Search results for: panel data analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 42378

Search results for: panel data analysis

41358 A Landscape of Research Data Repositories in Re3data.org Registry: A Case Study of Indian Repositories

Authors: Prashant Shrivastava

Abstract:

The purpose of this study is to explore re3dat.org registry to identify research data repositories registration workflow process. Further objective is to depict a graph for present development of research data repositories in India. Preliminarily with an approach to understand re3data.org registry framework and schema design then further proceed to explore the status of research data repositories of India in re3data.org registry. Research data repositories are getting wider relevance due to e-research concepts. Now available registry re3data.org is a good tool for users and researchers to identify appropriate research data repositories as per their research requirements. In Indian environment, a compatible National Research Data Policy is the need of the time to boost the management of research data. Registry for Research Data Repositories is a crucial tool to discover specific information in specific domain. Also, Research Data Repositories in India have not been studied. Re3data.org registry and status of Indian research data repositories both discussed in this study.

Keywords: research data, research data repositories, research data registry, re3data.org

Procedia PDF Downloads 324
41357 Web Data Scraping Technology Using Term Frequency Inverse Document Frequency to Enhance the Big Data Quality on Sentiment Analysis

Authors: Sangita Pokhrel, Nalinda Somasiri, Rebecca Jeyavadhanam, Swathi Ganesan

Abstract:

Tourism is a booming industry with huge future potential for global wealth and employment. There are countless data generated over social media sites every day, creating numerous opportunities to bring more insights to decision-makers. The integration of Big Data Technology into the tourism industry will allow companies to conclude where their customers have been and what they like. This information can then be used by businesses, such as those in charge of managing visitor centers or hotels, etc., and the tourist can get a clear idea of places before visiting. The technical perspective of natural language is processed by analysing the sentiment features of online reviews from tourists, and we then supply an enhanced long short-term memory (LSTM) framework for sentiment feature extraction of travel reviews. We have constructed a web review database using a crawler and web scraping technique for experimental validation to evaluate the effectiveness of our methodology. The text form of sentences was first classified through Vader and Roberta model to get the polarity of the reviews. In this paper, we have conducted study methods for feature extraction, such as Count Vectorization and TFIDF Vectorization, and implemented Convolutional Neural Network (CNN) classifier algorithm for the sentiment analysis to decide the tourist’s attitude towards the destinations is positive, negative, or simply neutral based on the review text that they posted online. The results demonstrated that from the CNN algorithm, after pre-processing and cleaning the dataset, we received an accuracy of 96.12% for the positive and negative sentiment analysis.

Keywords: counter vectorization, convolutional neural network, crawler, data technology, long short-term memory, web scraping, sentiment analysis

Procedia PDF Downloads 88
41356 Shear Buckling of a Large Pultruded Composite I-Section under Asymmetric Loading

Authors: Jin Y. Park, Jeong Wan Lee

Abstract:

An experimental and analytical research on shear buckling of a comparably large polymer composite I-section is presented. It is known that shear buckling load of a large span composite beam is difficult to determine experimentally. In order to sensitively detect shear buckling of the tested I-section, twenty strain rosettes and eight displacement sensors were applied and attached on the web and flange surfaces. The tested specimen was a pultruded composite beam made of vinylester resin, E-glass, carbon fibers and micro-fillers. Various coupon tests were performed before the shear buckling test to obtain fundamental material properties of the I-section. An asymmetric four-point bending loading scheme was utilized for the shear test. The loading scheme resulted a high shear and almost zeros moment condition at the center of the web panel. The shear buckling load was successfully determined after analyzing the obtained test data from strain rosettes and displacement sensors. An analytical approach was also performed to verify the experimental results and to support the discussed experimental program.

Keywords: strain sensor, displacement sensor, shear buckling, polymer composite I-section, asymmetric loading

Procedia PDF Downloads 452
41355 A Methodology to Integrate Data in the Company Based on the Semantic Standard in the Context of Industry 4.0

Authors: Chang Qin, Daham Mustafa, Abderrahmane Khiat, Pierre Bienert, Paulo Zanini

Abstract:

Nowadays, companies are facing lots of challenges in the process of digital transformation, which can be a complex and costly undertaking. Digital transformation involves the collection and analysis of large amounts of data, which can create challenges around data management and governance. Furthermore, it is also challenged to integrate data from multiple systems and technologies. Although with these pains, companies are still pursuing digitalization because by embracing advanced technologies, companies can improve efficiency, quality, decision-making, and customer experience while also creating different business models and revenue streams. In this paper, the issue that data is stored in data silos with different schema and structures is focused. The conventional approaches to addressing this issue involve utilizing data warehousing, data integration tools, data standardization, and business intelligence tools. However, these approaches primarily focus on the grammar and structure of the data and neglect the importance of semantic modeling and semantic standardization, which are essential for achieving data interoperability. In this session, the challenge of data silos in Industry 4.0 is addressed by developing a semantic modeling approach compliant with Asset Administration Shell (AAS) models as an efficient standard for communication in Industry 4.0. The paper highlights how our approach can facilitate the data mapping process and semantic lifting according to existing industry standards such as ECLASS and other industrial dictionaries. It also incorporates the Asset Administration Shell technology to model and map the company’s data and utilize a knowledge graph for data storage and exploration.

Keywords: data interoperability in industry 4.0, digital integration, industrial dictionary, semantic modeling

Procedia PDF Downloads 94
41354 Comparative Analysis of the Performance Between Public and Private Companies: Explanatory Factors

Authors: Atziri Moreno Vite, David Silva Gutiérrez

Abstract:

Oil companies have become the key player in the world energy scenario thanks to their strong control of the level of hydrocarbon reserves and production. The present research aims to identify the main factors that explain the results of these companies through an in-depth review of the specialized literature and to analyze the results of these companies by means of econometric analysis with techniques such as Data Envelopment Analysis (DEA). The results show the relevance and impact of factors such as the level of employment or investment of the company.

Keywords: oil companies, performance, determinants, productive

Procedia PDF Downloads 124
41353 A Study of Cloud Computing Solution for Transportation Big Data Processing

Authors: Ilgin Gökaşar, Saman Ghaffarian

Abstract:

The need for fast processed big data of transportation ridership (eg., smartcard data) and traffic operation (e.g., traffic detectors data) which requires a lot of computational power is incontrovertible in Intelligent Transportation Systems. Nowadays cloud computing is one of the important subjects and popular information technology solution for data processing. It enables users to process enormous measure of data without having their own particular computing power. Thus, it can also be a good selection for transportation big data processing as well. This paper intends to examine how the cloud computing can enhance transportation big data process with contrasting its advantages and disadvantages, and discussing cloud computing features.

Keywords: big data, cloud computing, Intelligent Transportation Systems, ITS, traffic data processing

Procedia PDF Downloads 467
41352 Statistical Investigation Projects: A Way for Pre-Service Mathematics Teachers to Actively Solve a Campus Problem

Authors: Muhammet Şahal, Oğuz Köklü

Abstract:

As statistical thinking and problem-solving processes have become increasingly important, teachers need to be more rigorously prepared with statistical knowledge to teach their students effectively. This study examined preservice mathematics teachers' development of statistical investigation projects using data and exploratory data analysis tools, following a design-based research perspective and statistical investigation cycle. A total of 26 pre-service senior mathematics teachers from a public university in Turkiye participated in the study. They formed groups of 3-4 members voluntarily and worked on their statistical investigation projects for six weeks. The data sources were audio recordings of pre-service teachers' group discussions while working on their projects in class, whole-class video recordings, and each group’s weekly and final reports. As part of the study, we reviewed weekly reports, provided timely feedback specific to each group, and revised the following week's class work based on the groups’ needs and development in their project. We used content analysis to analyze groups’ audio and classroom video recordings. The participants encountered several difficulties, which included formulating a meaningful statistical question in the early phase of the investigation, securing the most suitable data collection strategy, and deciding on the data analysis method appropriate for their statistical questions. The data collection and organization processes were challenging for some groups and revealed the importance of comprehensive planning. Overall, preservice senior mathematics teachers were able to work on a statistical project that contained the formulation of a statistical question, planning, data collection, analysis, and reaching a conclusion holistically, even though they faced challenges because of their lack of experience. The study suggests that preservice senior mathematics teachers have the potential to apply statistical knowledge and techniques in a real-world context, and they could proceed with the project with the support of the researchers. We provided implications for the statistical education of teachers and future research.

Keywords: design-based study, pre-service mathematics teachers, statistical investigation projects, statistical model

Procedia PDF Downloads 85
41351 Urban Noise and Air Quality: Correlation between Air and Noise Pollution; Sensors, Data Collection, Analysis and Mapping in Urban Planning

Authors: Massimiliano Condotta, Paolo Ruggeri, Chiara Scanagatta, Giovanni Borga

Abstract:

Architects and urban planners, when designing and renewing cities, have to face a complex set of problems, including the issues of noise and air pollution which are considered as hot topics (i.e., the Clean Air Act of London and the Soundscape definition). It is usually taken for granted that these problems go by together because the noise pollution present in cities is often linked to traffic and industries, and these produce air pollutants as well. Traffic congestion can create both noise pollution and air pollution, because NO₂ is mostly created from the oxidation of NO, and these two are notoriously produced by processes of combustion at high temperatures (i.e., car engines or thermal power stations). We can see the same process for industrial plants as well. What have to be investigated – and is the topic of this paper – is whether or not there really is a correlation between noise pollution and air pollution (taking into account NO₂) in urban areas. To evaluate if there is a correlation, some low-cost methodologies will be used. For noise measurements, the OpeNoise App will be installed on an Android phone. The smartphone will be positioned inside a waterproof box, to stay outdoor, with an external battery to allow it to collect data continuously. The box will have a small hole to install an external microphone, connected to the smartphone, which will be calibrated to collect the most accurate data. For air, pollution measurements will be used the AirMonitor device, an Arduino board to which the sensors, and all the other components, are plugged. After assembling the sensors, they will be coupled (one noise and one air sensor) and placed in different critical locations in the area of Mestre (Venice) to map the existing situation. The sensors will collect data for a fixed period of time to have an input for both week and weekend days, in this way it will be possible to see the changes of the situation during the week. The novelty is that data will be compared to check if there is a correlation between the two pollutants using graphs that should show the percentage of pollution instead of the values obtained with the sensors. To do so, the data will be converted to fit on a scale that goes up to 100% and will be shown thru a mapping of the measurement using GIS methods. Another relevant aspect is that this comparison can help to choose which are the right mitigation solutions to be applied in the area of the analysis because it will make it possible to solve both the noise and the air pollution problem making only one intervention. The mitigation solutions must consider not only the health aspect but also how to create a more livable space for citizens. The paper will describe in detail the methodology and the technical solution adopted for the realization of the sensors, the data collection, noise and pollution mapping and analysis.

Keywords: air quality, data analysis, data collection, NO₂, noise mapping, noise pollution, particulate matter

Procedia PDF Downloads 212
41350 Performance Measurement of Logistics Systems for Thailand's Wholesales and Retails Industries by Data Envelopment Analysis

Authors: Pornpimol Chaiwuttisak

Abstract:

The study aims to compare the performance of the logistics for Thailand’s wholesale and retail trade industries (except motor vehicles, motorcycle, and stalls) by using data (data envelopment analysis). Thailand Standard Industrial Classification in 2009 (TSIC - 2009) categories that industries into sub-group no. 45: wholesale and retail trade (except for the repair of motor vehicles and motorcycles), sub-group no. 46: wholesale trade (except motor vehicles and motorcycles), and sub-group no. 47: retail trade (except motor vehicles and motorcycles. Data used in the study is collected by the National Statistical Office, Thailand. The study consisted of four input factors include the number of companies, the number of personnel in logistics, the training cost in logistics, and outsourcing logistics management. Output factor includes the percentage of enterprises having inventory management. The results showed that the average relative efficiency of small-sized enterprises equals to 27.87 percent and 49.68 percent for the medium-sized enterprises.

Keywords: DEA, wholesales and retails, logistics, Thailand

Procedia PDF Downloads 416
41349 A Single-Channel BSS-Based Method for Structural Health Monitoring of Civil Infrastructure under Environmental Variations

Authors: Yanjie Zhu, André Jesus, Irwanda Laory

Abstract:

Structural Health Monitoring (SHM), involving data acquisition, data interpretation and decision-making system aim to continuously monitor the structural performance of civil infrastructures under various in-service circumstances. The main value and purpose of SHM is identifying damages through data interpretation system. Research on SHM has been expanded in the last decades and a large volume of data is recorded every day owing to the dramatic development in sensor techniques and certain progress in signal processing techniques. However, efficient and reliable data interpretation for damage detection under environmental variations is still a big challenge. Structural damages might be masked because variations in measured data can be the result of environmental variations. This research reports a novel method based on single-channel Blind Signal Separation (BSS), which extracts environmental effects from measured data directly without any prior knowledge of the structure loading and environmental conditions. Despite the successful application in audio processing and bio-medical research fields, BSS has never been used to detect damage under varying environmental conditions. This proposed method optimizes and combines Ensemble Empirical Mode Decomposition (EEMD), Principal Component Analysis (PCA) and Independent Component Analysis (ICA) together to separate structural responses due to different loading conditions respectively from a single channel input signal. The ICA is applying on dimension-reduced output of EEMD. Numerical simulation of a truss bridge, inspired from New Joban Line Arakawa Railway Bridge, is used to validate this method. All results demonstrate that the single-channel BSS-based method can recover temperature effects from mixed structural response recorded by a single sensor with a convincing accuracy. This will be the foundation of further research on direct damage detection under varying environment.

Keywords: damage detection, ensemble empirical mode decomposition (EEMD), environmental variations, independent component analysis (ICA), principal component analysis (PCA), structural health monitoring (SHM)

Procedia PDF Downloads 304
41348 Measuring Environmental Efficiency of Energy in OPEC Countries

Authors: Bahram Fathi, Seyedhossein Sajadifar, Naser Khiabani

Abstract:

Data envelopment analysis (DEA) has recently gained popularity in energy efficiency analysis. A common feature of the previously proposed DEA models for measuring energy efficiency performance is that they treat energy consumption as an input within a production framework without considering undesirable outputs. However, energy use results in the generation of undesirable outputs as byproducts of producing desirable outputs. Within a joint production framework of both desirable and undesirable outputs, this paper presents several DEA-type linear programming models for measuring energy efficiency performance. In addition to considering undesirable outputs, our models treat different energy sources as different inputs so that changes in energy mix could be accounted for in evaluating energy efficiency. The proposed models are applied to measure the energy efficiency performances of 12 OPEC countries and the results obtained are presented.

Keywords: energy efficiency, undesirable outputs, data envelopment analysis

Procedia PDF Downloads 736
41347 LTE Performance Analysis in the City of Bogota Northern Zone for Two Different Mobile Broadband Operators over Qualipoc

Authors: Víctor D. Rodríguez, Edith P. Estupiñán, Juan C. Martínez

Abstract:

The evolution in mobile broadband technologies has allowed to increase the download rates in users considering the current services. The evaluation of technical parameters at the link level is of vital importance to validate the quality and veracity of the connection, thus avoiding large losses of data, time and productivity. Some of these failures may occur between the eNodeB (Evolved Node B) and the user equipment (UE), so the link between the end device and the base station can be observed. LTE (Long Term Evolution) is considered one of the IP-oriented mobile broadband technologies that work stably for data and VoIP (Voice Over IP) for those devices that have that feature. This research presents a technical analysis of the connection and channeling processes between UE and eNodeB with the TAC (Tracking Area Code) variables, and analysis of performance variables (Throughput, Signal to Interference and Noise Ratio (SINR)). Three measurement scenarios were proposed in the city of Bogotá using QualiPoc, where two operators were evaluated (Operator 1 and Operator 2). Once the data were obtained, an analysis of the variables was performed determining that the data obtained in transmission modes vary depending on the parameters BLER (Block Error Rate), performance and SNR (Signal-to-Noise Ratio). In the case of both operators, differences in transmission modes are detected and this is reflected in the quality of the signal. In addition, due to the fact that both operators work in different frequencies, it can be seen that Operator 1, despite having spectrum in Band 7 (2600 MHz), together with Operator 2, is reassigning to another frequency, a lower band, which is AWS (1700 MHz), but the difference in signal quality with respect to the establishment with data by the provider Operator 2 and the difference found in the transmission modes determined by the eNodeB in Operator 1 is remarkable.

Keywords: BLER, LTE, network, qualipoc, SNR.

Procedia PDF Downloads 114
41346 An Exploratory Study on the Impact of Video-stimulated Reflection on Novice EFL Teachers’ Professional Development

Authors: Ibrahima Diallo

Abstract:

The literature on teacher education foregrounds reflection as an important aspect of professional practice. Reflection for a teacher consists in critically analysing and evaluating retrospectively a lesson to see what worked, what did not work, and how to improve it for the future. Now, many teacher education programmes worldwide consider the ability to reflect as one of the hallmarks of an effective educator. However, in some context like Senegal, reflection has not been given due consideration in teacher education programmes. In contexts where it has been in the education landscape for some time now, reflection is mostly depicted as an individual written activity and many teacher trainees have become disenchanted by the repeated enactments of this task that is solely intended to satisfy course requirements. This has resulted in whitewashing weaknesses or even ‘faking’ reflection. Besides, the “one-size-fits-all” approach of reflection could not flourish because how reflection impacts on practice is still unproven. Therefore, reflective practice needs to be contextualised and made more thought-provoking through dialogue and by using classroom data. There is also a need to highlight change brought in teachers’ practice through reflection. So, this study introduces reflection in a new context and aims to show evidenced change in novice EFL teachers’ practice through dialogic data-led reflection. The purpose of this study is also to contribute to the scarce literature on reflection in sub-Saharan Africa by bringing new perspectives on contextualised teacher-led reflection. Eight novice EFL teachers participated in this qualitative longitudinal study, and data have been gathered online through post-lesson reflection recordings and lesson videos for a period of four months. Then, the data have been thematically analysed using NVivo to systematically organize and manage the large amount of data. The analysis followed the six steps approach to thematic analysis. Major themes related to teachers’ classroom practice and their conception of reflection emerged from the analysis of the data. The results showed that post-lesson reflection with a peer can help novice EFL teachers gained more awareness on their classroom practice. Dialogic reflection also helped them evaluate their lessons and seek for improvement. The analysis of the data also gave insight on teachers’ conception of reflection in an EFL context. It was found that teachers were more engaged in reflection when using their lesson video recordings. Change in teaching behaviour as a result of reflection was evidenced by the analysis of the lesson video recordings. This study has shown that video-stimulated reflection is practical form of professional development that can be embedded in teachers’ professional life.

Keywords: novice EFL teachers, practice, professional development, video-stimulated reflection

Procedia PDF Downloads 100
41345 Linguistic Summarization of Structured Patent Data

Authors: E. Y. Igde, S. Aydogan, F. E. Boran, D. Akay

Abstract:

Patent data have an increasingly important role in economic growth, innovation, technical advantages and business strategies and even in countries competitions. Analyzing of patent data is crucial since patents cover large part of all technological information of the world. In this paper, we have used the linguistic summarization technique to prove the validity of the hypotheses related to patent data stated in the literature.

Keywords: data mining, fuzzy sets, linguistic summarization, patent data

Procedia PDF Downloads 272
41344 Proposal of Data Collection from Probes

Authors: M. Kebisek, L. Spendla, M. Kopcek, T. Skulavik

Abstract:

In our paper we describe the security capabilities of data collection. Data are collected with probes located in the near and distant surroundings of the company. Considering the numerous obstacles e.g. forests, hills, urban areas, the data collection is realized in several ways. The collection of data uses connection via wireless communication, LAN network, GSM network and in certain areas data are collected by using vehicles. In order to ensure the connection to the server most of the probes have ability to communicate in several ways. Collected data are archived and subsequently used in supervisory applications. To ensure the collection of the required data, it is necessary to propose algorithms that will allow the probes to select suitable communication channel.

Keywords: communication, computer network, data collection, probe

Procedia PDF Downloads 360
41343 Development of a Telemedical Network Supporting an Automated Flow Cytometric Analysis for the Clinical Follow-up of Leukaemia

Authors: Claude Takenga, Rolf-Dietrich Berndt, Erling Si, Markus Diem, Guohui Qiao, Melanie Gau, Michael Brandstoetter, Martin Kampel, Michael Dworzak

Abstract:

In patients with acute lymphoblastic leukaemia (ALL), treatment response is increasingly evaluated with minimal residual disease (MRD) analyses. Flow Cytometry (FCM) is a fast and sensitive method to detect MRD. However, the interpretation of these multi-parametric data requires intensive operator training and experience. This paper presents a pipeline-software, as a ready-to-use FCM-based MRD-assessment tool for the daily clinical practice for patients with ALL. The new tool increases accuracy in assessment of FCM-MRD in samples which are difficult to analyse by conventional operator-based gating since computer-aided analysis potentially has a superior resolution due to utilization of the whole multi-parametric FCM-data space at once instead of step-wise, two-dimensional plot-based visualization. The system developed as a telemedical network reduces the work-load and lab-costs, staff-time needed for training, continuous quality control, operator-based data interpretation. It allows dissemination of automated FCM-MRD analysis to medical centres which have no established expertise for the benefit of an even larger community of diseased children worldwide. We established a telemedical network system for analysis and clinical follow-up and treatment monitoring of Leukaemia. The system is scalable and adapted to link several centres and laboratories worldwide.

Keywords: data security, flow cytometry, leukaemia, telematics platform, telemedicine

Procedia PDF Downloads 983
41342 Comprehending the Relationship between the Red Blood Cells of a Protein 4.1 -/- Patient and Those of Healthy Controls: A Comprehensive Analysis of Tandem Mass Spectrometry Data

Authors: Ahmed M. Hjazi, Bader M. Hjazi

Abstract:

Protein 4.1 is a crucial component of complex interactions between the cytoskeleton and other junctional complex proteins. When the gene encoding this protein is altered, resulting in reduced expression, or when the protein is absent, the red cell undergoes a significant structural change. This research aims to achieve a deeper comprehension of the biochemical effects of red cell protein deficiency. A Tandem Mass Spectrometry Analysis (TMT-MS/MS) of patient cells lacking protein 4.1 compared to three healthy controls was achieved by the Proteomics Institute of the University of Bristol. The SDS-PAGE and Western blotting were utilized on the original patient sample and controls to partially confirm TMT MS/MS data analysis of the protein-4.1-deficient cells. Compared to healthy controls, protein levels in samples lacking protein 4.1 had a significantly higher concentration of proteins that probably originated from reticulocytes. This could occur if the patient has an elevated reticulocyte count. The increase in chaperone and reticulocyte-associated proteins was most notable in this study. This may result from elevated quantities of reticulocytes in patients with hereditary elliptocytosis.

Keywords: hereditary elliptocytosis, protein 4.1, red cells, tandem mass spectrometry data.

Procedia PDF Downloads 79
41341 Genre Analysis of Postgraduate Theses and Dissertations: Case of Statement of the Problem

Authors: H. Mashhady, H. A. Manzoori, M. Doosti, M. Fatollahi

Abstract:

This study reports a descriptive research in the form of a genre analysis of postgraduates' theses and dissertations at three Iranian universities, including Ferdowsi, Tehran, and Tarbiat Moddares universities. The researchers sought to depict the generic structure of “statement of the problem” section of PhD dissertations and MA theses. Moreover, researchers desired to find any probable variety based on the year the dissertations belonged, to see weather genre-consciousness developed among Iranian postgraduates. To obtain data, “statement of the problem” section of 90 Ph.D. dissertations and MA theses from 2001 to 2013 in Teaching English as a Foreign Language (TEFL) at above-mentioned universities was selected. Frequency counts was employed for the quantitative method of data analysis, while genre analysis was used as the qualitative method. Inter-rater reliability was found to be about 0.93. Results revealed that students in different degrees at each of these universities used various generic structures for writing “statement of the problem”. Moreover, comparison of different time periods (2001-2006, and 2007-2013) revealed that postgraduates in the second time period, regardless of their degree and university, employed more similar generic structures which can be optimistically attributed to a general raise in genre awareness.

Keywords: genre, genre analysis, Ph.D. and MA dissertations, statement of the problem, generic structure

Procedia PDF Downloads 669
41340 Using TRACE, PARCS, and SNAP Codes to Analyze the Load Rejection Transient of ABWR

Authors: J. R. Wang, H. C. Chang, A. L. Ho, J. H. Yang, S. W. Chen, C. Shih

Abstract:

The purpose of the study is to analyze the load rejection transient of ABWR by using TRACE, PARCS, and SNAP codes. This study has some steps. First, using TRACE, PARCS, and SNAP codes establish the model of ABWR. Second, the key parameters are identified to refine the TRACE/PARCS/SNAP model further in the frame of a steady state analysis. Third, the TRACE/PARCS/SNAP model is used to perform the load rejection transient analysis. Finally, the FSAR data are used to compare with the analysis results. The results of TRACE/PARCS are consistent with the FSAR data for the important parameters. It indicates that the TRACE/PARCS/SNAP model of ABWR has a good accuracy in the load rejection transient.

Keywords: ABWR, TRACE, PARCS, SNAP

Procedia PDF Downloads 197
41339 Ontology-Based Systemizing of the Science Information Devoted to Waste Utilizing by Methanogenesis

Authors: Ye. Shapovalov, V. Shapovalov, O. Stryzhak, A. Salyuk

Abstract:

Over the past decades, amount of scientific information has been growing exponentially. It became more complicated to process and systemize this amount of data. The approach to systematization of scientific information on the production of biogas based on the ontological IT platform “T.O.D.O.S.” has been developed. It has been proposed to select semantic characteristics of each work for their further introduction into the IT platform “T.O.D.O.S.”. An ontological graph with a ranking function for previous scientific research and for a system of selection of microorganisms has been worked out. These systems provide high performance of information management of scientific information.

Keywords: ontology-based analysis, analysis of scientific data, methanogenesis, microorganism hierarchy, 'T.O.D.O.S.'

Procedia PDF Downloads 164
41338 Ripple Effect Analysis of Government Investment for Research and Development by the Artificial Neural Networks

Authors: Hwayeon Song

Abstract:

The long-term purpose of research and development (R&D) programs is to strengthen national competitiveness by developing new knowledge and technologies. Thus, it is important to determine a proper budget for government programs to maintain the vigor of R&D when the total funding is tight due to the national deficit. In this regard, a ripple effect analysis for the budgetary changes in R&D programs is necessary as well as an investigation of the current status. This study proposes a new approach using Artificial Neural Networks (ANN) for both tasks. It particularly focuses on R&D programs related to Construction and Transportation (C&T) technology in Korea. First, key factors in C&T technology are explored to draw impact indicators in three areas: economy, society, and science and technology (S&T). Simultaneously, ANN is employed to evaluate the relationship between data variables. From this process, four major components in R&D including research personnel, expenses, management, and equipment are assessed. Then the ripple effect analysis is performed to see the changes in the hypothetical future by modifying current data. Any research findings can offer an alternative strategy about R&D programs as well as a new analysis tool.

Keywords: Artificial Neural Networks, construction and transportation technology, Government Research and Development, Ripple Effect

Procedia PDF Downloads 247
41337 Analysis of Cross-Sectional and Retrograde Data on the Prevalence of Marginal Gingivitis

Authors: Ilma Robo, Saimir Heta, Nedja Hysi, Vera Ostreni

Abstract:

Introduction: Marginal gingivitis is a disease with considerable frequency among patients who present routinely for periodontal control and treatment. In fact, this disease may not have alarming symptoms in patients and may go unnoticed by themselves when personal hygiene conditions are optimal. The aim of this study was to collect retrograde data on the prevalence of marginal gingiva in the respective group of patients, evaluated according to specific periodontal diagnostic tools. Materials and methods: The study was conducted in two patient groups. The first group was with 34 patients, during December 2019-January 2020, and the second group was with 64 patients during 2010-2018 (each year in the mentioned monthly period). Bacterial plaque index, hemorrhage index, amount of gingival fluid, presence of xerostomia and candidiasis were recorded in patients. Results: Analysis of the collected data showed that susceptibility to marginal gingivitis shows higher values according to retrograde data, compared to cross-sectional ones. Susceptibility to candidiasis and the occurrence of xerostomia, even in the combination of both pathologies, as risk factors for the occurrence of marginal gingivitis, show higher values ​​according to retrograde data. The female are presented with a reduced bacterial plaque index than the males, but more importantly, this index in the females is also associated with a reduced index of gingival hemorrhage, in contrast to the males. Conclusions: Cross-sectional data show that the prevalence of marginal gingivitis is more reduced, compared to retrograde data, based on the hemorrhage index and the bacterial plaque index together. Changes in production in the amount of gingival fluid show a higher prevalence of marginal gingivitis in cross-sectional data than in retrograde data; this is based on the sophistication of the way data are recorded, which evolves over time and also based on professional sensitivity to this phenomenon.

Keywords: marginal gingivitis, cross-sectional, retrograde, prevalence

Procedia PDF Downloads 161
41336 Corporate Social Responsibility (CSR) and Energy Efficiency: Empirical Evidence from the Manufacturing Sector of India

Authors: Baikunthanath Sahoo, Santosh Kumar Sahu, Krishna Malakar

Abstract:

With the essence of global environmental sustainability and green business management, the wind of business research moved towards Corporate Social Responsibility. In addition to international and national treaties, businesses have also started realising environmental protection and energy efficiency through CSR as part of business strategy in response to climate change. Considering the ambitious emission reduction target and rapid economic development of India, this study is an attempt to explore the effect of CSR on the energy efficiency management of manufacturing firms in India. By using firm-level data, the panel fixed effect model shows that the CSR dummy variable is negatively influencing the energy intensity or technically, they are energy efficient. The result demonstrates that in the presence of CSR, all the production economic variables are significant. The result also shows that doing environmental expenditure does not improve energy efficiency might be because very few firms are motivated to do such expenditure and also not common to all sectors. The interactive effect model result conforms that without considering CSR dummy as an intervening variable only Manufacturers of Chemical and Chemical products, Manufacturers of Pharmaceutical, medical chemical, and botanical products firms energy intensity low but after considering CSR in their business practices all six sub-sector firms become energy efficient. The empirical result also validate that firms are continuously engaged in CSR activities they are highly energy efficient. It is an important motivational factor for firms to become economically and environmentally sustainable in the corporate world. This analysis would help business practitioners to know how to manage today’s profitability and tomorrow’s sustainability to achieve a comparative advantage in the emerging market economy. The paper concludes that reducing energy consumption as part of their social responsibility to care for the environment, will need collaborative efforts of business society and policy bodies.

Keywords: CSR, Energy Efficiency, Indian manufacturing Sector, Business strategy

Procedia PDF Downloads 82
41335 Child Molesters’ Perceptions of Their Abusive Behavior in a Greek Prison

Authors: Polychronis Voultsos, Theodora Pandelidou, Alexandra K. Tsaroucha

Abstract:

Aim: To explore child molesters' perceptions of their sexually offensive behavior in Greece. To our knowledge, there is a relative research gap on this topic. Method: A prospective qualitative study using in-depth interviews with eight child molesters who were convicted and imprisoned in a Greek prison. The research was conducted in May 2022. Results: Child molesters' cognitive distortions including justifications, rationalizations and minimizations emerged from our data analysis (content analysis). Importantly, child molesters. adopted a particularly daring ‘role reversal’. Participants reported themselves as being ‘victims’. They said that the children (namely, their victims) were the ones who made the first move and got them in the mood for having sex with the children. Furthermore, we discuss our results in the context of the existing international academic literature on the area of this research. Conclusions: Child molesters' different cognitive distortions emerged from our data analysis, with ‘role reversal’ being prevalent.

Keywords: child molesters, sex offenders, cognitive distortions, Greece

Procedia PDF Downloads 124
41334 Application of GPRS in Water Quality Monitoring System

Authors: V. Ayishwarya Bharathi, S. M. Hasker, J. Indhu, M. Mohamed Azarudeen, G. Gowthami, R. Vinoth Rajan, N. Vijayarangan

Abstract:

Identification of water quality conditions in a river system based on limited observations is an essential task for meeting the goals of environmental management. The traditional method of water quality testing is to collect samples manually and then send to laboratory for analysis. However, it has been unable to meet the demands of water quality monitoring today. So a set of automatic measurement and reporting system of water quality has been developed. In this project specifies Water quality parameters collected by multi-parameter water quality probe are transmitted to data processing and monitoring center through GPRS wireless communication network of mobile. The multi parameter sensor is directly placed above the water level. The monitoring center consists of GPRS and micro-controller which monitor the data. The collected data can be monitor at any instant of time. In the pollution control board they will monitor the water quality sensor data in computer using Visual Basic Software. The system collects, transmits and processes water quality parameters automatically, so production efficiency and economy benefit are improved greatly. GPRS technology can achieve well within the complex environment of poor water quality non-monitored, and more specifically applicable to the collection point, data transmission automatically generate the field of water analysis equipment data transmission and monitoring.

Keywords: multiparameter sensor, GPRS, visual basic software, RS232

Procedia PDF Downloads 412
41333 A Proposed Approach for Emotion Lexicon Enrichment

Authors: Amr Mansour Mohsen, Hesham Ahmed Hassan, Amira M. Idrees

Abstract:

Document Analysis is an important research field that aims to gather the information by analyzing the data in documents. As one of the important targets for many fields is to understand what people actually want, sentimental analysis field has been one of the vital fields that are tightly related to the document analysis. This research focuses on analyzing text documents to classify each document according to its opinion. The aim of this research is to detect the emotions from text documents based on enriching the lexicon with adapting their content based on semantic patterns extraction. The proposed approach has been presented, and different experiments are applied by different perspectives to reveal the positive impact of the proposed approach on the classification results.

Keywords: document analysis, sentimental analysis, emotion detection, WEKA tool, NRC lexicon

Procedia PDF Downloads 442
41332 Roundabout Implementation Analyses Based on Traffic Microsimulation Model

Authors: Sanja Šurdonja, Aleksandra Deluka-Tibljaš, Mirna Klobučar, Irena Ištoka Otković

Abstract:

Roundabouts are a common choice in the case of reconstruction of an intersection, whether it is to improve the capacity of the intersection or traffic safety, especially in urban conditions. The regulation for the design of roundabouts is often related to driving culture, the tradition of using this type of intersection, etc. Individual values in the regulation are usually recommended in a wide range (this is the case in Croatian regulation), and the final design of a roundabout largely depends on the designer's experience and his/her choice of design elements. Therefore, before-after analyses are a good way to monitor the performance of roundabouts and possibly improve the recommendations of the regulation. This paper presents a comprehensive before-after analysis of a roundabout on the country road network near Rijeka, Croatia. The analysis is based on a thorough collection of traffic data (operating speeds and traffic load) and design elements data, both before and after the reconstruction into a roundabout. At the chosen location, the roundabout solution aimed to improve capacity and traffic safety. Therefore, the paper analyzed the collected data to see if the roundabout achieved the expected effect. A traffic microsimulation model (VISSIM) of the roundabout was created based on the real collected data, and the influence of the increase of traffic load and different traffic structures, as well as of the selected design elements on the capacity of the roundabout, were analyzed. Also, through the analysis of operating speeds and potential conflicts by application of the Surrogate Safety Assessment Model (SSAM), the traffic safety effect of the roundabout was analyzed. The results of this research show the practical value of before-after analysis as an indicator of roundabout effectiveness at a specific location. The application of a microsimulation model provides a practical method for analyzing intersection functionality from a capacity and safety perspective in present and changed traffic and design conditions.

Keywords: before-after analysis, operating speed, capacity, design.

Procedia PDF Downloads 22
41331 Instrument Development and Validation for Quality Early Childhood Curriculum in the Malaysian Context

Authors: Sadiah Baharom, Che Nidzam Che Ahmad, Saipol Barin Ramli, Asmayati Yahaya, Sopia Md Yassin

Abstract:

The early childhood care and education (ECCE) in Malaysia aspire to develop children who are intellectually, emotionally, physically and spiritually balanced. This aspiration can only materialise if the early childhood program developed comprehensive and is of high quality comparable to international standards. As such, there is a pressing need to assess the quality of the program in an all-encompassing manner. The overall research project aims at developing a comprehensive and integrated model of high-quality Malaysian ECCE. One of the major objectives of this project is to assess and evaluate the scope and quality of the existing ECCE programs in Malaysia. To this end, a specific aspect of this objective is to develop and validate an instrument to assess and evaluate the ECCE curriculum of the country. Thus this paper describes the development and validation of an instrument to explore the quality of early childhood care and education curriculum currently implemented in the country’s ECCE centres. The generation of the constructs and items were based on a set of criteria mapped against existing ECCE practice, document analyses, expert interviews and panel discussions. The items went through expert validation and were field tested on 597 ECCE teachers. The data obtained went through an exploratory factor analysis to validate the constructs of the instrument followed by reliability studies on internal consistency based on the Cronbach Alpha values. The final set of items for the ECCE curriculum instrument, earmarked for the main study, consists of four constructs namely philosophy and core values, curriculum content, curriculum review and unique features. Each construct consists of between 21 to 3 items with a total of 36 items in all. The reliability coefficients for each construct range from 0.65 to 0.961. These values are within the acceptable limits for a reliable instrument to be used in the main study.

Keywords: early childhood and care education, instrument development, reliability studies, validity studies

Procedia PDF Downloads 201
41330 Combination of Geological, Geophysical and Reservoir Engineering Analyses in Field Development: A Case Study

Authors: Atif Zafar, Fan Haijun

Abstract:

A sequence of different Reservoir Engineering methods and tools in reservoir characterization and field development are presented in this paper. The real data of Jin Gas Field of L-Basin of Pakistan is used. The basic concept behind this work is to enlighten the importance of well test analysis in a broader way (i.e. reservoir characterization and field development) unlike to just determine the permeability and skin parameters. Normally in the case of reservoir characterization we rely on well test analysis to some extent but for field development plan, the well test analysis has become a forgotten tool specifically for locations of new development wells. This paper describes the successful implementation of well test analysis in Jin Gas Field where the main uncertainties are identified during initial stage of field development when location of new development well was marked only on the basis of G&G (Geologic and Geophysical) data. The seismic interpretation could not encounter one of the boundary (fault, sub-seismic fault, heterogeneity) near the main and only producing well of Jin Gas Field whereas the results of the model from the well test analysis played a very crucial rule in order to propose the location of second well of the newly discovered field. The results from different methods of well test analysis of Jin Gas Field are also integrated with and supported by other tools of Reservoir Engineering i.e. Material Balance Method and Volumetric Method. In this way, a comprehensive way out and algorithm is obtained in order to integrate the well test analyses with Geological and Geophysical analyses for reservoir characterization and field development. On the strong basis of this working and algorithm, it was successfully evaluated that the proposed location of new development well was not justified and it must be somewhere else except South direction.

Keywords: field development plan, reservoir characterization, reservoir engineering, well test analysis

Procedia PDF Downloads 364
41329 Non-Parametric Regression over Its Parametric Couterparts with Large Sample Size

Authors: Jude Opara, Esemokumo Perewarebo Akpos

Abstract:

This paper is on non-parametric linear regression over its parametric counterparts with large sample size. Data set on anthropometric measurement of primary school pupils was taken for the analysis. The study used 50 randomly selected pupils for the study. The set of data was subjected to normality test, and it was discovered that the residuals are not normally distributed (i.e. they do not follow a Gaussian distribution) for the commonly used least squares regression method for fitting an equation into a set of (x,y)-data points using the Anderson-Darling technique. The algorithms for the nonparametric Theil’s regression are stated in this paper as well as its parametric OLS counterpart. The use of a programming language software known as “R Development” was used in this paper. From the analysis, the result showed that there exists a significant relationship between the response and the explanatory variable for both the parametric and non-parametric regression. To know the efficiency of one method over the other, the Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) are used, and it is discovered that the nonparametric regression performs better than its parametric regression counterparts due to their lower values in both the AIC and BIC. The study however recommends that future researchers should study a similar work by examining the presence of outliers in the data set, and probably expunge it if detected and re-analyze to compare results.

Keywords: Theil’s regression, Bayesian information criterion, Akaike information criterion, OLS

Procedia PDF Downloads 305