Search results for: temporal and spatial variation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5193

Search results for: temporal and spatial variation

4173 A Two-Phase Flow Interface Tracking Algorithm Using a Fully Coupled Pressure-Based Finite Volume Method

Authors: Shidvash Vakilipour, Scott Ormiston, Masoud Mohammadi, Rouzbeh Riazi, Kimia Amiri, Sahar Barati

Abstract:

Two-phase and multi-phase flows are common flow types in fluid mechanics engineering. Among the basic and applied problems of these flow types, two-phase parallel flow is the one that two immiscible fluids flow in the vicinity of each other. In this type of flow, fluid properties (e.g. density, viscosity, and temperature) are different at the two sides of the interface of the two fluids. The most challenging part of the numerical simulation of two-phase flow is to determine the location of interface accurately. In the present work, a coupled interface tracking algorithm is developed based on Arbitrary Lagrangian-Eulerian (ALE) approach using a cell-centered, pressure-based, coupled solver. To validate this algorithm, an analytical solution for fully developed two-phase flow in presence of gravity is derived, and then, the results of the numerical simulation of this flow are compared with analytical solution at various flow conditions. The results of the simulations show good accuracy of the algorithm despite using a nearly coarse and uniform grid. Temporal variations of interface profile toward the steady-state solution show that a greater difference between fluids properties (especially dynamic viscosity) will result in larger traveling waves. Gravity effect studies also show that favorable gravity will result in a reduction of heavier fluid thickness and adverse gravity leads to increasing it with respect to the zero gravity condition. However, the magnitude of variation in favorable gravity is much more than adverse gravity.

Keywords: coupled solver, gravitational force, interface tracking, Reynolds number to Froude number, two-phase flow

Procedia PDF Downloads 301
4172 Spatial Rank-Based High-Dimensional Monitoring through Random Projection

Authors: Chen Zhang, Nan Chen

Abstract:

High-dimensional process monitoring becomes increasingly important in many application domains, where usually the process distribution is unknown and much more complicated than the normal distribution, and the between-stream correlation can not be neglected. However, since the process dimension is generally much bigger than the reference sample size, most traditional nonparametric multivariate control charts fail in high-dimensional cases due to the curse of dimensionality. Furthermore, when the process goes out of control, the influenced variables are quite sparse compared with the whole dimension, which increases the detection difficulty. Targeting at these issues, this paper proposes a new nonparametric monitoring scheme for high-dimensional processes. This scheme first projects the high-dimensional process into several subprocesses using random projections for dimension reduction. Then, for every subprocess with the dimension much smaller than the reference sample size, a local nonparametric control chart is constructed based on the spatial rank test to detect changes in this subprocess. Finally, the results of all the local charts are fused together for decision. Furthermore, after an out-of-control (OC) alarm is triggered, a diagnostic framework is proposed. using the square-root LASSO. Numerical studies demonstrate that the chart has satisfactory detection power for sparse OC changes and robust performance for non-normally distributed data, The diagnostic framework is also effective to identify truly changed variables. Finally, a real-data example is presented to demonstrate the application of the proposed method.

Keywords: random projection, high-dimensional process control, spatial rank, sequential change detection

Procedia PDF Downloads 285
4171 Using Multi-Arm Bandits to Optimize Game Play Metrics and Effective Game Design

Authors: Kenny Raharjo, Ramon Lawrence

Abstract:

Game designers have the challenging task of building games that engage players to spend their time and money on the game. There are an infinite number of game variations and design choices, and it is hard to systematically determine game design choices that will have positive experiences for players. In this work, we demonstrate how multi-arm bandits can be used to automatically explore game design variations to achieve improved player metrics. The advantage of multi-arm bandits is that they allow for continuous experimentation and variation, intrinsically converge to the best solution, and require no special infrastructure to use beyond allowing minor game variations to be deployed to users for evaluation. A user study confirms that applying multi-arm bandits was successful in determining the preferred game variation with highest play time metrics and can be a useful technique in a game designer's toolkit.

Keywords: game design, multi-arm bandit, design exploration and data mining, player metric optimization and analytics

Procedia PDF Downloads 501
4170 A Two-Stage Bayesian Variable Selection Method with the Extension of Lasso for Geo-Referenced Data

Authors: Georgiana Onicescu, Yuqian Shen

Abstract:

Due to the complex nature of geo-referenced data, multicollinearity of the risk factors in public health spatial studies is a commonly encountered issue, which leads to low parameter estimation accuracy because it inflates the variance in the regression analysis. To address this issue, we proposed a two-stage variable selection method by extending the least absolute shrinkage and selection operator (Lasso) to the Bayesian spatial setting, investigating the impact of risk factors to health outcomes. Specifically, in stage I, we performed the variable selection using Bayesian Lasso and several other variable selection approaches. Then, in stage II, we performed the model selection with only the selected variables from stage I and compared again the methods. To evaluate the performance of the two-stage variable selection methods, we conducted a simulation study with different distributions for the risk factors, using geo-referenced count data as the outcome and Michigan as the research region. We considered the cases when all candidate risk factors are independently normally distributed, or follow a multivariate normal distribution with different correlation levels. Two other Bayesian variable selection methods, Binary indicator, and the combination of Binary indicator and Lasso were considered and compared as alternative methods. The simulation results indicated that the proposed two-stage Bayesian Lasso variable selection method has the best performance for both independent and dependent cases considered. When compared with the one-stage approach, and the other two alternative methods, the two-stage Bayesian Lasso approach provides the highest estimation accuracy in all scenarios considered.

Keywords: Lasso, Bayesian analysis, spatial analysis, variable selection

Procedia PDF Downloads 124
4169 Thermodynamics of the Local Hadley Circulation Over Central Africa

Authors: Landry Tchambou Tchouongsi, Appolinaire Derbetini Vondou

Abstract:

This study describes the local Hadley circulation (HC) during the December-February (DJF) and June-August (JJA) seasons, respectively, in Central Africa (CA) from the divergent component of the mean meridional wind and also from a new method called the variation of the ψ vector. Historical data from the ERA5 reanalysis for the period 1983 to 2013 were used. The results show that the maximum of the upward branch of the local Hadley circulation in the DJF and JJA seasons is located under the Congo Basin (CB). However, seasonal and horizontal variations in the mean temperature gradient and thermodynamic properties are largely associated with the distribution of convection and large-scale upward motion. Thus, temperatures beneath the CB show a slight variation between the DJF and JJA seasons. Moreover, energy transport of the moist static energy (MSE) adequately captures the mean flow component of the HC over the tropics. By the way, the divergence under the CB is enhanced by the presence of the low pressure of western Cameroon and the contribution of the warm and dry air currents coming from the Sahara.

Keywords: Circulation, reanalysis, thermodynamic, local Hadley.

Procedia PDF Downloads 81
4168 Combining ASTER Thermal Data and Spatial-Based Insolation Model for Identification of Geothermal Active Areas

Authors: Khalid Hussein, Waleed Abdalati, Pakorn Petchprayoon, Khaula Alkaabi

Abstract:

In this study, we integrated ASTER thermal data with an area-based spatial insolation model to identify and delineate geothermally active areas in Yellowstone National Park (YNP). Two pairs of L1B ASTER day- and nighttime scenes were used to calculate land surface temperature. We employed the Emissivity Normalization Algorithm which separates temperature from emissivity to calculate surface temperature. We calculated the incoming solar radiation for the area covered by each of the four ASTER scenes using an insolation model and used this information to compute temperature due to solar radiation. We then identified the statistical thermal anomalies using land surface temperature and the residuals calculated from modeled temperatures and ASTER-derived surface temperatures. Areas that had temperatures or temperature residuals greater than 2σ and between 1σ and 2σ were considered ASTER-modeled thermal anomalies. The areas identified as thermal anomalies were in strong agreement with the thermal areas obtained from the YNP GIS database. Also the YNP hot springs and geysers were located within areas identified as anomalous thermal areas. The consistency between our results and known geothermally active areas indicate that thermal remote sensing data, integrated with a spatial-based insolation model, provides an effective means for identifying and locating areas of geothermal activities over large areas and rough terrain.

Keywords: thermal remote sensing, insolation model, land surface temperature, geothermal anomalies

Procedia PDF Downloads 355
4167 Diffuse CO₂ Degassing to Study Blind Geothermal Systems: The Acoculco, Puebla (Mexico) Case Study

Authors: Mirna Guevara, Edgar Santoyo, Daniel Perez-Zarate, Erika Almirudis

Abstract:

The Acoculco caldera located in Puebla (Mexico) has been preliminary identified as a blind hot-dry rock geothermal system. Two drilled wells suggest the existence of high temperatures >300°C and non-conventional tools are been applied to study this system. A comprehensive survey of soil-gas (CO₂) flux measurements (1,500 sites) was carried out during the dry seasons over almost two years (2015 and 2016). Isotopic analyses of δ¹³CCO₂ were performed to discriminate the origin source of the CO2 fluxes. The soil CO2 flux measurements were made in situ by the accumulation chamber method, whereas gas samples for δ13CCO2 were selectively collected from the accumulation chamber with evacuated gas vials via a septum. Two anomalous geothermal zones were identified as a result of these campaigns: Los Azufres (19°55'29.4'' N; 98°08'39.9'' W; 2,839 masl) and Alcaparrosa (19°55'20.6'' N; 98°08'38.3'' W; 2,845 masl). To elucidate the origin of the C in soil CO₂ fluxes, the isotopic signature of δ¹³C was used. Graphical Statistical Analysis (GSA) and a three end-member mixing diagram were used to corroborate the presence of distinctive statistical samples, and trends for the diffuse gas fluxes. Spatial and temporal distributions of the CO₂ fluxes were studied. High CO₂ emission rates up to 38,217 g/m2/d and 33,706 g/m2/d were measured for the Los Azufres and Alcaparrosa respectively; whereas the δ¹³C signatures showed values ranging from -3.4 to -5.5 o/oo for both zones, confirming their magmatic origin. This study has provided a valuable framework to set the direction of further exploration campaigns in the Acoculco caldera. Acknowledgements: The authors acknowledge the funding received from CeMIE-Geo P09 project (SENER-CONACyT).

Keywords: accumulation chamber method, carbon dioxide, diffusive degassing, geothermal exploration

Procedia PDF Downloads 250
4166 Spatial Analysis of Survival Pattern and Treatment Outcomes of Multi-Drug Resistant Tuberculosis (MDR-TB) Patients in Lagos, Nigeria

Authors: Akinsola Oluwatosin, Udofia Samuel, Odofin Mayowa

Abstract:

The study is aimed at assessing the Geographic Information System (GIS)-based spatial analysis of Survival Pattern and Treatment Outcomes of Multi-Drug Resistant Tuberculosis (MDR-TB) cases for Lagos, Nigeria, with an objective to inform priority areas for public health planning and resource allocation. Multi-drug resistant tuberculosis (MDR-TB) develops due to problems such as irregular drug supply, poor drug quality, inappropriate prescription, and poor adherence to treatment. The shapefile(s) for this study were already georeferenced to Minna datum. The patient’s information was acquired on MS Excel and later converted to . CSV file for easy processing to ArcMap from various hospitals. To superimpose the patient’s information the spatial data, the addresses was geocoded to generate the longitude and latitude of the patients. The database was used for the SQL query to the various pattern of the treatment. To show the pattern of disease spread, spatial autocorrelation analysis was used. The result was displayed in a graphical format showing the areas of dispersing, random and clustered of patients in the study area. Hot and cold spot analysis was analyzed to show high-density areas. The distance between these patients and the closest health facility was examined using the buffer analysis. The result shows that 22% of the points were successfully matched, while 15% were tied. However, the result table shows that a greater percentage of it was unmatched; this is evident in the fact that most of the streets within the State are unnamed, and then again, most of the patients are likely to supply the wrong addresses. MDR-TB patients of all age groups are concentrated within Lagos-Mainland, Shomolu, Mushin, Surulere, Oshodi-Isolo, and Ifelodun LGAs. MDR-TB patients between the age group of 30-47 years had the highest number and were identified to be about 184 in number. The outcome of patients on ART treatment revealed that a high number of patients (300) were not ART treatment while a paltry 45 patients were on ART treatment. The result shows the Z-score of the distribution is greater than 1 (>2.58), which means that the distribution is highly clustered at a significance level of 0.01.

Keywords: tuberculosis, patients, treatment, GIS, MDR-TB

Procedia PDF Downloads 135
4165 The BNCT Project Using the Cf-252 Source: Monte Carlo Simulations

Authors: Marta Błażkiewicz-Mazurek, Adam Konefał

Abstract:

The project can be divided into three main parts: i. modeling the Cf-252 neutron source and conducting an experiment to verify the correctness of the obtained results, ii. design of the BNCT system infrastructure, iii. analysis of the results from the logical detector. Modeling of the Cf-252 source included designing the shape and size of the source as well as the energy and spatial distribution of emitted neutrons. Two options were considered: a point source and a cylindrical spatial source. The energy distribution corresponded to various spectra taken from specialized literature. Directionally isotropic neutron emission was simulated. The simulation results were compared with experimental values determined using the activation detector method using indium foils and cadmium shields. The relative fluence rate of thermal and resonance neutrons was compared in the chosen places in the vicinity of the source. The second part of the project related to the modeling of the BNCT infrastructure consisted of developing a simulation program taking into account all the essential components of this system. Materials with moderating, absorbing, and backscattering properties of neutrons were adopted into the project. Additionally, a gamma radiation filter was introduced into the beam output system. The analysis of the simulation results obtained using a logical detector located at the beam exit from the BNCT infrastructure included neutron energy and their spatial distribution. Optimization of the system involved changing the size and materials of the system to obtain a suitable collimated beam of thermal neutrons.

Keywords: BNCT, Monte Carlo, neutrons, simulation, modeling

Procedia PDF Downloads 7
4164 Achieving Product Robustness through Variation Simulation: An Industrial Case Study

Authors: Narendra Akhadkar, Philippe Delcambre

Abstract:

In power protection and control products, assembly process variations due to the individual parts manufactured from single or multi-cavity tooling is a major problem. The dimensional and geometrical variations on the individual parts, in the form of manufacturing tolerances and assembly tolerances, are sources of clearance in the kinematic joints, polarization effect in the joints, and tolerance stack-up. All these variations adversely affect the quality of product, functionality, cost, and time-to-market. Variation simulation analysis may be used in the early product design stage to predict such uncertainties. Usually, variations exist in both manufacturing processes and materials. In the tolerance analysis, the effect of the dimensional and geometrical variations of the individual parts on the functional characteristics (conditions) of the final assembled products are studied. A functional characteristic of the product may be affected by a set of interrelated dimensions (functional parameters) that usually form a geometrical closure in a 3D chain. In power protection and control products, the prerequisite is: when a fault occurs in the electrical network, the product must respond quickly to react and break the circuit to clear the fault. Usually, the response time is in milliseconds. Any failure in clearing the fault may result in severe damage to the equipment or network, and human safety is at stake. In this article, we have investigated two important functional characteristics that are associated with the robust performance of the product. It is demonstrated that the experimental data obtained at the Schneider Electric Laboratory prove the very good prediction capabilities of the variation simulation performed using CETOL (tolerance analysis software) in an industrial context. Especially, this study allows design engineers to better understand the critical parts in the product that needs to be manufactured with good, capable tolerances. On the contrary, some parts are not critical for the functional characteristics (conditions) of the product and may lead to some reduction of the manufacturing cost, ensuring robust performance. The capable tolerancing is one of the most important aspects in product and manufacturing process design. In the case of miniature circuit breaker (MCB), the product's quality and its robustness are mainly impacted by two aspects: (1) allocation of design tolerances between the components of a mechanical assembly and (2) manufacturing tolerances in the intermediate machining steps of component fabrication.

Keywords: geometrical variation, product robustness, tolerance analysis, variation simulation

Procedia PDF Downloads 151
4163 Speech Enhancement Using Wavelet Coefficients Masking with Local Binary Patterns

Authors: Christian Arcos, Marley Vellasco, Abraham Alcaim

Abstract:

In this paper, we present a wavelet coefficients masking based on Local Binary Patterns (WLBP) approach to enhance the temporal spectra of the wavelet coefficients for speech enhancement. This technique exploits the wavelet denoising scheme, which splits the degraded speech into pyramidal subband components and extracts frequency information without losing temporal information. Speech enhancement in each high-frequency subband is performed by binary labels through the local binary pattern masking that encodes the ratio between the original value of each coefficient and the values of the neighbour coefficients. This approach enhances the high-frequency spectra of the wavelet transform instead of eliminating them through a threshold. A comparative analysis is carried out with conventional speech enhancement algorithms, demonstrating that the proposed technique achieves significant improvements in terms of PESQ, an international recommendation of objective measure for estimating subjective speech quality. Informal listening tests also show that the proposed method in an acoustic context improves the quality of speech, avoiding the annoying musical noise present in other speech enhancement techniques. Experimental results obtained with a DNN based speech recognizer in noisy environments corroborate the superiority of the proposed scheme in the robust speech recognition scenario.

Keywords: binary labels, local binary patterns, mask, wavelet coefficients, speech enhancement, speech recognition

Procedia PDF Downloads 210
4162 Effect of the Structural Parameters on Subbands of Fibonacci AlxGa1-xAs/GaAs Superlattices

Authors: Y. Sefir, Z. Aziz, S. Cherid, Z. F. Meghoufel, F. Bendahama, S. Terkhi, B. Bouadjemi. A. Zitouni S. Bentata

Abstract:

This work is to study the effect of the variation of structural parameters on the band structure in the quasiperiodic Fibonacci superlattices AlxGa1-xAs/GaAs using the formalism of the transfer matrix and Airy function. Our results show that increasing the width of Fibonacci’s wells of allows to the confinement of subminibands with a widening of minigaps, this causes a consistent and coherent fragmentation. The barrier thickness of Fibonacci bf acts on the width of subminibands by controlling the interaction force between neighboring eigenstates. Its increase gives rise to singularly extended states. The barrier height Fibonacci Vf permit to control the degree of structural disorder in these structures. The variation of these parameters permits the design of laser with modulated wavelength.

Keywords: transmission coefficient – Quasiperiodic superlattices- singularly localized and extended states- structural parameters- Laser with modulated wavelength

Procedia PDF Downloads 356
4161 Research on Urban Carbon Reduction Strategy Based on Sponge City: Chongqing Caijia New Town as an Example

Authors: Shitong Wang

Abstract:

As an ecologically oriented urban development model, Sponge City is an important technical system that responds to the requirements of the "double carbon" policy and promotes the transformation of urban low-carbonization. Based on this, this paper constructs a sponge city carbon reduction model based on domestic and international carbon reduction studies and constructs a sponge city carbon reduction model at the theoretical level based on the sponge city carbon reduction mechanism at the four levels of a global scale, district scale, community scale, and indicator system; at the practical level, the theoretical model is located in the urban scale and neighborhood scale of Caijia New Town in Chongqing. At the urban scale, the Caijia Sponge City special planning is carried out in four aspects: sponge City spatial pattern, low-impact development facility system, low-carbon community, and control index system. At the neighborhood scale, GIS is used for ecological sensitivity evaluation and hydrological analysis, based on which the spatial pattern optimization design is carried out from the three aspects of water catchment unit division, index system construction, and sponge facility spatial planning. Through the design practice of Chongqing Caijia New City, it is helpful to verify the carbon reduction benefits of the sponge city carbon reduction model, guide Caijia New City to realize low-carbon development, and provide a reference for other cities in China to realize the "dual-carbon" transformation.

Keywords: Sponge City, low carbon city, carbon emission reduction pathway, Chongqing

Procedia PDF Downloads 16
4160 Measuring Urban Sprawl in the Western Cape Province, South Africa: An Urban Sprawl Index for Comparative Purposes

Authors: Anele Horn, Amanda Van Eeden

Abstract:

The emphasis on the challenges posed by continued urbanisation, especially in developing countries has resulted in urban sprawl often researched and analysed in metropolitan urban areas, but rarely in small and medium towns. Consequently, there exists no comparative instrument between the proportional extent of urban sprawl in metropolitan areas measured against that of small and medium towns. This research proposes an Urban Sprawl Index as a possible tool to comparatively analyse the extent of urban sprawl between cities and towns of different sizes. The index can also be used over the longer term by authorities developing spatial policy to track the success or failure of specific tools intended to curb urban sprawl. In South Africa, as elsewhere in the world, the last two decades witnessed a proliferation of legislation and spatial policies to limit urban sprawl and contain the physical expansion and development of urban areas, but the measurement of the successes or failures of these instruments intending to curb expansive land development has remained a largely unattainable goal, largely as a result of the absence of an appropriate measure of proportionate comparison. As a result of the spatial political history of Apartheid, urban areas acquired a spatial form that contributed to the formation of single-core cities with far reaching and wide-spreading peripheral development, either in the form of affluent suburbs or as a result of post-Apartheid programmes such as the Reconstruction and Development Programme (1995) which, in an attempt to assist the immediate housing shortage, favoured the establishment of single dwelling residential units for low income communities on single plots on affordable land at the urban periphery. This invariably contributed to urban sprawl and even though this programme has since been abandoned, the trend towards low density residential development continues. The research area is the Western Cape Province in South Africa, which in all aspects exhibit the spatial challenges described above. In academia and popular media the City of Cape Town (the only Metropolitan authority in the province) has received the lion’s share of focus in terms of critique on urban development and spatial planning, however, the smaller towns and cities in the Western Cape arguably received much less public attention and were spared the naming and shaming of being unsustainable urban areas in terms of land consumption and physical expansion. The Urban Sprawl Index for the Western Cape (USIWC) put forward by this research enables local authorities in the Western Cape Province to measure the extent of urban sprawl proportionately and comparatively to other cities in the province, thereby acquiring a means of measuring the success of the spatial instruments employed to limit urban expansion and inefficient land consumption. In development of the USIWC the research made use of satellite data for reference years 2001 and 2011 and population growth data extracted from the national census, also for base years 2001 and 2011.

Keywords: urban sprawl, index, Western Cape, South Africa

Procedia PDF Downloads 317
4159 Imaging Based On Bi-Static SAR Using GPS L5 Signal

Authors: Tahir Saleem, Mohammad Usman, Nadeem Khan

Abstract:

GPS signals are used for navigation and positioning purposes by a diverse set of users. However, this project intends to utilize the reflected GPS L5 signals for location of target in a region of interest by generating an image that highlights the positions of targets in the area of interest. The principle of bi-static radar is used to detect the targets or any movement or changes. The idea is confirmed by the results obtained during MATLAB simulations. A matched filter based technique is employed in the signal processing to improve the system resolution. The simulation is carried out under different conditions with moving receiver and targets. Noise and attenuation is also induced and atmospheric conditions that affect the direct and reflected GPS signals have been simulated to generate a more practical scenario. A realistic GPS L5 signal has been simulated, the simulation results verify that the detection and imaging of targets is possible by employing reflected GPS using L5 signals and matched filter processing technique with acceptable spatial resolution.

Keywords: GPS, L5 Signal, SAR, spatial resolution

Procedia PDF Downloads 521
4158 Evaluation of NASA POWER and CRU Precipitation and Temperature Datasets over a Desert-prone Yobe River Basin: An Investigation of the Impact of Drought in the North-East Arid Zone of Nigeria

Authors: Yusuf Dawa Sidi, Abdulrahman Bulama Bizi

Abstract:

The most dependable and precise source of climate data is often gauge observation. However, long-term records of gauge observations, on the other hand, are unavailable in many regions around the world. In recent years, a number of gridded climate datasets with high spatial and temporal resolutions have emerged as viable alternatives to gauge-based measurements. However, it is crucial to thoroughly evaluate their performance prior to utilising them in hydroclimatic applications. Therefore, this study aims to assess the effectiveness of NASA Prediction of Worldwide Energy Resources (NASA POWER) and Climate Research Unit (CRU) datasets in accurately estimating precipitation and temperature patterns within the dry region of Nigeria from 1990 to 2020. The study employs widely used statistical metrics and the Standardised Precipitation Index (SPI) to effectively capture the monthly variability of precipitation and temperature and inter-annual anomalies in rainfall. The findings suggest that CRU exhibited superior performance compared to NASA POWER in terms of monthly precipitation and minimum and maximum temperatures, demonstrating a high correlation and much lower error values for both RMSE and MAE. Nevertheless, NASA POWER has exhibited a moderate agreement with gauge observations in accurately replicating monthly precipitation. The analysis of the SPI reveals that the CRU product exhibits superior performance compared to NASA POWER in accurately reflecting inter-annual variations in rainfall anomalies. The findings of this study indicate that the CRU gridded product is often regarded as the most favourable gridded precipitation product.

Keywords: CRU, climate change, precipitation, SPI, temperature

Procedia PDF Downloads 66
4157 Research on Coordinated Development Mechanism of Semi-urbanized Areas under the Background of Guangdong-Hong Kong-Macao Greater Bay Area: A Case Study of 'Baiyun-Nanhai' Pilot Area

Authors: Cheng Fang Wang, Fu Li Gao, Jian Ying Zhou

Abstract:

The '1+4' integration pilot area in the border area of Guangzhou-Foshan is an important platform for Guangzhou-Foshan strategic cooperation, as well as a typical semi-urbanized area with mixed urban and rural landscapes, of which the Baiyun-Nanhai pilot area is one of them. Baiyun district and Nanhai district are only separated by the Pearl River. In this paper, the three dimensions, which include production, living, and ecology, have been put forward, as well as cross-regional multi-agency negotiation mechanism has been discussed. Taking 'Baiyun-Nanhai' pilot area as a case study, POI (Point of Interest) data to analyze the distribution characteristics of 'production-living-ecological space' from the spatial dimension has been introduced in this paper, as well as the land-use change of 'production-living-ecological space' in western region of Baiyun district in 2007 and 2017 from the temporal dimension has been analyzed. Based on the above analysis, the integration development strategy and rethinking of cross-administrative region based on 'production-living-ecological integration' mechanism have been discussed later. It will explore the mechanism of industrial collaborative innovation, infrastructure co-construction, and ecological co-protection in semi-urban areas across borders. And it is expected to provide a reference for the integrated construction of the Guangdong-Hong Kong-Macao Greater Bay Area.

Keywords: semi-urbanization, production-living-ecological integration, multi-agency negotiation, Guangzhou-Foshan integration, synergetic development

Procedia PDF Downloads 133
4156 Mathematical Modelling of Spatial Distribution of Covid-19 Outbreak Using Diffusion Equation

Authors: Kayode Oshinubi, Brice Kammegne, Jacques Demongeot

Abstract:

The use of mathematical tools like Partial Differential Equations and Ordinary Differential Equations have become very important to predict the evolution of a viral disease in a population in order to take preventive and curative measures. In December 2019, a novel variety of Coronavirus (SARS-CoV-2) was identified in Wuhan, Hubei Province, China causing a severe and potentially fatal respiratory syndrome, i.e., COVID-19. Since then, it has become a pandemic declared by World Health Organization (WHO) on March 11, 2020 which has spread around the globe. A reaction-diffusion system is a mathematical model that describes the evolution of a phenomenon subjected to two processes: a reaction process in which different substances are transformed, and a diffusion process that causes a distribution in space. This article provides a mathematical study of the Susceptible, Exposed, Infected, Recovered, and Vaccinated population model of the COVID-19 pandemic by the bias of reaction-diffusion equations. Both local and global asymptotic stability conditions for disease-free and endemic equilibria are determined using the Lyapunov function are considered and the endemic equilibrium point exists and is stable if it satisfies Routh–Hurwitz criteria. Also, adequate conditions for the existence and uniqueness of the solution of the model have been proved. We showed the spatial distribution of the model compartments when the basic reproduction rate $\mathcal{R}_0 < 1$ and $\mathcal{R}_0 > 1$ and sensitivity analysis is performed in order to determine the most sensitive parameters in the proposed model. We demonstrate the model's effectiveness by performing numerical simulations. We investigate the impact of vaccination and the significance of spatial distribution parameters in the spread of COVID-19. The findings indicate that reducing contact with an infected person and increasing the proportion of susceptible people who receive high-efficacy vaccination will lessen the burden of COVID-19 in the population. To the public health policymakers, we offered a better understanding of the COVID-19 management.

Keywords: COVID-19, SEIRV epidemic model, reaction-diffusion equation, basic reproduction number, vaccination, spatial distribution

Procedia PDF Downloads 108
4155 Spatial Analysis of Flood Vulnerability in Highly Urbanized Area: A Case Study in Taipei City

Authors: Liang Weichien

Abstract:

Without adequate information and mitigation plan for natural disaster, the risk to urban populated areas will increase in the future as populations grow, especially in Taiwan. Taiwan is recognized as the world's high-risk areas, where an average of 5.7 times of floods occur per year should seek to strengthen coherence and consensus in how cities can plan for flood and climate change. Therefore, this study aims at understanding the vulnerability to flooding in Taipei city, Taiwan, by creating indicators and calculating the vulnerability of each study units. The indicators were grouped into sensitivity and adaptive capacity based on the definition of vulnerability of Intergovernmental Panel on Climate Change. The indicators were weighted by using Principal Component Analysis. However, current researches were based on the assumption that the composition and influence of the indicators were the same in different areas. This disregarded spatial correlation that might result in inaccurate explanation on local vulnerability. The study used Geographically Weighted Principal Component Analysis by adding geographic weighting matrix as weighting to get the different main flood impact characteristic in different areas. Cross Validation Method and Akaike Information Criterion were used to decide bandwidth and Gaussian Pattern as the bandwidth weight scheme. The ultimate outcome can be used for the reduction of damage potential by integrating the outputs into local mitigation plan and urban planning.

Keywords: flood vulnerability, geographically weighted principal components analysis, GWPCA, highly urbanized area, spatial correlation

Procedia PDF Downloads 274
4154 Trends of Conservation and Development in Mexican Biosphere Reserves: Spatial Analysis and Linear Mixed Model

Authors: Cecilia Sosa, Fernanda Figueroa, Leonardo Calzada

Abstract:

Biosphere reserves (BR) are considered as the main strategy for biodiversity and ecosystems conservation. Mexican BR are mainly inhabited by rural communities who strongly depend on forests and their resources. Even though the dual objective of conservation and development has been sought in BR, land cover change is a common process in these areas, while most rural communities are highly marginalized, partly as a result of restrictions imposed by conservation to the access and use of resources. Achieving ecosystems conservation and social development face serious challenges. Factors such as financial support for development projects (public/private), environmental conditions, infrastructure and regional economic conditions might influence both land use change and wellbeing. Examining the temporal trends of conservation and development in BR is central for the evaluation of outcomes for these conservation strategies. In this study, we analyzed changes in primary vegetation cover (as a proxy for conservation) and the index of marginalization (as a proxy for development) in Mexican BR (2000-2015); we also explore the influence of various factors affecting these trends, such as conservation-development projects financial support (public or private), geographical distribution in ecoregions (as a proxy for shared environmental conditions) and in economic zones (as a proxy for regional economic conditions). We developed a spatial analysis at the municipal scale (2,458 municipalities nationwide) in ArcGIS, to obtain road densities, geographical distribution in ecoregions and economic zones, the financial support received, and the percent of municipality area under protection by protected areas and, particularly, by BR. Those municipalities with less than 25% of area under protection were regarded as part of the protected area. We obtained marginalization indexes for all municipalities and, using MODIS in Google Earth Engine, the number of pixels covered by primary vegetation. We used a linear mixed model in RStudio for the analysis. We found a positive correlation between the marginalization index and the percent of primary vegetation cover per year (r=0.49-0.5); i.e., municipalities with higher marginalization also show higher percent of primary vegetation cover. Also, those municipalities with higher area under protection have more development projects (r=0.46) and some environmental conditions were relevant for percent of vegetation cover. Time, economic zones and marginalization index were all important. Time was particularly, in 2005, when both marginalization and deforestation decreased. Road densities and financial support for conservation-development projects were irrelevant as factors in the general correlation. Marginalization is still being affected by the conservation strategies applied in BR, even though that this management category considers both conservation and development of local communities as its objectives. Our results suggest that roads densities and support for conservation-development projects have not been a factor of poverty alleviation. As better conservation is being attained in the most impoverished areas, we face the dilemma of how to improve wellbeing in rural communities under conservation, since current strategies have not been able to leave behind the conservation-development contraposition.

Keywords: deforestation, local development, marginalization, protected areas

Procedia PDF Downloads 116
4153 Discrimination and Classification of Vestibular Neuritis Using Combined Fisher and Support Vector Machine Model

Authors: Amine Ben Slama, Aymen Mouelhi, Sondes Manoubi, Chiraz Mbarek, Hedi Trabelsi, Mounir Sayadi, Farhat Fnaiech

Abstract:

Vertigo is a sensation of feeling off balance; the cause of this symptom is very difficult to interpret and needs a complementary exam. Generally, vertigo is caused by an ear problem. Some of the most common causes include: benign paroxysmal positional vertigo (BPPV), Meniere's disease and vestibular neuritis (VN). In clinical practice, different tests of videonystagmographic (VNG) technique are used to detect the presence of vestibular neuritis (VN). The topographical diagnosis of this disease presents a large diversity in its characteristics that confirm a mixture of problems for usual etiological analysis methods. In this study, a vestibular neuritis analysis method is proposed with videonystagmography (VNG) applications using an estimation of pupil movements in the case of an uncontrolled motion to obtain an efficient and reliable diagnosis results. First, an estimation of the pupil displacement vectors using with Hough Transform (HT) is performed to approximate the location of pupil region. Then, temporal and frequency features are computed from the rotation angle variation of the pupil motion. Finally, optimized features are selected using Fisher criterion evaluation for discrimination and classification of the VN disease.Experimental results are analyzed using two categories: normal and pathologic. By classifying the reduced features using the Support Vector Machine (SVM), 94% is achieved as classification accuracy. Compared to recent studies, the proposed expert system is extremely helpful and highly effective to resolve the problem of VNG analysis and provide an accurate diagnostic for medical devices.

Keywords: nystagmus, vestibular neuritis, videonystagmographic system, VNG, Fisher criterion, support vector machine, SVM

Procedia PDF Downloads 128
4152 The Efficacy of Clobazam for Landau-Kleffner Syndrome

Authors: Nino Gogatishvili, Davit Kvernadze, Giorgi Japharidze

Abstract:

Background and aims: Landau Kleffner syndrome (LKS) is a rare disorder with epileptic seizures and acquired aphasia. It usually starts in initially healthy children. The first symptoms are language regression and behavioral disturbances, and the sleep EEG reveals abnormal epileptiform activity. The aim was to discuss the efficacy of Clobazam for Landau Kleffner syndrome. Case report: We report a case of an 11-year-old boy with an uneventful pregnancy and delivery. He began to walk at 11 months and speak with simple phrases at the age of 2,5 years. At the age of 18 months, he had febrile convulsions; at the age of 5 years, the parents noticed language regression, stuttering, and serious behavioral dysfunction, including hyperactivity, temper outbursts. The epileptic seizure was not noticed. MRI was without any abnormality. Neuropsychological testing revealed verbal auditory agnosia. Sleep EEG showed abundant left fronto-temporal spikes, reaching over 85% during non-rapid eye movement sleep (non-REM sleep). Treatment was started with Clobazam. After ten weeks, EEG was improved. Stuttering and behavior also improved. Results: Since the start of Clobazam treatment, stuttering and behavior improved. Now, he is 11 years old, without antiseizure medication. Sleep EEG shows fronto-temporal spikes on the left side, over 10-49 % of non-REM sleep, bioccipital spikes, and slow-wave discharges and spike-waves. Conclusions: This case provides further support for the efficacy of Clobazam in patients with LKS.

Keywords: Landau-Kleffner syndrome, antiseizure medication, stuttering, aphasia

Procedia PDF Downloads 55
4151 Low Overhead Dynamic Channel Selection with Cluster-Based Spatial-Temporal Station Reporting in Wireless Networks

Authors: Zeyad Abdelmageid, Xianbin Wang

Abstract:

Choosing the operational channel for a WLAN access point (AP) in WLAN networks has been a static channel assignment process initiated by the user during the deployment process of the AP, which fails to cope with the dynamic conditions of the assigned channel at the station side afterward. However, the dramatically growing number of Wi-Fi APs and stations operating in the unlicensed band has led to dynamic, distributed, and often severe interference. This highlights the urgent need for the AP to dynamically select the best overall channel of operation for the basic service set (BSS) by considering the distributed and changing channel conditions at all stations. Consequently, dynamic channel selection algorithms which consider feedback from the station side have been developed. Despite the significant performance improvement, existing channel selection algorithms suffer from very high feedback overhead. Feedback latency from the STAs, due to the high overhead, can cause the eventually selected channel to no longer be optimal for operation due to the dynamic sharing nature of the unlicensed band. This has inspired us to develop our own dynamic channel selection algorithm with reduced overhead through the proposed low-overhead, cluster-based station reporting mechanism. The main idea behind the cluster-based station reporting is the observation that STAs which are very close to each other tend to have very similar channel conditions. Instead of requesting each STA to report on every candidate channel while causing high overhead, the AP divides STAs into clusters then assigns each STA in each cluster one channel to report feedback on. With the proper design of the cluster based reporting, the AP does not lose any information about the channel conditions at the station side while reducing feedback overhead. The simulation results show equal performance and, at times, better performance with a fraction of the overhead. We believe that this algorithm has great potential in designing future dynamic channel selection algorithms with low overhead.

Keywords: channel assignment, Wi-Fi networks, clustering, DBSCAN, overhead

Procedia PDF Downloads 103
4150 Microfabrication and Non-Invasive Imaging of Porous Osteogenic Structures Using Laser-Assisted Technologies

Authors: Irina Alexandra Paun, Mona Mihailescu, Marian Zamfirescu, Catalin Romeo Luculescu, Adriana Maria Acasandrei, Cosmin Catalin Mustaciosu, Roxana Cristina Popescu, Maria Dinescu

Abstract:

A major concern in bone tissue engineering is to develop complex 3D architectures that mimic the natural cells environment, facilitate the cells growth in a defined manner and allow the flow transport of nutrients and metabolic waste. In particular, porous structures of controlled pore size and positioning are indispensable for growing human-like bone structures. Another concern is to monitor both the structures and the seeded cells with high spatial resolution and without interfering with the cells natural environment. The present approach relies on laser-based technologies employed for fabricating porous biomimetic structures that support the growth of osteoblast-like cells and for their non-invasive 3D imaging. Specifically, the porous structures were built by two photon polymerization –direct writing (2PP_DW) of the commercially available photoresists IL-L780, using the Photonic Professional 3D lithography system. The structures consist of vertical tubes with micrometer-sized heights and diameters, in a honeycomb-like spatial arrangement. These were fabricated by irradiating the IP-L780 photoresist with focused laser pulses with wavelength centered at 780 nm, 120 fs pulse duration and 80 MHz repetition rate. The samples were precisely scanned in 3D by piezo stages. The coarse positioning was done by XY motorized stages. The scanning path was programmed through a writing language (GWL) script developed by Nanoscribe. Following laser irradiation, the unexposed regions of the photoresist were washed out by immersing the samples in the Propylene Glycol Monomethyl Ether Acetate (PGMEA). The porous structures were seeded with osteoblast like MG-63 cells and their osteogenic potential was tested in vitro. The cell-seeded structures were analyzed in 3D using the digital holographic microscopy technique (DHM). DHM is a marker free and high spatial resolution imaging tool, where the hologram acquisition is performed non-invasively i.e. without interfering with the cells natural environment. Following hologram recording, a digital algorithm provided a 3D image of the sample, as well as information about its refractive index, which is correlated with the intracellular content. The axial resolution of the images went down to the nanoscale, while the temporal scales ranged from milliseconds up to hours. The hologram did not involve sample scanning and the whole image was available in one frame recorded going over 200μm field of view. The digital holograms processing provided 3D quantitative information on the porous structures and allowed a quantitative analysis of the cellular response in respect to the porous architectures. The cellular shape and dimensions were found to be influenced by the underlying micro relief. Furthermore, the intracellular content gave evidence on the beneficial role of the porous structures in promoting osteoblast differentiation. In all, the proposed laser-based protocol emerges as a promising tool for the fabrication and non-invasive imaging of porous constructs for bone tissue engineering. Acknowledgments: This work was supported by a grant of the Romanian Authority for Scientific Research and Innovation, CNCS-UEFISCDI, project PN-II-RU-TE-2014-4-2534 (contract 97 from 01/10/2015) and by UEFISCDI PN-II-PT-PCCA no. 6/2012. A part of this work was performed in the CETAL laser facility, supported by the National Program PN 16 47 - LAPLAS IV.

Keywords: biomimetic, holography, laser, osteoblast, two photon polymerization

Procedia PDF Downloads 260
4149 Numerical Investigation of Pressure and Velocity Field Contours of Dynamics of Drop Formation

Authors: Pardeep Bishnoi, Mayank Srivastava, Mrityunjay Kumar Sinha

Abstract:

This article represents the numerical investigation of the pressure and velocity field variation of the dynamics of pendant drop formation through a capillary tube. Numerical simulations are executed using volume of fluid (VOF) method in the computational fluid dynamics (CFD). In this problem, Non Newtonian fluid is considered as dispersed fluid whereas air is considered as a continuous fluid. Pressure contours at various time steps expose that pressure varies nearly hydrostatically at each step of the dynamics of drop formation. A result also shows the pressure variation of the liquid droplet during free fall in the computational domain. The evacuation of the fluid from the necking region is also shown by the contour of the velocity field. The role of surface tension in the Pressure contour of the dynamics of drop formation is also studied.

Keywords: pressure contour, surface tension, volume of fluid, velocity field

Procedia PDF Downloads 386
4148 Identification of Parameters for Urban and Regional Level Infrastructure Development - A Theoretical Perspective: Case Study – Rail Based Mass Transit in Indian Cities

Authors: Chitresh Kumar, Santanu Gupta

Abstract:

The research work intends to understand the process of initiation, planning and development of capital-intensive urban area level infrastructure development in East Asian Cities (specific to Indian Cities). With the onset of emphasis on sustainable urban transport, self-financed urban local bodies, it has become of utmost important to identify infrastructure and projects on a priority basis, which provide optimal utility to the urban area. Through identification of Spatial, Demographic and Socio-Economic and Political Instability Parameters and their trends for the past 60 years at the urban area and state level, the paper attempts to identify the most suitable time period when initiation of the project would become economically and demographically viable for the city.

Keywords: urban planning, regional planning, mass transit, infrastructure development, spatial planning

Procedia PDF Downloads 539
4147 Monitoring Urban Green Space Cover Change Using GIS and Remote Sensing in Two Rapidly Urbanizing Cities, Debre Berhan and Debre Markos, Ethiopia

Authors: Alemaw Kefale, Aramde Fetene, Hayal Desta

Abstract:

Monitoring the amount of green space in urban areas is important for ensuring sustainable development and proper management. The study analyzed changes in urban green space coverage over the past 20 years in two rapidly urbanizing cities in Ethiopia, Debre Berhan and Debre Markos, using GIS and remote sensing. The researchers used Landsat 5 and 8 data with a spatial resolution of 30 m to determine different land use and land cover classes, including urban green spaces, barren and croplands, built-up areas, and water bodies. The classification accuracy ranged between 90% and 91.4%, with a Kappa Statistic of 0.85 to 0.88. The results showed that both cities experienced significant decreases in vegetation cover in their urban cores between 2000 and 2020, with radical changes observed from green spaces and croplands to built-up areas. In Debre Berhan, barren and croplands decreased by 32.96%, while built-up and green spaces increased by 357.9% and 37.4%, respectively, in 2020. In Debre Markos, built-up areas increased by 224.2%, while green spaces and barren and croplands decreased by 41% and 5.71%, respectively. The spatial structure of cities and planning policies were noticed as the major factors for big green cover change. Thus it has an implication for other rapidly urbanized cities in Africa and Asia. Overall, rapid urbanization threatens green spaces and agricultural areas, highlighting the need for ecological-based spatial planning in rapidly urbanizing cities.

Keywords: green space coverage, GIS and remote sensing, Landsat, LULC, Ethiopia

Procedia PDF Downloads 43
4146 The Role of Transport Investment and Enhanced Railway Accessibility in Regional Efficiency Improvement in Saudi Arabia: Data Envelopment Analysis

Authors: Saleh Alotaibi, Mohammed Quddus, Craig Morton, Jobair Bin Alam

Abstract:

This paper explores the role of large-scale investment in transport sectors and the impact of increased railway accessibility on the efficiency of the regional economic productivity in the Kingdom of Saudi Arabia (KSA). There are considerable differences among the KSA regions in terms of their levels of investment and productivity due to their geographical scale and location, which in turn greatly affect their relative efficiency. The study used a non-parametric linear programming technique - Data Envelopment Analysis (DEA) - to measure the regional efficiency change over time and determine the drivers of inefficiency and their scope of improvement. In addition, Window DEA analysis is carried out to compare the efficiency performance change for various time periods. Malmquist index (MI) is also analyzed to identify the sources of productivity change between two subsequent years. The analysis involves spatial and temporal panel data collected from 1999 to 2018 for the 13 regions of the country. Outcomes reveal that transport investment and improved railway accessibility, in general, have significantly contributed to regional economic development. Moreover, the endowment of the new railway stations has spill-over effects. The DEA Window analysis confirmed the dynamic improvement in the average regional efficiency over the study periods. MI showed that the technical efficiency change was the main source of regional productivity improvement. However, there is evidence of investment allocation discrepancy among regions which could limit the achievement of development goals in the long term. These relevant findings will assist the Saudi government in developing better strategic decisions for future transport investments and their allocation at the regional level.

Keywords: data envelopment analysis, transport investment, railway accessibility, efficiency

Procedia PDF Downloads 136
4145 A Novel Probabilistic Spatial Locality of Reference Technique for Automatic Cleansing of Digital Maps

Authors: A. Abdullah, S. Abushalmat, A. Bakshwain, A. Basuhail, A. Aslam

Abstract:

GIS (Geographic Information System) applications require geo-referenced data, this data could be available as databases or in the form of digital or hard-copy agro-meteorological maps. These parameter maps are color-coded with different regions corresponding to different parameter values, converting these maps into a database is not very difficult. However, text and different planimetric elements overlaid on these maps makes an accurate image to database conversion a challenging problem. The reason being, it is almost impossible to exactly replace what was underneath the text or icons; thus, pointing to the need for inpainting. In this paper, we propose a probabilistic inpainting approach that uses the probability of spatial locality of colors in the map for replacing overlaid elements with underlying color. We tested the limits of our proposed technique using non-textual simulated data and compared text removing results with a popular image editing tool using public domain data with promising results.

Keywords: noise, image, GIS, digital map, inpainting

Procedia PDF Downloads 334
4144 Localized Detection of ᴅ-Serine by Using an Enzymatic Amperometric Biosensor and Scanning Electrochemical Microscopy

Authors: David Polcari, Samuel C. Perry, Loredano Pollegioni, Matthias Geissler, Janine Mauzeroll

Abstract:

ᴅ-serine acts as an endogenous co-agonist for N-methyl-ᴅ-aspartate receptors in neuronal synapses. This makes it a key component in the development and function of a healthy brain, especially given its role in several neurodegenerative diseases such as Alzheimer’s disease and dementia. Despite such clear research motivations, the primary site and mechanism of ᴅ-serine release is still currently unclear. For this reason, we are developing a biosensor for the detection of ᴅ-serine utilizing a microelectrode in combination with a ᴅ-amino acid oxidase enzyme, which produces stoichiometric quantities of hydrogen peroxide in response to ᴅ-serine. For the fabrication of a biosensor with good selectivity, we use a permselective poly(meta-phenylenediamine) film to ensure only the target molecule is reacted, according to the size exclusion principle. In this work, we investigated the effect of the electrodeposition conditions used on the biosensor’s response time and selectivity. Careful optimization of the fabrication process allowed for enhanced biosensor response time. This allowed for the real time sensing of ᴅ-serine in a bulk solution, and also provided in means to map the efflux of ᴅ-serine in real time. This was done using scanning electrochemical microscopy (SECM) with the optimized biosensor to measure localized release of ᴅ-serine from an agar filled glass capillary sealed in an epoxy puck, which acted as a model system. The SECM area scan simultaneously provided information regarding the rate of ᴅ-serine flux from the model substrate, as well as the size of the substrate itself. This SECM methodology, which provides high spatial and temporal resolution, could be useful to investigate the primary site and mechanism of ᴅ-serine release in other biological samples.

Keywords: ᴅ-serine, enzymatic biosensor, microelectrode, scanning electrochemical microscopy

Procedia PDF Downloads 215