Search results for: laminated composite structures
4953 Reducing Support Structures in Design for Additive Manufacturing: A Neural Networks Approach
Authors: Olivia Borgue, Massimo Panarotto, Ola Isaksson
Abstract:
This article presents a neural networks-based strategy for reducing the need for support structures when designing for additive manufacturing (AM). Additive manufacturing is a relatively new and immature industrial technology, and the information to make confident decisions when designing for AM is limited. This lack of information impacts especially the early stages of engineering design, for instance, it is difficult to actively consider the support structures needed for manufacturing a part. This difficulty is related to the challenge of designing a product geometry accounting for customer requirements, manufacturing constraints and minimization of support structure. The approach presented in this article proposes an automatized geometry modification technique for reducing the use of the support structures while designing for AM. This strategy starts with a neural network-based strategy for shape recognition to achieve product classification, using an STL file of the product as input. Based on the classification, an automatic part geometry modification based on MATLAB© is implemented. At the end of the process, the strategy presents different geometry modification alternatives depending on the type of product to be designed. The geometry alternatives are then evaluated adopting a QFD-like decision support tool.Keywords: additive manufacturing, engineering design, geometry modification optimization, neural networks
Procedia PDF Downloads 2554952 Forced Vibration of a Fiber Metal Laminated Beam Containing a Delamination
Authors: Sh. Mirhosseini, Y. Haghighatfar, M. Sedighi
Abstract:
Forced vibration problem of a delaminated beam made of fiber metal laminates is studied in this paper. Firstly, a delamination is considered to divide the beam into four sections. The classic beam theory is assumed to dominate each section. The layers on two sides of the delamination are constrained to have the same deflection. This hypothesis approves the conditions of compatibility as well. Consequently, dynamic response of the beam is obtained by the means of differential transform method (DTM). In order to verify the correctness of the results, a model is constructed using commercial software ABAQUS 6.14. A linear spring with constant stiffness takes the effect of contact between delaminated layers into account. The attained semi-analytical outcomes are in great agreement with finite element analysis.Keywords: delamination, forced vibration, finite element modelling, natural frequency
Procedia PDF Downloads 3014951 Jordan Curves in the Digital Plane with Respect to the Connectednesses given by Certain Adjacency Graphs
Authors: Josef Slapal
Abstract:
Digital images are approximations of real ones and, therefore, to be able to study them, we need the digital plane Z2 to be equipped with a convenient structure that behaves analogously to the Euclidean topology on the real plane. In particular, it is required that such a structure allows for a digital analogue of the Jordan curve theorem. We introduce certain adjacency graphs on the digital plane and prove digital Jordan curves for them thus showing that the graphs provide convenient structures on Z2 for the study and processing of digital images. Further convenient structures including the wellknown Khalimsky and Marcus-Wyse adjacency graphs may be obtained as quotients of the graphs introduced. Since digital Jordan curves represent borders of objects in digital images, the adjacency graphs discussed may be used as background structures on the digital plane for solving the problems of digital image processing that are closely related to borders like border detection, contour filling, pattern recognition, thinning, etc.Keywords: digital plane, adjacency graph, Jordan curve, quotient adjacency
Procedia PDF Downloads 3804950 Identifying Necessary Words for Understanding Academic Articles in English as a Second or a Foreign Language
Authors: Stephen Wagman
Abstract:
This paper identifies three common structures in English sentences that are important for understanding academic texts, regardless of the characteristics or background of the readers or whether they are reading English as a second or a foreign language. Adapting a model from the Humanities, the explication of texts used in literary studies, the paper analyses sample sentences to reveal structures that enable the reader not only to decide which words are necessary for understanding the main ideas but to make the decision without knowing the meaning of the words. By their very syntax noun structures point to the key word for understanding them. As a rule, the key noun is followed by easily identifiable prepositions, relative pronouns, or verbs and preceded by single adjectives. With few exceptions, the modifiers are unnecessary for understanding the idea of the sentence. In addition, sentences are often structured by lists in which the items frequently consist of parallel groups of words. The principle of a list is that all the items are similar in meaning and it is not necessary to understand all of the items to understand the point of the list. This principle is especially important when the items are long or there is more than one list in the same sentence. The similarity in meaning of these items enables readers to reduce sentences that are hard to grasp to an understandable core without excessive use of a dictionary. Finally, the idea of subordination and the identification of the subordinate parts of sentences through connecting words makes it possible for readers to focus on main ideas without having to sift through the less important and more numerous secondary structures. Sometimes a main idea requires a subordinate one to complete its meaning, but usually, subordinate ideas are unnecessary for understanding the main point of the sentence and its part in the development of the argument from sentence to sentence. Moreover, the connecting words themselves indicate the functions of the subordinate structures. These most frequently show similarity and difference or reasons and results. Recognition of all of these structures can not only enable students to read more efficiently but to focus their attention on the development of the argument and this rather than a multitude of unknown vocabulary items, the repetition in lists, or the subordination in sentences are the one necessary element for comprehension of academic articles.Keywords: development of the argument, lists, noun structures, subordination
Procedia PDF Downloads 2464949 A Case Study of Control of Blast-Induced Ground Vibration on Adjacent Structures
Authors: H. Mahdavinezhad, M. Labbaf, H. R. Tavakoli
Abstract:
In recent decades, the study and control of the destructive effects of explosive vibration in construction projects has received more attention, and several experimental equations in the field of vibration prediction as well as allowable vibration limit for various structures are presented. Researchers have developed a number of experimental equations to estimate the peak particle velocity (PPV), in which the experimental constants must be obtained at the site of the explosion by fitting the data from experimental explosions. In this study, the most important of these equations was evaluated for strong massive conglomerates around Dez Dam by collecting data on explosions, including 30 particle velocities, 27 displacements, 27 vibration frequencies and 27 acceleration of earth vibration at different distances; they were recorded in the form of two types of detonation systems, NUNEL and electric. Analysis showed that the data from the explosion had the best correlation with the cube root of the explosive, R2=0.8636, but overall the correlation coefficients are not much different. To estimate the vibration in this project, data regression was performed in the other formats, which resulted in the presentation of new equation with R2=0.904 correlation coefficient. Finally according to the importance of the studied structures in order to ensure maximum non damage to adjacent structures for each diagram, a range of application was defined so that for distances 0 to 70 meters from blast site, exponent n=0.33 and for distances more than 70 m, n =0.66 was suggested.Keywords: blasting, blast-induced vibration, empirical equations, PPV, tunnel
Procedia PDF Downloads 1314948 Numerical Investigation of 3D Printed Pin Fin Heat Sinks for Automotive Inverter Cooling Application
Authors: Alexander Kospach, Fabian Benezeder, Jürgen Abraham
Abstract:
E-mobility poses new challenges for inverters (e.g., higher switching frequencies) in terms of thermal behavior and thermal management. Due to even higher switching frequencies, thermal losses become greater, and the cooling of critical components (like insulated gate bipolar transistor and diodes) comes into focus. New manufacturing methods, such as 3D printing, enable completely new pin-fin structures that can handle higher waste heat to meet the new thermal requirements. Based on the geometrical specifications of the industrial partner regarding the manufacturing possibilities for 3D printing, different and completely new pin-fin structures were numerically investigated for their hydraulic and thermal behavior in fundamental studies assuming an indirect liquid cooling. For the 3D computational fluid dynamics (CFD) thermal simulations OpenFOAM was used, which has as numerical method the finite volume method for solving the conjugate heat transfer problem. A steady-state solver for turbulent fluid flow and solid heat conduction with conjugate heat transfer between solid and fluid regions was used for the simulations. In total, up to fifty pinfin structures and arrangements, some of them completely new, were numerically investigated. On the basis of the results of the principal investigations, the best two pin-fin structures and arrangements for the complete module cooling of an automotive inverter were numerically investigated and compared. There are clear differences in the maximum temperatures for the critical components, such as IGTBs and diodes. In summary, it was shown that 3D pin fin structures can significantly contribute to the improvement of heat transfer and cooling of an automotive inverter. This enables in the future smaller cooling designs and a better lifetime of automotive inverter modules. The new pin fin structures and arrangements can also be applied to other cooling applications where 3D printing can be used.Keywords: pin fin heat sink optimization, 3D printed pin fins, CFD simulation, power electronic cooling, thermal management
Procedia PDF Downloads 1034947 Evaluation of Modulus of Elasticity by Non-Destructive Method of Hybrid Fiber Reinforced Concrete
Authors: Erjola Reufi, Thomas Beer
Abstract:
Plain, unreinforced concrete is a brittle material, with a low tensile strength, limited ductility and little resistance to cracking. In order to improve the inherent tensile strength of concrete there is a need of multi directional and closely spaced reinforcement, which can be provided in the form of randomly distributed fibers. Fiber reinforced concrete (FRC) is a composite material consisting of cement, sand, coarse aggregate, water and fibers. In this composite material, short discrete fibers are randomly distributed throughout the concrete mass. The behavioral efficiency of this composite material is far superior to that of plain concrete and many other construction materials of equal cost. The present experimental study considers the effect of steel fibers and polypropylene fiber on the modulus of elasticity of concrete. Hook end steel fibers of length 5 cm and 3 cm at volume fraction of 0.25%, 0.5% and 1.% were used. Also polypropylene fiber of length 12, 6, 3 mm at volume fraction 0.1, 0.25, and 0.4 % were used. Fifteen mixtures has been prepared to evaluate the effect of fiber on modulus of elasticity of concrete. Ultrasonic pulse velocity (UPV) and resonant frequency methods which are two non-destructive testing techniques have been used to measure the elastic properties of fiber reinforced concrete. This study found that ultrasonic wave propagation is the most reliable, easy and cost effective testing technique to use in the determination of the elastic properties of the FRC mix used in this study.Keywords: fiber reinforced concrete(FRC), polypropylene fiber, resonance, ultrasonic pulse velocity, steel fiber
Procedia PDF Downloads 3024946 Bracing Applications for Improving the Earthquake Performance of Reinforced Concrete Structures
Authors: Diyar Yousif Ali
Abstract:
Braced frames, besides other structural systems, such as shear walls or moment resisting frames, have been a valuable and effective technique to increase structures against seismic loads. In wind or seismic excitations, diagonal members react as truss web elements which would afford tension or compression stresses. This study proposes to consider the effect of bracing diagonal configuration on values of base shear and displacement of building. Two models were created, and nonlinear pushover analysis was implemented. Results show that bracing members enhance the lateral load performance of the Concentric Braced Frame (CBF) considerably. The purpose of this article is to study the nonlinear response of reinforced concrete structures which contain hollow pipe steel braces as the major structural elements against earthquake loads. A five-storey reinforced concrete structure was selected in this study; two different reinforced concrete frames were considered. The first system was an un-braced frame, while the last one was a braced frame with diagonal bracing. Analytical modelings of the bare frame and braced frame were realized by means of SAP 2000. The performances of all structures were evaluated using nonlinear static analyses. From these analyses, the base shear and displacements were compared. Results are plotted in diagrams and discussed extensively, and the results of the analyses showed that the braced frame was seemed to capable of more lateral load carrying and had a high value for stiffness and lower roof displacement in comparison with the bare frame.Keywords: reinforced concrete structures, pushover analysis, base shear, steel bracing
Procedia PDF Downloads 904945 An ANN Approach for Detection and Localization of Fatigue Damage in Aircraft Structures
Authors: Reza Rezaeipour Honarmandzad
Abstract:
In this paper we propose an ANN for detection and localization of fatigue damage in aircraft structures. We used network of piezoelectric transducers for Lamb-wave measurements in order to calculate damage indices. Data gathered by the sensors was given to neural network classifier. A set of neural network electors of different architecture cooperates to achieve consensus concerning the state of each monitored path. Sensed signal variations in the ROI, detected by the networks at each path, were used to assess the state of the structure as well as to localize detected damage and to filter out ambient changes. The classifier has been extensively tested on large data sets acquired in the tests of specimens with artificially introduced notches as well as the results of numerous fatigue experiments. Effect of the classifier structure and test data used for training on the results was evaluated.Keywords: ANN, fatigue damage, aircraft structures, piezoelectric transducers, lamb-wave measurements
Procedia PDF Downloads 4194944 Employee Assessment Systems in the Structures of Corporate Groups
Authors: D. Bąk-Grabowska, K. Grzesik, A. Iwanicka, A. Jagoda
Abstract:
The process of human resources management in the structures of corporate groups demonstrates certain specificity, resulting from the division of decision-making and executive competencies, which occurs within these structures between a parent company and its subsidiaries. The subprocess of employee assessment is considered crucial, since it provides information for the implementation of personnel function. The empirical studies conducted in corporate groups, within which at least one company is located in Poland, confirmed the critical significance of employee assessment systems in the process of human resources management in corporate groups. Parent companies, most often, retain their decision-making authority within the framework of the discussed process and introduce uniform employee assessment and personnel controlling systems to subsidiary companies. However, the instruments for employee assessment applied in corporate groups do not present such specificity.Keywords: corporate groups, employee periodical assessment system, holding, human resources management
Procedia PDF Downloads 4204943 Evaluation of Mechanical Properties and Surface Roughness of Nanofilled and Microhybrid Composites
Authors: Solmaz Eskandarion, Haniyeh Eftekhar, Amin Fallahi
Abstract:
Introduction: Nowadays cosmetic dentistry has gained greater attention because of the changing demands of dentistry patients. Composite resin restorations play an important role in the field of esthetic restorations. Due to the variation between the resin composites, it is important to be aware of their mechanical properties and surface roughness. So, the aim of this study was to compare the mechanical properties (surface hardness, compressive strength, diametral tensile strength) and surface roughness of four kinds of resin composites after thermal aging process. Materials and Method: 10 samples of each composite resins (Gradia-direct (GC), Filtek Z250 (3M), G-ænial (GC), Filtek Z350 (3M- filtek supreme) prepared for evaluation of each properties (totally 120 samples). Thermocycling (with temperature 5 and 55 degree of centigrade and 10000 cycles) were applied. Then, the samples were tested about their compressive strength and diametral tensile strength using UTM. And surface hardness was evaluated with Microhardness testing machine. Either surface roughness was evaluated with Scanning electron microscope after surface polishing. Result: About compressive strength (CS), Filtek Z250 showed the highest value. But there were not any significant differences between 4 groups about CS. Either Filtek Z250 detected as a composite with highest value of diametral tensile strength (DTS) and after that highest to lowest DTS was related to: Filtek Z350, G-ænial and Gradia-direct. And about DTS all of the groups showed significant differences (P<0.05). Vickers Hardness Number (VHN) of Filtek Z250 was the greatest. After that Filtek Z350, G-ænial and Gradia-direct followed it. The surface roughness of nano-filled composites was less than Microhybrid composites. Either the surface roughness of GC Ganial was a little greater than Filtek Z250. Conclusion: This study indicates that there is not any evident significant difference between the groups amoung their mechanical properties. But it seems that Filtek Z250 showed slightly better mechanical properties. About surface roughness, nanofilled composites were better that Microhybrid.Keywords: mechanical properties, surface roughness, resin composite, compressive strength, thermal aging
Procedia PDF Downloads 3564942 Additive Manufacturing with Ceramic Filler
Authors: Irsa Wolfram, Boruch Lorenz
Abstract:
Innovative solutions with additive manufacturing applying material extrusion for functional parts necessitate innovative filaments with persistent quality. Uniform homogeneity and a consistent dispersion of particles embedded in filaments generally require multiple cycles of extrusion or well-prepared primal matter by injection molding, kneader machines, or mixing equipment. These technologies commit to dedicated equipment that is rarely at the disposal in production laboratories unfamiliar with research in polymer materials. This stands in contrast to laboratories that investigate complex material topics and technology science to leverage the potential of 3-D printing. Consequently, scientific studies in labs are often constrained to compositions and concentrations of fillersofferedfrom the market. Therefore, we introduce a prototypal laboratory methodology scalable to tailoredprimal matter for extruding ceramic composite filaments with fused filament fabrication (FFF) technology. - A desktop single-screw extruder serves as a core device for the experiments. Custom-made filaments encapsulate the ceramic fillers and serve with polylactide (PLA), which is a thermoplastic polyester, as primal matter and is processed in the melting area of the extruder, preserving the defined concentration of the fillers. Validated results demonstrate that this approach enables continuously produced and uniform composite filaments with consistent homogeneity. Itis 3-D printable with controllable dimensions, which is a prerequisite for any scalable application. Additionally, digital microscopy confirms the steady dispersion of the ceramic particles in the composite filament. - This permits a 2D reconstruction of the planar distribution of the embedded ceramic particles in the PLA matrices. The innovation of the introduced method lies in the smart simplicity of preparing the composite primal matter. It circumvents the inconvenience of numerous extrusion operations and expensive laboratory equipment. Nevertheless, it deliversconsistent filaments of controlled, predictable, and reproducible filler concentration, which is the prerequisite for any industrial application. The introduced prototypal laboratory methodology seems capable for other polymer matrices and suitable to further utilitarian particle types beyond and above ceramic fillers. This inaugurates a roadmap for supplementary laboratory development of peculiar composite filaments, providing value for industries and societies. This low-threshold entry of sophisticated preparation of composite filaments - enabling businesses to create their own dedicated filaments - will support the mutual efforts for establishing 3D printing to new functional devices.Keywords: additive manufacturing, ceramic composites, complex filament, industrial application
Procedia PDF Downloads 1064941 Calcium Phosphate Cement/Gypsum Composite as Dental Pulp Capping
Authors: Jung-Feng Lin, Wei-Tang Chen, Chung-King Hsu, Chun-Pin Lin, Feng-Huei Lin
Abstract:
One of the objectives of operative dentistry is to maintain pulp health in compromised teeth. Mostly used methods for this purpose are direct pulp capping and pulpotomy, which consist of placement of biocompatible materials and bio-inductors on the exposed pulp tissue to preserve its health and stimulate repair by mineralized tissue formation. In this study, we developed a material (calcium phosphate cement (CPC)/gypsum composite) as the dental pulp capping material for shortening setting time and improving handling properties. We further discussed the influence of five different ratio of gypsum to CPC on HAP conversion, microstructure, setting time, weight loss, pH value, temperature difference, viscosity, mechanical properties, porosity, and biocompatibility.Keywords: calcium phosphate cement, calcium sulphate hemihydrate, pulp capping, fast setting time
Procedia PDF Downloads 3874940 An Experimental Investigation on Banana and Pineapple Natural Fibers Reinforced with Polypropylene Composite by Impact Test and SEM Analysis
Authors: D. Karibasavaraja, Ramesh M.R., Sufiyan Ahmed, Noyonika M.R., Sameeksha A. V., Mamatha J., Samiksha S. Urs
Abstract:
This research paper gives an overview of the experimental analysis of natural fibers with polymer composite. The whole world is concerned about conserving the environment. Henceforth, the demand for natural and decomposable materials is increasing. The application of natural fibers is widely used in aerospace for manufacturing aircraft bodies, and ship construction in navy fields. Based on the literature review, researchers and scientists are replacing synthetic fibers with natural fibers. The selection of these fibers mainly depends on lightweight, easily available, and economical and has its own physical and chemical properties and many other properties that make them a fine quality fiber. The pineapple fiber has desirable properties of good mechanical strength, high cellulose content, and fiber length. Hybrid composite was prepared using different proportions of pineapple fiber and banana fiber, and their ratios were varied in 90% polypropylene mixed with 5% banana fiber and 5% pineapple fiber, 85% polypropylene mixed with 7.5% banana fiber and 7.5% pineapple fiber and 80% polypropylene mixed with 10% banana fiber and 10% pineapple fiber. By impact experimental analysis, we concluded that the combination of 90% polypropylene and 5% banana fiber and 5% pineapple fiber exhibits a higher toughness value with mechanical strength. We also conducted scanning electron microscopy (SEM) analysis which showed better fiber orientation bonding between the banana and pineapple fibers with polypropylene composites. The main aim of the present research is to evaluate the properties of pineapple fiber and banana fiber reinforced with hybrid polypropylene composites.Keywords: toughness, fracture, impact strength, banana fibers, pineapple fibers, tensile strength, SEM analysis
Procedia PDF Downloads 1604939 Radical Web Text Classification Using a Composite-Based Approach
Authors: Kolade Olawande Owoeye, George R. S. Weir
Abstract:
The widespread of terrorism and extremism activities on the internet has become a major threat to the government and national securities due to their potential dangers which have necessitated the need for intelligence gathering via web and real-time monitoring of potential websites for extremist activities. However, the manual classification for such contents is practically difficult or time-consuming. In response to this challenge, an automated classification system called composite technique was developed. This is a computational framework that explores the combination of both semantics and syntactic features of textual contents of a web. We implemented the framework on a set of extremist webpages dataset that has been subjected to the manual classification process. Therein, we developed a classification model on the data using J48 decision algorithm, this is to generate a measure of how well each page can be classified into their appropriate classes. The classification result obtained from our method when compared with other states of arts, indicated a 96% success rate in classifying overall webpages when matched against the manual classification.Keywords: extremist, web pages, classification, semantics, posit
Procedia PDF Downloads 1464938 Corrosion Behaviour of Al-Mg-Si Alloy Matrix Hybrid Composite Reinforced with Cassava Peel Ash and Silicon Carbide
Authors: B. Oji, O. Olaniran
Abstract:
The prospect of improving the corrosion property of Al 6063 alloy based hybrid composites reinforced with cassava peel ash (CPA) and silicon carbide (SiC) is the target of this research. It seeks to determine the viability of using locally sourced material (CPA) as a complimentary reinforcement for SiC to produce low cost high performance aluminum matrix composite. The CPA was mixed with the SiC in the ratios 0:1, 1:3, 1:1, 3:1 and 1:0 for 8 wt % reinforcement in the produced composites by double stir-casting method. The microstructures of the composites were studied before and after corrosion using the scanning electron microscopy which reveals the matrix (dark region) and eutectic phase (lamellar region). The corrosion rate was studied in accordance with ASTM G59-97 (2014) using an AutoLab potentiostat (Versa STAT 400) with versaSTUDIO electrochemical software which analyses the results obtained. The result showed that Al 6063 alloy exhibited good corrosion resistance in 0.3M H₂SO₄ and 3.5 wt. % NaCl solutions with sample C containing the 25% wt CPA showing the highest resistance to corrosion with corrosion rate of 0.0046 mmpy as compared to the control sample which has a value of 13.233 mmpy. Sample B, D, E, and F also showed a corrosion rate of 3.9502, 2.6903, 2.1223, and 5.7344 mmpy which indicated a better corrosion rate than the control in the acidic environment. The corrosion rate in the saline medium shows that sample E with 75% wt CPA has the lowest corrosion rate of 0.0422 mmpy as compared to the control sample with 0.0873 mmpy corrosion rate.Keywords: Al-Mg-Si alloy, AutoLab potentiostat, Cassava Peel Ash, CPA, hybrid composite, stir-cast method
Procedia PDF Downloads 1274937 Surface-Quenching Induced Cell Opening Technique in Extrusion of Thermoplastic Foamed Sheets
Authors: Abhishek Gandhi, Naresh Bhatnagar
Abstract:
In this article, a new technique has been developed to manufacture open cell extruded thermoplastic foamed sheets with the aid of extrudate surface-quenching phenomenon. As the extrudate foam exits the die, its surface is rapidly quenched which results in freezing of cells on the surface, while the cells at the core continue to grow and leads to development of open-cellular microstructure at the core. Influence of chill roll temperature was found to be extremely significant in developing porous morphological attributes. Subsequently, synergistic effect of blowing agent content and chill roll temperature was examined for their expansion ratio and open-cell microstructure. Further, chill roll rotating speed was found extremely significant in obtaining open-cellular foam structures. This study intends to enhance the understanding of researchers working in the area of open-cell foam processing.Keywords: foams, porous materials, morphology, composite, microscopy, open-cell foams
Procedia PDF Downloads 4484936 Indium Oxide/Scandium Doping Yttria-Stabilized Zirconia Composite Films as Electrolytes for Solid Oxide Fuel Cells
Authors: Yong-Jie Lin, Yi-Feng Lin
Abstract:
In this study, scandium-doped yttria-stabilized zirconia (ScYSZ) and In2O3 nanoparticles (NPs) with cubic crystalline structures were successfully prepared using a facile hydrothermal process. ScYSZ films were prepared by the pressing of ScYSZ NPs and were further used for the electrolyte of solid oxide fuel cells (SOFCs). To increase the ionic conductivity of the ScYSZ electrolyte, different amounts of In2O3 NPs [0 wt% (X(In2O3)=0), 0.21 wt% (X(In2O3)=0.001) and 1.13 wt% (X(In2O3)=0.005)] were doped in the ScYSZ films to increase their oxygen vacancy. The result shows In2O3 NP/ScYSZ films with 1.13 wt% (X(In2O3 )=0.005) In2O3 NPs doping are with largest ionic conductivity of 0.057Ω-1 cm-1 at 900oC, which is 1.6 and 1.8 times higher than YSZ and In2O3 NP/ScYSZ films with 0.21 wt% (X(In2O3)=0.001) In2O3 NPs doping, respectively.Keywords: indium oxide/scandium doping Yttria-stabilized zirconia, solid oxide fuel cells, scandium-doped yttria-stabilized zirconia, indium oxide
Procedia PDF Downloads 4654935 Induction Melting as a Fabrication Route for Aluminum-Carbon Nanotubes Nanocomposite
Authors: Muhammad Shahid, Muhammad Mansoor
Abstract:
Increasing demands of contemporary applications for high strength and lightweight materials prompted the development of metal-matrix composites (MMCs). After the discovery of carbon nanotubes (CNTs) in 1991 (revealing an excellent set of mechanical properties) became one of the most promising strengthening materials for MMC applications. Additionally, the relatively low density of the nanotubes imparted high specific strengths, making them perfect strengthening material to reinforce MMCs. In the present study, aluminum-multiwalled carbon nanotubes (Al-MWCNTs) composite was prepared in an air induction furnace. The dispersion of the nanotubes in molten aluminum was assisted by inherent string action of induction heating at 790°C. During the fabrication process, multifunctional fluxes were used to avoid oxidation of the nanotubes and molten aluminum. Subsequently, the melt was cast in to a copper mold and cold rolled to 0.5 mm thickness. During metallographic examination using a scanning electron microscope, it was observed that the nanotubes were effectively dispersed in the matrix. The mechanical properties of the composite were significantly increased as compared to pure aluminum specimen i.e. the yield strength from 65 to 115 MPa, the tensile strength from 82 to 125 MPa and hardness from 27 to 30 HV for pure aluminum and Al-CNTs composite, respectively. To recognize the associated strengthening mechanisms in the nanocomposites, three foremost strengthening models i.e. shear lag model, Orowan looping and Hall-Petch have been critically analyzed; experimental data were found to be closely satisfying the shear lag model.Keywords: carbon nanotubes, induction melting, strengthening mechanism, nanocomposite
Procedia PDF Downloads 3694934 Review of Microstructure, Mechanical and Corrosion Behavior of Aluminum Matrix Composite Reinforced with Agro/Industrial Waste Fabricated by Stir Casting Process
Authors: Mehari Kahsay, Krishna Murthy Kyathegowda, Temesgen Berhanu
Abstract:
Aluminum matrix composites have gained focus on research and industrial use, especially those not requiring extreme loading or thermal conditions, for the last few decades. Their relatively low cost, simple processing and attractive properties are the reasons for the widespread use of aluminum matrix composites in the manufacturing of automobiles, aircraft, military, and sports goods. In this article, the microstructure, mechanical, and corrosion behaviors of the aluminum metal matrix were reviewed, focusing on the stir casting fabrication process and usage of agro/industrial waste reinforcement particles. The results portrayed that mechanical properties like tensile strength, ultimate tensile strength, hardness, percentage of elongation, impact, and fracture toughness are highly dependent on the amount, kind, and size of reinforcing particles. Additionally, uniform distribution, wettability of reinforcement particles, and the porosity level of the resulting composite also affect the mechanical and corrosion behaviors of aluminum matrix composites. The two-step stir-casting process resulted in better wetting characteristics, a lower porosity level, and a uniform distribution of particles with proper handling of process parameters. On the other hand, the inconsistent and contradicting results on corrosion behavior regarding monolithic and hybrid aluminum matrix composites need further study.Keywords: microstructure, mechanical behavior, corrosion, aluminum matrix composite
Procedia PDF Downloads 734933 Analysis of Solvent Effect on the Mechanical Properties of Poly(Ether Ether Ketone) Using Nano-Indentation
Authors: Tanveer Iqbal, Saima Yasin, Muhammad Zafar, Ahmad Shakeel, Fahad Nazir, Paul F. Luckham
Abstract:
The contact performance of polymeric composites is dependent on the localized mechanical properties of materials. This is particularly important for fiber oriented polymeric materials where self-lubrication from top layers has been the basic requirement. The nanoindentation response of fiber reinforced poly(etheretherketone), PEEK, composites have been evaluated to determine the near-surface mechanical characteristics. Load-displacement compliance, hardness and elastic modulus data based on contact compliance mode (CSM) indentation of carbon fiber oriented and glass fiber oriented PEEK composites are reported as a function of indentation contact displacement. The composite surfaces were indented to a maximum penetration depth of 5µm using Berkovich tip indenter. A typical multiphase response of the composite surface is depicted from analysis of the indentation data for the composites, showing presence of polymer matrix, fibers, and interphase regions. The observed experimental results show that although the surface mechanical properties of carbon fiber based PEEK composite were comparatively higher, the properties of matrix material were seen to be increased in the presence of glass fibers. The experimental methodology may provide a convenient means to understand morphological description of the multimodal polymeric composites.Keywords: nanoindentation, PEEK, modulus, hardness, plasticization
Procedia PDF Downloads 1934932 Obtaining Composite Cotton Fabric by Cyclodextrin Grafting
Authors: U. K. Sahin, N. Erdumlu, C. Saricam, I. Gocek, M. H. Arslan, H. Acikgoz-Tufan, B. Kalav
Abstract:
Finishing is an important part of fabric processing with which a wide range of features are imparted to greige or colored fabrics for various end-uses. Especially, by the addition or impartation of nano-scaled particles to the fabric structure composite fabrics, a kind of composite materials can be acquired. Composite materials, generally shortened as composites or in other words composition materials, are engineered or naturally occurring materials made from two or more component materials with significantly different physical, mechanical or chemical characteristics remaining separate and distinctive at the macroscopic or microscopic scale within the end product structure. Therefore, the technique finishing which is one of the fundamental methods to be applied on fabrics for obtainment of composite fabrics with many functionalities was used in the current study with the same purpose. However, regardless of the finishing materials applied, the efficient life of finished product on offering desired feature is low, since the durability of finishes on the material is limited. Any increase in durability of these finishes on textiles would enhance the life of use for textiles, which will result in happier users. Therefore, in this study, since higher durability was desired for the finishing materials fixed on the fabrics, nano-scaled hollow structured cyclodextrins were chemically imparted by grafting to the structure of conventional cotton fabrics by the help of finishing technique in order to be fixed permanently. By this way, a processed and functionalized base fabric having potential to be treated in the subsequent processes with many different finishing agents and nanomaterials could be obtained. Henceforth, this fabric can be used as a multi-functional fabric due to the encapturing ability of cyclodextrins to molecules/particles via physical/chemical means. In this study, scoured and rinsed woven bleached plain weave 100% cotton fabrics were utilized because textiles made of cotton are the most demanded textile products in the textile market by the textile consumers in daily life. Cotton fabric samples were immersed in treating baths containing β-cyclodextrin and 1,2,3,4-butanetetracarboxylic acid and to reduce the curing temperature the catalyst sodium hypophosphite monohydrate was used. All impregnated fabric samples were pre-dried. The reaction of grafting was performed in dry state. The treated and cured fabric samples were rinsed with warm distilled water and dried. The samples were dried for 4 h and weighed before and after finishing and rinsing. Stability and durability of β-cyclodextrins on fabric surface against external factors such as washing as well as strength of functionalized fabric in terms of tensile and tear strength were tested. Presence and homogeneity of distribution of β-cyclodextrins on fabric surface were characterized.Keywords: cotton fabric, cyclodextrine, improved durability, multifunctional composite textile
Procedia PDF Downloads 2974931 Application of GPR for Prospection in Two Archaeological Sites at Aswan Area, Egypt
Authors: Abbas Mohamed Abbas, Raafat El-Shafie Fat-Helbary, Karrar Omar El Fergawy, Ahmed Hamed Sayed
Abstract:
The exploration in archaeological area requires non-invasive methods, and hence the Ground Penetrating Radar (GPR) technique is a proper candidate for this task. GPR investigation is widely applied for searching for hidden ancient targets. So, in this paper GPR technique has been used in archaeological investigation. The aim of this study was to obtain information about the subsurface and associated structures beneath two selected sites at the western bank of the River Nile at Aswan city. These sites have archaeological structures of different ages starting from 6thand 12th Dynasties to the Greco-Roman period. The first site is called Nag’ El Gulab, the study area was 30 x 16 m with separating distance 2m between each profile, while the second site is Nag’ El Qoba, the survey method was not in grid but in lines pattern with different lengths. All of these sites were surveyed by GPR model SIR-3000 with antenna 200 MHz. Beside the processing of each profile individually, the time-slice maps have been conducted Nag’ El Gulab site, to view the amplitude changes in a series of horizontal time slices within the ground. The obtained results show anomalies may interpret as presence of associated tombs structures. The probable tombs structures similar in their depth level to the opened tombs in the studied areas.Keywords: ground penetrating radar, archeology, Nag’ El Gulab, Nag’ El Qoba
Procedia PDF Downloads 3944930 Rural Water Supply Services in India: Developing a Composite Summary Score
Authors: Mimi Roy, Sriroop Chaudhuri
Abstract:
Sustainable water supply is among the basic needs for human development, especially in the rural areas of the developing nations where safe water supply and basic sanitation infrastructure is direly needed. In light of the above, we propose a simple methodology to develop a composite water sustainability index (WSI) to assess the collective performance of the existing rural water supply services (RWSS) in India over time. The WSI will be computed by summarizing the details of all the different varieties of water supply schemes presently available in India comprising of 40 liters per capita per day (lpcd), 55 lpcd, and piped water supply (PWS) per household. The WSI will be computed annually, between 2010 and 2016, to elucidate changes in holistic RWSS performances. Results will be integrated within a robust geospatial framework to identify the ‘hotspots’ (states/districts) which have persistent issues over adequate RWSS coverage and warrant spatially-optimized policy reforms in future to address sustainable human development. Dataset will be obtained from the National Rural Drinking Water Program (NRDWP), operating under the aegis of the Ministry of Drinking Water and Sanitation (MoDWS), at state/district/block levels to offer the authorities a cross-sectional view of RWSS at different levels of administrative hierarchy. Due to simplistic design, complemented by spatio-temporal cartograms, similar approaches can also be adopted in other parts of the world where RWSS need a thorough appraisal.Keywords: rural water supply services, piped water supply, sustainability, composite index, spatial, drinking water
Procedia PDF Downloads 3014929 Different Processing Methods to Obtain a Carbon Composite Element for Cycling
Authors: Maria Fonseca, Ana Branco, Joao Graca, Rui Mendes, Pedro Mimoso
Abstract:
The present work is focused on the production of a carbon composite element for cycling through different techniques, namely, blow-molding and high-pressure resin transfer injection (HP-RTM). The main objective of this work is to compare both processes to produce carbon composite elements for the cycling industry. It is well known that the carbon composite components for cycling are produced mainly through blow-molding; however, this technique depends strongly on manual labour, resulting in a time-consuming production process. Comparatively, HP-RTM offers a more automated process which should lead to higher production rates. Nevertheless, a comparison of the elements produced through both techniques must be done, in order to assess if the final products comply with the required standards of the industry. The main difference between said techniques lies in the used material. Blow-moulding uses carbon prepreg (carbon fibres pre-impregnated with a resin system), and the material is laid up by hand, piece by piece, on a mould or on a hard male. After that, the material is cured at a high temperature. On the other hand, in the HP-RTM technique, dry carbon fibres are placed on a mould, and then resin is injected at high pressure. After some research regarding the best material systems (prepregs and braids) and suppliers, an element was designed (similar to a handlebar) to be constructed. The next step was to perform FEM simulations in order to determine what the best layup of the composite material was. The simulations were done for the prepreg material, and the obtained layup was transposed to the braids. The selected material was a prepreg with T700 carbon fibre (24K) and an epoxy resin system, for the blow-molding technique. For HP-RTM, carbon fibre elastic UD tubes and ± 45º braids were used, with both 3K and 6K filaments per tow, and the resin system was an epoxy as well. After the simulations for the prepreg material, the optimized layup was: [45°, -45°,45°, -45°,0°,0°]. For HP-RTM, the transposed layup was [ ± 45° (6k); 0° (6k); partial ± 45° (6k); partial ± 45° (6k); ± 45° (3k); ± 45° (3k)]. The mechanical tests showed that both elements can withstand the maximum load (in this case, 1000 N); however, the one produced through blow-molding can support higher loads (≈1300N against 1100N from HP-RTM). In what concerns to the fibre volume fraction (FVF), the HP-RTM element has a slightly higher value ( > 61% compared to 59% of the blow-molding technique). The optical microscopy has shown that both elements have a low void content. In conclusion, the elements produced using HP-RTM can compare to the ones produced through blow-molding, both in mechanical testing and in the visual aspect. Nevertheless, there is still space for improvement in the HP-RTM elements since the layup of the braids, and UD tubes could be optimized.Keywords: HP-RTM, carbon composites, cycling, FEM
Procedia PDF Downloads 1344928 Direct Visualization of Shear Induced Structures in Wormlike Micellar Solutions by Microfluidics and Advanced Microscopy
Authors: Carla Caiazza, Valentina Preziosi, Giovanna Tomaiuolo, Denis O'Sullivan, Vincenzo Guida, Stefano Guido
Abstract:
In the last decades, wormlike micellar solutions have been extensively used to tune the rheological behavior of home care and personal care products. This and other successful applications underlie the growing attention that both basic and applied research are devoting to these systems, and to their unique rheological and flow properties. One of the key research topics is the occurrence of flow instabilities at high shear rates (such as shear banding), with the possibility of appearance of flow induced structures. In this scenario, microfluidics is a powerful tool to get a deeper insight into the flow behavior of a wormlike micellar solution, as the high confinement of a microfluidic device facilitates the onset of the flow instabilities; furthermore, thanks to its small dimensions, it can be coupled with optical microscopy, allowing a direct visualization of flow structuring phenomena. Here, the flow of a widely used wormlike micellar solution through a glass capillary has been studied, by coupling the microfluidic device with μPIV techniques. The direct visualization of flow-induced structures and the flow visualization analysis highlight a relationship between solution structuring and the onset of discontinuities in the velocity profile.Keywords: flow instabilities, flow-induced structures, μPIV, wormlike micelles
Procedia PDF Downloads 3464927 Surface Motion of Anisotropic Half Space Containing an Anisotropic Inclusion under SH Wave
Authors: Yuanda Ma, Zhiyong Zhang, Zailin Yang, Guanxixi Jiang
Abstract:
Anisotropy is very common in underground media, such as rock, sand, and soil. Hence, the dynamic response of anisotropy medium under elastic waves is significantly different from the isotropic one. Moreover, underground heterogeneities and structures, such as pipelines, cylinders, or tunnels, are usually made by composite materials, leading to the anisotropy of these heterogeneities and structures. Both the anisotropy of the underground medium and the heterogeneities have an effect on the surface motion of the ground. Aiming at providing theoretical references for earthquake engineering and seismology, the surface motion of anisotropic half-space with a cylindrical anisotropic inclusion embedded under the SH wave is investigated in this work. Considering the anisotropy of the underground medium, the governing equation with three elastic parameters of SH wave propagation is introduced. Then, based on the complex function method and multipolar coordinates system, the governing equation in the complex plane is obtained. With the help of a pair of transformation, the governing equation is transformed into a standard form. By means of the same methods, the governing equation of SH wave propagation in the cylindrical inclusion with another three elastic parameters is normalized as well. Subsequently, the scattering wave in the half-space and the standing wave in the inclusion is deduced. Different incident wave angle and anisotropy are considered to obtain the reflected wave. Then the unknown coefficients in scattering wave and standing wave are solved by utilizing the continuous condition at the boundary of the inclusion. Through truncating finite terms of the scattering wave and standing wave, the equation of boundary conditions can be calculated by programs. After verifying the convergence and the precision of the calculation, the validity of the calculation is verified by degrading the model of the problem as well. Some parameters which influence the surface displacement of the half-space is considered: dimensionless wave number, dimensionless depth of the inclusion, anisotropic parameters, wave number ratio, shear modulus ratio. Finally, surface displacement amplitude of the half space with different parameters is calculated and discussed.Keywords: anisotropy, complex function method, sh wave, surface displacement amplitude
Procedia PDF Downloads 1224926 Behavior of Steel Moment Frames Subjected to Impact Load
Authors: Hyungoo Kang, Minsung Kim, Jinkoo Kim
Abstract:
This study investigates the performance of a 2D and 3D steel moment frame subjected to vehicle collision at a first story column using LS-DYNA. The finite element models of vehicles provided by the National Crash Analysis Center (NCAC) are used for numerical analysis. Nonlinear dynamic time history analysis of the 2D and 3D model structures are carried out based on the arbitrary column removal scenario, and the vertical displacement of the damaged structures are compared with that obtained from collision analysis. The analysis results show that the model structure remains stable when the speed of the vehicle is 40km/h. However, at the speed of 80 and 120km/h both the 2D and 3D structures collapse by progressive collapse. The vertical displacement of the damaged joint obtained from collision analysis is significantly larger than the displacement computed based on the arbitrary column removal scenario.Keywords: vehicle collision, progressive collapse, FEM, LS-DYNA
Procedia PDF Downloads 3424925 Mechanical Properties of Kenaf Fibre Reinforced Epoxy Composites
Authors: C. Tezara, H. Y. Lim, M. H. Yazdi, J. W. Lim, J. P. Siregar
Abstract:
Natural fibre has become an element in human lives. A lot of researchers have conducted research about natural fibre reinforced polymer. Malaysian government has spent a lot of money on the research funding for researchers and academician especially research on kenaf fibre due to exclusion of tobacco from AFTA (Asean Free Trade Area) list. This work is to investigate the mechanical properties of kenaf fiber reinforced epoxy composite where short kenaf fibre was applied and the mechanical properties of 5%, 10% and 15% wt. of kenaf fibre were added into the mixture of epoxy resin. Hand lay-up process was selected in the fabrication of the specimen for testing. The tensile, flexural and impact test were conducted following ASTM D3039, ASTM D790 and ASTM D256 accordingly. From the experiment result, the effect of different fiber loading of the specimen on its mechanical properties would be analyzed and compared in the result and discussion.Keywords: Kenaf fibre, epoxy, composite, fibre
Procedia PDF Downloads 2864924 Numerical Investigation of Soft Clayey Soil Improved by Soil-Cement Columns under Harmonic Load
Authors: R. Ziaie Moayed, E. Ghanbari Alamouty
Abstract:
Deep soil mixing is one of the improvement methods in geotechnical engineering which is widely used in soft soils. This article investigates the consolidation behavior of a soft clay soil which is improved by soil-cement column (SCC) by numerical modeling using Plaxis2D program. This behavior is simulated under vertical static and cyclic load which is applied on the soil surface. The static load problem is the simulation of a physical model test in an axisymmetric condition which uses a single SCC in the model center. The results of numerical modeling consist of settlement of soft soil composite, stress on soft soil and column, and excessive pore water pressure in the soil show a good correspondence with the test results. The response of soft soil composite to the cyclic load in vertical direction also compared with the static results. Also the effects of two variables namely the cement content used in a SCC and the area ratio (the ratio of the diameter of SCC to the diameter of composite soil model, a) is investigated. The results show that the stress on the column with the higher value of a, is lesser compared with the stress on other columns. Different rate of consolidation and excessive pore pressure distribution is observed in cyclic load problem. Also comparing the results of settlement of soil shows higher compressibility in the cyclic load problem.Keywords: area ratio, consolidation behavior, cyclic load, numerical modeling, soil-cement column
Procedia PDF Downloads 152