severe water situations in the future. In cases of urgent water supply needs in a region, relying on traditional lengthy processes for constructing water treatment plants might not be sufficient to meet the urgent demand. Therefore, this study aims to explore the use of simplified water treatment procedures and the construction of rapid "temporary water treatment plants" to tackle the challenges posed by extreme climate conditions (such as a century-long drought) and situations where water treatment plant construction cannot keep up with the pace of water source development.Keywords: temporary water treatment plant, emergency water supply, construction site groundwater, drought
Procedia PDF Downloads 8921908 Forecasting Nokoué Lake Water Levels Using Long Short-Term Memory Network
Authors: Namwinwelbere Dabire, Eugene C. Ezin, Adandedji M. Firmin
Abstract:
The prediction of hydrological flows (rainfall-depth or rainfall-discharge) is becoming increasingly important in the management of hydrological risks such as floods. In this study, the Long Short-Term Memory (LSTM) network, a state-of-the-art algorithm dedicated to time series, is applied to predict the daily water level of Nokoue Lake in Benin. This paper aims to provide an effective and reliable method enable of reproducing the future daily water level of Nokoue Lake, which is influenced by a combination of two phenomena: rainfall and river flow (runoff from the Ouémé River, the Sô River, the Porto-Novo lagoon, and the Atlantic Ocean). Performance analysis based on the forecasting horizon indicates that LSTM can predict the water level of Nokoué Lake up to a forecast horizon of t+10 days. Performance metrics such as Root Mean Square Error (RMSE), coefficient of correlation (R²), Nash-Sutcliffe Efficiency (NSE), and Mean Absolute Error (MAE) agree on a forecast horizon of up to t+3 days. The values of these metrics remain stable for forecast horizons of t+1 days, t+2 days, and t+3 days. The values of R² and NSE are greater than 0.97 during the training and testing phases in the Nokoué Lake basin. Based on the evaluation indices used to assess the model's performance for the appropriate forecast horizon of water level in the Nokoué Lake basin, the forecast horizon of t+3 days is chosen for predicting future daily water levels.Keywords: forecasting, long short-term memory cell, recurrent artificial neural network, Nokoué lake
Procedia PDF Downloads 6421907 Influential Effect of Self-Healing Treatment on Water Absorption and Electrical Resistance of Normal and Light Weight Aggregate Concretes
Authors: B. Tayebani, N. Hosseinibalam, D. Mostofinejad
Abstract:
Interest in using bacteria in cement materials due to its positive influences has been increased. Cement materials such as mortar and concrete basically suffer from higher porosity and water absorption compared to other building materials such as steel materials. Because of the negative side-effects of certain chemical techniques, biological methods have been proposed as a desired and environmentally friendly strategy for reducing concrete porosity and diminishing water absorption. This paper presents the results of an experimental investigation carried out to evaluate the influence of Sporosarcina pasteurii bacteria on the behaviour of two types of concretes (light weight aggregate concrete and normal weight concrete). The resistance of specimens to water penetration by testing water absorption and evaluating the electrical resistance of those concretes was examined and compared. As a conclusion, 20% increase in electrical resistance and 10% reduction in water absorption of lightweight aggregate concrete (LWAC) and for normal concrete the results show 7% decrease in water absorption and almost 10% increase in electrical resistance.Keywords: bacteria, biological method, normal weight concrete, lightweight aggregate concrete, water absorption, electrical resistance
Procedia PDF Downloads 18121906 Protein-Starch-Potassium Iodide Composite as a Sensor for Chlorine in Water
Authors: S. Mowafi, A. Abou El-Kheir, M. Abou Taleb, H. El-Sayed
Abstract:
Two proteinic biopolymers; namely keratin and sericin, were extracted from their respective natural resources by simple appropriate methods. The said proteins were dissolved in the appropriate solvents followed by regeneration in a form of film polyvinyl alcohol. Protein-starch-potassium iodide (PSPI) composite was prepared by anchoring starch and potassium iodide mixture onto the film surface using appropriate polymeric material. The possibility of using PSPI composite for determination of the concentration of chlorine ions in domestic as well as industrial water was examined. The concentration of chlorine in water was determined spectrophotometrically by measuring the intensity of blue colour of formed between starch and the released iodine obtained by interaction of potassium iodide chlorine in the tested water sample.Keywords: chlorine, protein, potassium iodide, water
Procedia PDF Downloads 37721905 Thermal Management of Ground Heat Exchangers Applied in High Power LED
Authors: Yuan-Ching Chiang, Chien-Yeh Hsu, Chen Chih-Hao, Sih-Li Chen
Abstract:
The p-n junction temperature of LEDs directly influences their operating life and luminous efficiency. An excessively high p-n junction temperature minimizes the output flux of LEDs, decreasing their brightness and influencing the photon wavelength; consequently, the operating life of LEDs decreases and their luminous output changes. The maximum limit of the p-n junction temperature of LEDs is approximately 120 °C. The purpose of this research was to devise an approach for dissipating heat generated in a confined space when LEDs operate at low temperatures to reduce light decay. The cooling mode of existing commercial LED lights can be divided into natural- and forced convection cooling. In natural convection cooling, the volume of LED encapsulants must be increased by adding more fins to increase the cooling area. However, this causes difficulties in achieving efficient LED lighting at high power. Compared with forced convection cooling, heat transfer through water convection is associated with a higher heat transfer coefficient per unit area; therefore, we dissipated heat by using a closed loop water cooling system. Nevertheless, cooling water exposed to air can be easily influenced by environmental factors. Thus, we incorporated a ground heat exchanger into the water cooling system to minimize the influence of air on cooling water and then observed the relationship between the amounts of heat dissipated through the ground and LED efficiency.Keywords: helical ground heat exchanger, high power LED, ground source cooling system, heat dissipation
Procedia PDF Downloads 57921904 Sustainable Water Supply: Rainwater Harvesting as Flood Reduction Measures in Ibadan, Nigeria
Authors: Omolara Lade, David Oloke
Abstract:
Ibadan City suffers serious water supply problems; cases of dry taps are common in virtually every part of the City. The scarcity of piped water has made communities find alternative water sources; groundwater sources being a ready source. These wells are prone to pollution due to the close proximity of septic tanks to wells, disposal of solid or liquid wastes in pits, abandoned boreholes or even stream channels and landfills. Storms and floods in Ibadan have increased with consequent devastating effects claiming over 120 lives and displacing 600 people on August 2011 alone. In this study, an analysis of the water demand and sources of supply for the city was carried out through questionnaire survey and collection of data from City’s main water supply - Water Corporation of Oyo State (WCOS), groundwater sources were explored and 30 years rainfall data were collected from Meteorological station in Ibadan. 1067 questionnaire were administered at household level with a response rate of 86.7 %. A descriptive analysis of the survey revealed that 77.1 % of the respondents did not receive water at all from WCOS while 83.8 % depend on groundwater sources. Analysis of data from WCOS revealed that main water supply is inadequate as < 10 % of the population water demand was met. Rainfall intensity is highest in June with a mean value of 188 mm, which can be harvested at community—based level and used to complement the population water demand. Rainwater harvesting if planned, and managed properly will become a valuable alternative source of managing urban flood and alleviating water scarcity in the city.Keywords: Ibadan, rainwater harvesting, sustainable water, urban flooding
Procedia PDF Downloads 18221903 Distance Education Technologies for Empowerment and Equity in an Information Technology Environment
Authors: Leila Goosen, Toppie N. Mukasa-Lwanga
Abstract:
The purpose of this paper relates to exploring academics’ use of distance education technologies for empowerment and equity in an Information Technology environment. Literature was studied on academics’ technology use towards effective teaching and meaningful learning in a distance education Information Technology environment. Main arguments presented center on formulating and situating significant concepts within an appropriate theoretical and conceptual framework, including those related to distance education, throughput and other measures of academic efficiency. The research design, sampling, data collection instrument and the validity and reliability thereof, as well as the data analysis method used is described. The paper discusses results related to academics’ use of technology towards effective teaching and meaningful learning in a distance education Information Technology environment. Conclusions are finally presented on the way in which this paper makes a significant and original contribution regarding academics’ use of technology towards effective teaching and meaningful learning in a distance education Information Technology environment.Keywords: distance, education, technologies, Information Technology Environment
Procedia PDF Downloads 52421902 Estimating Water Balance at Beterou Watershed, Benin Using Soil and Water Assessment Tool (SWAT) Model
Authors: Ella Sèdé Maforikan
Abstract:
Sustained water management requires quantitative information and the knowledge of spatiotemporal dynamics of hydrological system within the basin. This can be achieved through the research. Several studies have investigated both surface water and groundwater in Beterou catchment. However, there are few published papers on the application of the SWAT modeling in Beterou catchment. The objective of this study was to evaluate the performance of SWAT to simulate the water balance within the watershed. The inputs data consist of digital elevation model, land use maps, soil map, climatic data and discharge records. The model was calibrated and validated using the Sequential Uncertainty Fitting (SUFI2) approach. The calibrated started from 1989 to 2006 with four years warming up period (1985-1988); and validation was from 2007 to 2020. The goodness of the model was assessed using five indices, i.e., Nash–Sutcliffe efficiency (NSE), the ratio of the root means square error to the standard deviation of measured data (RSR), percent bias (PBIAS), the coefficient of determination (R²), and Kling Gupta efficiency (KGE). Results showed that SWAT model successfully simulated river flow in Beterou catchment with NSE = 0.79, R2 = 0.80 and KGE= 0.83 for the calibration process against validation process that provides NSE = 0.78, R2 = 0.78 and KGE= 0.85 using site-based streamflow data. The relative error (PBIAS) ranges from -12.2% to 3.1%. The parameters runoff curve number (CN2), Moist Bulk Density (SOL_BD), Base Flow Alpha Factor (ALPHA_BF), and the available water capacity of the soil layer (SOL_AWC) were the most sensitive parameter. The study provides further research with uncertainty analysis and recommendations for model improvement and provision of an efficient means to improve rainfall and discharges measurement data.Keywords: watershed, water balance, SWAT modeling, Beterou
Procedia PDF Downloads 5521901 Technical Determinants of the Success of the Quality Management Systems Implementation in Automotive Industry
Authors: Agnieszka Misztal
Abstract:
The popularity of the quality management system models continues to grow despite the transitional crisis in 2008. Their development is associated with the demands of the new requirements for entrepreneurs, such as risk analysis projects and more emphasis on supervision of outsourced processes. In parallel appropriate to focus attention on the selection of companies aspiring to quality management system. This is particularly important in the automotive supplier industry, where requirements transferred to the levels in the supply chain should be clear, transparent and fairly satisfied. The author has carried out series of researches aimed at finding the factors that allow for the effective implementation of the quality management system in automotive companies. The research was focused on four groups of companies: 1) manufacturing (parts and assemblies for the purpose of sale or for vehicle manufacturers), 2) service (repair and maintenance of the car), 3) services for the transport of goods or people, 4) commercial (auto parts and vehicles). Identified determinants were divided in two types of criteria into: internal and external, as well as: hard and soft. The article presents hard - technical factors that automotive company must meet in order to achieve the goal of the quality management system implementation.Keywords: automotive industry, quality management system, automotive technology, automotive company
Procedia PDF Downloads 40221900 Glycine Betaine Affects Antioxidant Response and Lipid Peroxidation in Wheat Genotypes under Water-Deficit Conditions
Authors: S. K. Thind, Neha Gupta
Abstract:
Glycine betaine (N, N’, N’’– trimethyl glycine), (GB) as aqueous solution (100 mM) containing 0.1% TWEEN-20 (Ploythylene glycol sorbitan monolaurate) was sprayed on selected nineteen wheat genotypes at maximum tillering and anthesis stages. Water-deficit conditions resulted in lipid peroxidation. GB applications reduced lipid peroxidation in all wheat genotypes at both the stages. Catalase (CAT) activity was recorded more in control than under stressed conditions in selected wheat genotypes at both the stages; GB had no effect. The ascorbic acid content in leaves of selected genotypes increased under water deficit. A genotypic variability in Ascorbate peroxidase (APx) activity was recorded and GB treatment decreased it. Superoxide dismutase (SOD) activity was increased significantly under water-deficit at both stages in all genotypes. In present study, prolonged water-deficit conditions caused CAT deficiency/suppression which was compensated by APX and SOD; and GB exogenous application mitigated negative effect of water-deficit stress on lipid peroxidation.Keywords: glycine-betaine, lipid peroxidation, ROS, water deficit stress
Procedia PDF Downloads 45021899 Urban Areas Management in Developing Countries: Analysis of the Urban Areas Crossed with Risk of Storm Water Drains, Aswan-Egypt
Authors: Omar Hamdy, Schichen Zhao, Hussein Abd El-Atty, Ayman Ragab, Muhammad Salem
Abstract:
One of the most risky areas in Aswan is Abouelreesh, which is suffering from flood disasters, as heavy deluge inundates urban areas causing considerable damage to buildings and infrastructure. Moreover, the main problem was the urban sprawl towards this risky area. This paper aims to identify the urban areas located in the risk areas prone to flash floods. Analyzing this phenomenon needs a lot of data to ensure satisfactory results; however, in this case the official data and field data were limited, and therefore, free sources of satellite data were used. This paper used ArcGIS tools to obtain the storm water drains network by analyzing DEM files. Additionally, historical imagery in Google Earth was studied to determine the age of each building. The last step was to overlay the urban area layer and the storm water drains layer to identify the vulnerable areas. The results of this study would be helpful to urban planners and government officials to make the disasters risk estimation and develop primary plans to recover the risky area, especially urban areas located in torrents.Keywords: risk area, DEM, storm water drains, GIS
Procedia PDF Downloads 45921898 Factors Impacting Technology Integration in EFL Classrooms: A Study of Qatari Independent Schools
Authors: Youmen Chaaban, Maha Ellili-Cherif
Abstract:
The purpose of this study was to examine the effects of teachers’ individual characteristics and perceptions of environmental factors that impact their technology integration into their EFL (English as a Foreign Language) classrooms. To this end, a national survey examining EFL teachers’ perceptions was conducted at Qatari Independent schools. 263 EFL teachers responded to the survey which investigated several factors known to impact technology integration. These factors included technology availability and support, EFL teachers’ perceptions of importance, obstacles facing technology integration, competency with technology use, and formal technology preparation. The impact of these factors on teachers’ and students’ educational technology use was further measured. The analysis of the data included descriptive statistics and a chi-square analysis test in order to examine the relationship between these factors. The results revealed important cultural factors that impact teachers’ practices and attitudes towards technology in the Qatari context. EFL teachers were found to integrate technology most prominently for instructional delivery and preparation. The use of technology as a learning tool received less emphasis. Teachers further revealed consistent perceptions about obstacles to integration, high levels of confidence in using technology, and consistent beliefs about the importance of using technology as a learning tool. Further analyses of the factors impacting technology integration can assist with Qatar’s technology advancement and development efforts by indicating the areas of strength and areas where additional efforts are needed. The results will lay the foundation for conducting context-specific professional development suitable for the needs of EFL teachers in Qatari Independent Schools.Keywords: educational technology integration, Qatar, EFL, independent schools, ICT
Procedia PDF Downloads 38321897 Intelligent Rainwater Reuse System for Irrigation
Authors: Maria M. S. Pires, Andre F. X. Gloria, Pedro J. A. Sebastiao
Abstract:
The technological advances in the area of Internet of Things have been creating more and more solutions in the area of agriculture. These solutions are quite important for life, as they lead to the saving of the most precious resource, water, being this need to save water a concern worldwide. The paper proposes the creation of an Internet of Things system based on a network of sensors and interconnected actuators that automatically monitors the quality of the rainwater that is stored inside a tank in order to be used for irrigation. The main objective is to promote sustainability by reusing rainwater for irrigation systems instead of water that is usually available for other functions, such as other productions or even domestic tasks. A mobile application was developed for Android so that the user can control and monitor his system in real time. In the application, it is possible to visualize the data that translate the quality of the water inserted in the tank, as well as perform some actions on the implemented actuators, such as start/stop the irrigation system and pour the water in case of poor water quality. The implemented system translates a simple solution with a high level of efficiency and tests and results obtained within the possible environment.Keywords: internet of things, irrigation system, wireless sensor and actuator network, ESP32, sustainability, water reuse, water efficiency
Procedia PDF Downloads 14921896 Test Rig Development for Up-to-Date Experimental Study of Multi-Stage Flash Distillation Process
Authors: Marek Vondra, Petr Bobák
Abstract:
Vacuum evaporation is a reliable and well-proven technology with a wide application range which is frequently used in food, chemical or pharmaceutical industries. Recently, numerous remarkable studies have been carried out to investigate utilization of this technology in the area of wastewater treatment. One of the most successful applications of vacuum evaporation principal is connected with seawater desalination. Since 1950’s, multi-stage flash distillation (MSF) has been the leading technology in this field and it is still irreplaceable in many respects, despite a rapid increase in cheaper reverse-osmosis-based installations in recent decades. MSF plants are conveniently operated in countries with a fluctuating seawater quality and at locations where a sufficient amount of waste heat is available. Nowadays, most of the MSF research is connected with alternative heat sources utilization and with hybridization, i.e. merging of different types of desalination technologies. Some of the studies are concerned with basic principles of the static flash phenomenon, but only few scientists have lately focused on the fundamentals of continuous multi-stage evaporation. Limited measurement possibilities at operating plants and insufficiently equipped experimental facilities may be the reasons. The aim of the presented study was to design, construct and test an up-to-date test rig with an advanced measurement system which will provide real time monitoring options of all the important operational parameters under various conditions. The whole system consists of a conventionally designed MSF unit with 8 evaporation chambers, versatile heating circuit for different kinds of feed water (e.g. seawater, waste water), sophisticated system for acquisition and real-time visualization of all the related quantities (temperature, pressure, flow rate, weight, conductivity, pH, water level, power input), access to a wide spectrum of operational media (salt, fresh and softened water, steam, natural gas, compressed air, electrical energy) and integrated transparent features which enable a direct visual control of selected physical mechanisms (water evaporation in chambers, water level right before brine and distillate pumps). Thanks to the adjustable process parameters, it is possible to operate the test unit at desired operational conditions. This allows researchers to carry out statistical design and analysis of experiments. Valuable results obtained in this manner could be further employed in simulations and process modeling. First experimental tests confirm correctness of the presented approach and promise interesting outputs in the future. The presented experimental apparatus enables flexible and efficient research of the whole MSF process.Keywords: design of experiment, multi-stage flash distillation, test rig, vacuum evaporation
Procedia PDF Downloads 38721895 Effects of Water Content on Dielectric Properties of Mineral Transformer Oil
Authors: Suwarno, M. Helmi Prakoso
Abstract:
Mineral oil is commonly used for high voltage transformer insulation. The insulation quality of mineral oil is affecting the operation process of high voltage transformer. There are many contaminations which could decrease the insulation quality of mineral oil. One of them is water. This research talks about the effect of water content on dielectric properties, physic properties, and partial discharge pattern on mineral oil. Samples were varied with 10 varieties of water content value. And then all samples were tested to measure the dielectric properties, physic properties, and partial discharge pattern. The result of this research showed that an increment of water content value would decrease the insulation quality of mineral oil.Keywords: dielectric properties, high voltage transformer, mineral oil, water content
Procedia PDF Downloads 39921894 Soil-Cement Floor Produced with Alum Water Treatment Residues
Authors: Flavio Araujo, Paulo Scalize, Julio Lima, Natalia Vieira, Antonio Albuquerque, Isabela Santos
Abstract:
From a concern regarding the environmental impacts caused by the disposal of residues generated in Water Treatment Plants (WTP's), alternatives ways have been studied to use these residues as raw material for manufacture of building materials, avoiding their discharge on water streams, disposal on sanitary landfills or incineration. This paper aims to present the results of a research work, which is using WTR for replacing the soil content in the manufacturing of soil-cement floor with proportions of 0, 5, 10 and 15%. The samples tests showed a reduction mechanical strength in so far as has increased the amount of waste. The water absorption was below the maximum of 6% required by the standard. The application of WTR contributes to the reduction of the environmental damage in the water treatment industry.Keywords: residue, soil-cement floor, sustainable, WTP
Procedia PDF Downloads 57121893 Evaluation and Selection of Drilling Technologies: An Application of Portfolio Analysis Matrix in South Azadgan Oilfield
Authors: M. Maleki Sadabad, A. Pointing, N. Marashi
Abstract:
With respect to the role and increasing importance of technology for countries development, in recent decades technology development has paid attention in a systematic form. Nowadays the markets face with highly complicated and competitive conditions in foreign markets, therefore, evaluation and selection of technology effectiveness and also formulating technology strategy have changed into a vital subject for some organizations. The study introduces the standards of empowerment evaluation and technology attractiveness especially strategic technologies which explain the way of technology evaluation, selection and finally formulating suitable technology strategy in the field of drilling in South Azadegan oil field. The study firstly identifies the key challenges of oil fields in order to evaluate the technologies in field of drilling in South Azadegan oil field through an interview with the experts of industry and then they have been prioritised. In the following, the existing and new technologies were identified to solve the challenges of South Azadegan oil field. In order to explore the ability, availability, and attractiveness of every technology, a questionnaire based on Julie indices has been designed and distributed among the industry elites. After determining the score of ability, availability and attractiveness, every technology which has been obtained by the average of expert’s ideas, the technology package has been introduced by Morin’s model. The matrix includes four areas which will follow the especial strategy. Finally, by analysing the above matrix, the technology options have been suggested in order to select and invest.Keywords: technology, technology identification, drilling technologies, technology capability
Procedia PDF Downloads 14421892 Thermal and Radon-222 Appraisal in Geothermal Aquifer System, Southeastern Tunisia
Authors: Agoubi Belgacem, Adel Kharroubi
Abstract:
Geothermal groundwater is the main water source to supply various sectors in El Hamma city, southeastern Tunisia. This region was long the destination of thousands of people from Tunisia and neighboring countries for care and bathing. The main objective of this study is to understand the groundwater mineralization origins and factors that control. The second goal is the appraisal of radon in geothermal groundwater in the study area. For this aim, geothermal groundwater was sampled and collected from different locations (thermal baths and deep wells). Physical parameters were measured and major ions were analyzed. Results reveal three water types. The water first type has Na-Mg-Ca-SO4-Cl facies and T>55°C. The second water type dominated by Na-Ca-Cl-SO4 facies with a temperature < 45 °C. However the third water type is dominated by Ca-SO4-Na-Cl-Mg. The three water types may be controlled by depth and geology. The first represent groundwater from deep aquifer (lower cretaceous), the second type was the shallow aquifer and the first is mixed water from deep and shallow water with a temperature ranging from 45 to 55°C. Measured Radon shows that shallow aquifer has a higher 222Rn concentration (677 to 2903 Bq.m-3) than deep water (203 to 1100 Bq.m-3). R-222 in El Hamma thermal aquifer was controlled by structures, porosity and permeability of aquifers. Geostatistical analyses of hydrogeological data and radon activities confirm the vertical flow and communication between deep and shallow aquifers through vertical faults system.Keywords: Radon-222, geothermal, water, environment, Tunisia
Procedia PDF Downloads 36121891 Schematic Study of Groundwater Potential Zones in Granitic Terrain Using Remotesensing and GIS Techniques, in Miyapur and Bollaram Areas of Hyderabad, India
Authors: Ishrath, Tapas Kumar Chatterjee
Abstract:
The present study aims developing interpretation and evaluation to integrate various data types for management of existing water resources for sustainable use. Proper study should be followed based on the geomorphology of the area. Thematic maps such as lithology, base map, land use/land cover, geomorphology, drainage and lineaments maps are prepared to study the area by using area toposheet, IRS P6 and LISIII Satellite imagery. These thematic layers are finally integrated by using Arc GIS, Arc View, and software to prepare a ground water potential zones map of the study area. In this study, an integrated approach involving remote sensing and GIS techniques has successfully been used in identifying groundwater potential zones in the study area to classify them as good, moderate and poor. It has been observed that Pediplain shallow (PPS) has good recharge, Pediplain moderate (PPM) has moderately good recharge, Pediment Inselberg complex (PIC) has poor recharge and Inselberg (I) has no recharge. The study has concluded that remote sensing and GIS techniques are very efficient and useful for identifying ground water potential zones.Keywords: satellite remote sensing, GIS, ground water potential zones, Miyapur
Procedia PDF Downloads 44521890 Climate Change Impact on Water Resources above the Territory of Georgia
Authors: T. Davitashvili
Abstract:
At present impact of global climate change on the territory of Georgia is evident at least on the background of the Caucasus glaciers melting which during the last century have decreased to half their size. Glaciers are early indicators of ongoing global and regional climate change. Knowledge of the Caucasus glaciers fluctuation (melting) is an extremely necessary tool for planning hydro-electric stations and water reservoir, for development tourism and agriculture, for provision of population with drinking water and for prediction of water supplies in more arid regions of Georgia. Otherwise, the activity of anthropogenic factors has resulted in decreasing of the mowing, arable, unused lands, water resources, shrubs and forests, owing to increasing the production and building. Transformation of one type structural unit into another one has resulted in local climate change and its directly or indirectly impacts on different components of water resources on the territory of Georgia. In the present paper, some hydrological specifications of Georgian water resources and its potential pollutants on the background of regional climate change are presented. Some results of Georgian’s glaciers pollution and its melting process are given. The possibility of surface and subsurface water pollution owing to accidents at oil pipelines or railway routes are discussed. The specific properties of regional climate warming process in the eastern Georgia are studied by statistical methods. The effect of the eastern Georgian climate change upon water resources is investigated.Keywords: climate, droughts, pollution, water resources
Procedia PDF Downloads 48021889 Sustainable Manufacturing and Performance of Ceramic Membranes
Authors: Obsi Terfasa, Bhanupriya Das, Mithilish Passawan
Abstract:
The large-scale application of microbial fuel cell (MFC) technology is significantly hindered by the high cost of the commonly used proton exchange membrane, Nafion. This has led to the recent development of ceramic membranes using various clay minerals. This study evaluates the characteristics and potential use of a new ceramic membrane made from potter’s clay © mixed with different proportions (0, 5, 10 wt%) of fly ash (FA), labeled as CFA0, CFA5, CFA10, for cost-effective and sustainable MFC use. Among these, the CFA10 membrane demonstrated superior quality with a fine pore size distribution (average 0.41 μm), which supports higher water uptake and reduced oxygen diffusion. Its oxygen mass transfer coefficient was 4.13 ± 0.13 × 10⁻⁴ cm/s, about 40% lower than the control. X-ray diffraction analysis revealed that the CFA membrane is rich in quartz, which enhances proton conductance and water retention. Electrochemical kinetics studies, including cyclic voltammetry and electrochemical impedance spectroscopy (EIS), also confirmed the effectiveness of the CFA10 membrane in MFC, showing a peak current output of 15.35 mA and low ohmic resistance (78.2 Ω). The novel CFA10 ceramic membrane, incorporating coal fly ash, a waste material, shows promise for high MFC performance at a significantly reduced cost (96%), making it suitable for sustainable scaling up of the technology.Keywords: ceramic membrane, Coulombic efficiency, electro-chemical kinetics, fly ash, proton conductivity, microbial fuel cell
Procedia PDF Downloads 3621888 Design of a Solar Water Heating System with Thermal Storage for a Three-Bedroom House in Newfoundland
Authors: Ahmed Aisa, Tariq Iqbal
Abstract:
This letter talks about the ready-to-use design of a solar water heating system because, in Canada, the average consumption of hot water per person is approximately 50 to 75 L per day and the average Canadian household uses 225 L. Therefore, this paper will demonstrate the method of designing a solar water heating system with thermal storage. It highlights the renewable hybrid power system, allowing you to obtain a reliable, independent system with the optimization of the ingredient size and at an improved capital cost. The system can provide hot water for a big building. The main power for the system comes from solar panels. Solar Advisory Model (SAM) and HOMER are used. HOMER and SAM are design models that calculate the consumption of hot water and cost for a house. Some results, obtained through simulation, were for monthly energy production, annual energy production, after tax cash flow, the lifetime of the system and monthly energy usage represented by three types of energy. These are system energy, electricity load electricity and net metering credit.Keywords: water heating, thermal storage, capital cost solar, consumption
Procedia PDF Downloads 431