Search results for: Statistical Analysis
28312 Analysis of Nonlinear Dynamic Systems Excited by Combined Colored and White Noise Excitations
Authors: Siu-Siu Guo, Qingxuan Shi
Abstract:
In this paper, single-degree-of-freedom (SDOF) systems to white noise and colored noise excitations are investigated. By expressing colored noise excitation as a second-order filtered white noise process and introducing colored noise as an additional state variable, the equation of motion for SDOF system under colored noise is then transferred artificially to multi-degree-of-freedom (MDOF) system under white noise excitations. As a consequence, corresponding Fokker-Planck-Kolmogorov (FPK) equation governing the joint probabilistic density function (PDF) of state variables increases to 4-dimension (4-D). Solution procedure and computer programme become much more sophisticated. The exponential-polynomial closure (EPC) method, widely applied for cases of SDOF systems under white noise excitations, is developed and improved for cases of systems under colored noise excitations and for solving the complex 4-D FPK equation. On the other hand, Monte Carlo simulation (MCS) method is performed to test the approximate EPC solutions. Two examples associated with Gaussian and non-Gaussian colored noise excitations are considered. Corresponding band-limited power spectral densities (PSDs) for colored noise excitations are separately given. Numerical studies show that the developed EPC method provides relatively accurate estimates of the stationary probabilistic solutions. Moreover, statistical parameter of mean-up crossing rate (MCR) is taken into account, which is important for reliability and failure analysis.Keywords: filtered noise, narrow-banded noise, nonlinear dynamic, random vibration
Procedia PDF Downloads 22428311 A Construction Management Tool: Determining a Project Schedule Typical Behaviors Using Cluster Analysis
Authors: Natalia Rudeli, Elisabeth Viles, Adrian Santilli
Abstract:
Delays in the construction industry are a global phenomenon. Many construction projects experience extensive delays exceeding the initially estimated completion time. The main purpose of this study is to identify construction projects typical behaviors in order to develop a prognosis and management tool. Being able to know a construction projects schedule tendency will enable evidence-based decision-making to allow resolutions to be made before delays occur. This study presents an innovative approach that uses Cluster Analysis Method to support predictions during Earned Value Analyses. A clustering analysis was used to predict future scheduling, Earned Value Management (EVM), and Earned Schedule (ES) principal Indexes behaviors in construction projects. The analysis was made using a database with 90 different construction projects. It was validated with additional data extracted from literature and with another 15 contrasting projects. For all projects, planned and executed schedules were collected and the EVM and ES principal indexes were calculated. A complete linkage classification method was used. In this way, the cluster analysis made considers that the distance (or similarity) between two clusters must be measured by its most disparate elements, i.e. that the distance is given by the maximum span among its components. Finally, through the use of EVM and ES Indexes and Tukey and Fisher Pairwise Comparisons, the statistical dissimilarity was verified and four clusters were obtained. It can be said that construction projects show an average delay of 35% of its planned completion time. Furthermore, four typical behaviors were found and for each of the obtained clusters, the interim milestones and the necessary rhythms of construction were identified. In general, detected typical behaviors are: (1) Projects that perform a 5% of work advance in the first two tenths and maintain a constant rhythm until completion (greater than 10% for each remaining tenth), being able to finish on the initially estimated time. (2) Projects that start with an adequate construction rate but suffer minor delays culminating with a total delay of almost 27% of the planned time. (3) Projects which start with a performance below the planned rate and end up with an average delay of 64%, and (4) projects that begin with a poor performance, suffer great delays and end up with an average delay of a 120% of the planned completion time. The obtained clusters compose a tool to identify the behavior of new construction projects by comparing their current work performance to the validated database, thus allowing the correction of initial estimations towards more accurate completion schedules.Keywords: cluster analysis, construction management, earned value, schedule
Procedia PDF Downloads 26228310 Investigating the Relationship between Place Attachment and Sustainable Development of Urban Spaces
Authors: Hamid Reza Zeraatpisheh, Ali Akbar Heidari, Soleiman Mohammadi Doust
Abstract:
This study has examined the relationship between place attachment and sustainable development of urban spaces. To perform this, the components of place identity, emotional attachment, place attachment and social bonding which totally constitute the output of place attachment, by means of the standardized questionnaire measure place attachment in three domains of (cognitive) the place identity, (affective) emotional attachment and (behavioral) place attachment and social bonding. To measure sustainable development, three components of sustainable development, including society, economy and environment has been considered. The study is descriptive. The assessment instrument is the standard questionnaire of Safarnia which has been used to measure the variable of place attachment and to measure the variable of sustainable development, a questionnaire has been made by the researcher and been based on the combined theoretical framework. The statistical population of this research has been the city of Shiraz. The statistical sample has been Hafeziyeh. SPSS software has been used to analyze the data and examined the results of both descriptive and inferential statistics. In inferential statistics, Pearson correlation coefficient has been used to examine the hypotheses. In this study, the variable of place attachment is high and sustainable development is also in a high level. These results suggest a positive relationship between attachment to place and sustainable development.Keywords: place attachment, sustainable development, economy-society-environment, Hafez's tomb
Procedia PDF Downloads 70028309 Gender Justice and Feminist Self-Management Practices in the Solidarity Economy: A Quantitative Analysis of the Factors that Impact Enterprises Formed by Women in Brazil
Authors: Maria de Nazaré Moraes Soares, Silvia Maria Dias Pedro Rebouças, José Carlos Lázaro
Abstract:
The Solidarity Economy (SE) acts in the re-articulation of the economic field to the other spheres of social action. The significant participation of women in SE resulted in the formation of a national network of self-managed enterprises in Brazil: The Solidarity and Feminist Economy Network (SFEN). The objective of the research is to identify factors of gender justice and feminist self-management practices that adhere to the reality of women in SE enterprises. The conceptual apparatus related to feminist studies in this research covers Nancy Fraser approaches on gender justice, and Patricia Yancey Martin approaches on feminist management practices, and authors of postcolonial feminism such as Mohanty and Maria Lugones, who lead the discussion to peripheral contexts, a necessary perspective when observing the women’s movement in SE. The research has a quantitative nature in the phases of data collection and analysis. The data collection was performed through two data sources: the database mapped in Brazil in 2010-2013 by the National Information System in Solidary Economy and 150 questionnaires with women from 16 enterprises in SFEN, in a state of Brazilian northeast. The data were analyzed using the multivariate statistical technique of Factor Analysis. The results show that the factors that define gender justice and feminist self-management practices in SE are interrelated in several levels, proving statistically the intersectional condition of the issue of women. The evidence from the quantitative analysis allowed us to understand the dimensions of gender justice and feminist management practices intersectionality; in this sense, the non-distribution of domestic work interferes in non-representation of women in public spaces, especially in peripheral contexts. The study contributes with important reflections to the studies of this area and can be complemented in the future with a qualitative research that approaches the perspective of women in the context of the SE self-management paradigm.Keywords: feminist management practices, gender justice, self-management, solidarity economy
Procedia PDF Downloads 12728308 The Variable Sampling Interval Xbar Chart versus the Double Sampling Xbar Chart
Authors: Michael B. C. Khoo, J. L. Khoo, W. C. Yeong, W. L. Teoh
Abstract:
The Shewhart Xbar control chart is a useful process monitoring tool in manufacturing industries to detect the presence of assignable causes. However, it is insensitive in detecting small process shifts. To circumvent this problem, adaptive control charts are suggested. An adaptive chart enables at least one of the chart’s parameters to be adjusted to increase the chart’s sensitivity. Two common adaptive charts that exist in the literature are the double sampling (DS) Xbar and variable sampling interval (VSI) Xbar charts. This paper compares the performances of the DS and VSI Xbar charts, based on the average time to signal (ATS) criterion. The ATS profiles of the DS Xbar and VSI Xbar charts are obtained using the Mathematica and Statistical Analysis System (SAS) programs, respectively. The results show that the VSI Xbar chart is generally superior to the DS Xbar chart.Keywords: adaptive charts, average time to signal, double sampling, charts, variable sampling interval
Procedia PDF Downloads 28528307 Mean Monthly Rainfall Prediction at Benina Station Using Artificial Neural Networks
Authors: Hasan G. Elmazoghi, Aisha I. Alzayani, Lubna S. Bentaher
Abstract:
Rainfall is a highly non-linear phenomena, which requires application of powerful supervised data mining techniques for its accurate prediction. In this study the Artificial Neural Network (ANN) technique is used to predict the mean monthly historical rainfall data collected from BENINA station in Benghazi for 31 years, the period of “1977-2006” and the results are compared against the observed values. The specific objective to achieve this goal was to determine the best combination of weather variables to be used as inputs for the ANN model. Several statistical parameters were calculated and an uncertainty analysis for the results is also presented. The best ANN model is then applied to the data of one year (2007) as a case study in order to evaluate the performance of the model. Simulation results reveal that application of ANN technique is promising and can provide reliable estimates of rainfall.Keywords: neural networks, rainfall, prediction, climatic variables
Procedia PDF Downloads 48728306 Microwave Assisted Foam-Mat Drying of Guava Pulp
Authors: Ovais S. Qadri, Abhaya K. Srivastava
Abstract:
Present experiments were carried to study the drying kinetics and quality of microwave foam-mat dried guava powder. Guava pulp was microwave foam mat dried using 8% egg albumin as foaming agent and then dried at microwave power 480W, 560W, 640W, 720W and 800W, foam thickness 3mm, 5mm and 7mm and inlet air temperature of 40˚C and 50˚C. Weight loss was used to estimate change in drying rate with respect to time. Powdered samples were analysed for various physicochemical quality parameters viz. acidity, pH, TSS, colour change and ascorbic acid content. Statistical analysis using three-way ANOVA revealed that sample of 5mm foam thickness dried at 800W and 50˚C was the best with 0.3584% total acid, 3.98 pH, 14min drying time, 8˚Brix TSS, 3.263 colour change and 154.762mg/100g ascorbic acid content.Keywords: foam mat drying, foam mat guava, guava powder, microwave drying
Procedia PDF Downloads 32928305 Factors Associated with Commencement of Non-Invasive Ventilation
Authors: Manoj Kumar Reddy Pulim, Lakshmi Muthukrishnan, Geetha Jayapathy, Radhika Raman
Abstract:
Introduction: In the past two decades, noninvasive positive pressure ventilation (NIPPV) emerged as one of the most important advances in the management of both acute and chronic respiratory failure in children. In the acute setting, it is an alternative to intubation with a goal to preserve normal physiologic functions, decrease airway injury, and prevent respiratory tract infections. There is a need to determine the clinical profile and parameters which point towards the need for NIV in the pediatric emergency setting. Objectives: i) To study the clinical profile of children who required non invasive ventilation and invasive ventilation, ii) To study the clinical parameters common to children who required non invasive ventilation. Methods: All children between one month to 18 years, who were intubated in the pediatric emergency department and those for whom decision to commence Non Invasive Ventilation was made in Emergency Room were included in the study. Children were transferred to the Paediatric Intensive Care Unit and started on Non Invasive Ventilation as per our hospital policy and followed up in the Paediatric Intensive Care Unit. Clinical profile of all children which included age, gender, diagnosis and indication for intubation were documented. Clinical parameters such as respiratory rate, heart rate, saturation, grunting were documented. Parameters obtained were subject to statistical analysis. Observations: Airway disease (Bronchiolitis 25%, Viral induced wheeze 22%) was a common diagnosis in 32 children who required Non Invasive Ventilation. Neuromuscular disorder was the common diagnosis in 27 children (78%) who were Intubated. 17 children commenced on Non Invasive Ventilation who later needed invasive ventilation had Neuromuscular disease. High frequency nasal cannula was used in 32, and mask ventilation in 17 children. Clinical parameters common to the Non Invasive Ventilation group were age < 1 year (17), tachycardia n = 7 (22%), tachypnea n = 23 (72%) and severe respiratory distress n = 9 (28%), grunt n = 7 (22%), SPO2 (80% to 90%) n = 16. Children in the Non Invasive Ventilation + INTUBATION group were > 3 years (9), had tachycardia 7 (41%), tachypnea 9(53%) with a male predominance n = 9. In statistical comparison among 3 groups,'p' value was significant for pH, saturation, and use of Ionotrope. Conclusion: Invasive ventilation can be avoided in the paediatric Emergency Department in children with airway disease, by commencing Non Invasive Ventilation early. Intubation in the pediatric emergency department has a higher association with neuromuscular disorders.Keywords: clinical parameters, indications, non invasive ventilation, paediatric emergency room
Procedia PDF Downloads 33528304 Corporate Governance, Performance, and Financial Reporting Quality of Listed Manufacturing Firms in Nigeria
Authors: Jamila Garba Audu, Shehu Usman Hassan
Abstract:
The widespread failure in the financial information quality has created the need to improve the financial information quality and to strengthen the control of managers by setting up good firms structures. Published accounting information in financial statements is required to provide various users - shareholders, employees, suppliers, creditors, financial analysts, stockbrokers and government agencies – with timely and reliable information useful for making prudent, effective and efficient decisions. The relationship between corporate governance and performance to financial reporting quality is imperative; this is because despite rapid researches in this area the findings obtained from these studies are constantly inconclusive. Data for the study were extracted from the firms’ annual reports and accounts. After running the OLS regression, a robustness test was conducted for the validity of statistical inferences; the data was empirically tested. A multiple regression was employed to test the model as a technique for data analysis. The results from the analysis revealed a negative association between all the regressors and financial reporting quality except the performance of listed manufacturing firms in Nigeria. This indicates that corporate governance plays a significant role in mitigating earnings management and improving financial reporting quality while performance does not. The study recommended among others that the composition of audit committee should be made in accordance with the provision for code of corporate governance which is not more than six (6) members with at least one (1) financial expert.Keywords: corporate governance, financial reporting quality, manufacturing firms, Nigeria, performance
Procedia PDF Downloads 24328303 Detecting Earnings Management via Statistical and Neural Networks Techniques
Authors: Mohammad Namazi, Mohammad Sadeghzadeh Maharluie
Abstract:
Predicting earnings management is vital for the capital market participants, financial analysts and managers. The aim of this research is attempting to respond to this query: Is there a significant difference between the regression model and neural networks’ models in predicting earnings management, and which one leads to a superior prediction of it? In approaching this question, a Linear Regression (LR) model was compared with two neural networks including Multi-Layer Perceptron (MLP), and Generalized Regression Neural Network (GRNN). The population of this study includes 94 listed companies in Tehran Stock Exchange (TSE) market from 2003 to 2011. After the results of all models were acquired, ANOVA was exerted to test the hypotheses. In general, the summary of statistical results showed that the precision of GRNN did not exhibit a significant difference in comparison with MLP. In addition, the mean square error of the MLP and GRNN showed a significant difference with the multi variable LR model. These findings support the notion of nonlinear behavior of the earnings management. Therefore, it is more appropriate for capital market participants to analyze earnings management based upon neural networks techniques, and not to adopt linear regression models.Keywords: earnings management, generalized linear regression, neural networks multi-layer perceptron, Tehran stock exchange
Procedia PDF Downloads 42028302 An Assessment of Wind Energy in Sanar Village in North of Iran Using Weibull Function
Authors: Ehsanolah Assareh, Mojtaba Biglari, Mojtaba Nedaei
Abstract:
Sanar village in north of Iran is a remote region with difficult access to electricity, grid and water supply. Thus the aim of this research is to evaluate the potential of wind as a power source either for electricity generation or for water pumping. In this study the statistical analysis has been performed by Weibull distribution function. The results show that the Weibull distribution has fitted the wind data very well. Also it has been demonstrated that wind speed at 40 m height is ranged from 1.75 m/s in Dec to 3.28 m/s in Aug with average value of 2.69 m/s. In this research, different wind speed characteristics such as turbulence intensity, wind direction, monthly air temperature, humidity wind power density and other related parameters have been investigated. Finally it was concluded that the wind energy in the Sanar village may be explored by employing modern wind turbines that require very lower start-up speeds.Keywords: wind energy, wind turbine, weibull, Sanar village, Iran
Procedia PDF Downloads 52128301 Differentially Expressed Genes in Atopic Dermatitis: Bioinformatics Analysis Of Pooled Microarray Gene Expression Datasets In Gene Expression Omnibus
Abstract:
Background: Atopic dermatitis (AD) is a chronic and refractory inflammatory skin disease characterized by relapsing eczematous and pruritic skin lesions. The global prevalence of AD ranges from 1~ 20%, and its incidence rates are increasing. It affects individuals from infancy to adulthood, significantly impacting their daily lives and social activities. Despite its major health burden, the precise mechanisms underlying AD remain unknown. Understanding the genetic differences associated with AD is crucial for advancing diagnosis and targeted treatment development. This study aims to identify candidate genes of AD by using bioinformatics analysis. Methods: We conducted a comprehensive analysis of four pooled transcriptomic datasets (GSE16161, GSE32924, GSE130588, and GSE120721) obtained from the Gene Expression Omnibus (GEO) database. Differential gene expression analysis was performed using the R statistical language. The differentially expressed genes (DEGs) between AD patients and normal individuals were functionally analyzed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Furthermore, a protein-protein interaction (PPI) network was constructed to identify candidate genes. Results: Among the patient-level gene expression datasets, we identified 114 shared DEGs, consisting of 53 upregulated genes and 61 downregulated genes. Functional analysis using GO and KEGG revealed that the DEGs were mainly associated with the negative regulation of transcription from RNA polymerase II promoter, membrane-related functions, protein binding, and the Human papillomavirus infection pathway. Through the PPI network analysis, we identified eight core genes: CD44, STAT1, HMMR, AURKA, MKI67, and SMARCA4. Conclusion: This study elucidates key genes associated with AD, providing potential targets for diagnosis and treatment. The identified genes have the potential to contribute to the understanding and management of AD. The bioinformatics analysis conducted in this study offers new insights and directions for further research on AD. Future studies can focus on validating the functional roles of these genes and exploring their therapeutic potential in AD. While these findings will require further verification as achieved with experiments involving in vivo and in vitro models, these results provided some initial insights into dysfunctional inflammatory and immune responses associated with AD. Such information offers the potential to develop novel therapeutic targets for use in preventing and treating AD.Keywords: atopic dermatitis, bioinformatics, biomarkers, genes
Procedia PDF Downloads 8028300 Measurements of Physical Properties of Directionally Solidified Al-Si-Cu Ternary Alloy
Authors: Aynur Aker, Hasan Kaya
Abstract:
Al-12.6wt.%Si-2wt.%Cu ternary alloy of near eutectic composition was directionally solidified upward at a constant temperature gradient in a wide range of growth rates (V=8.25-165.41 µm/s). The microstructures (λ), microhardness (HV), tensile stress (σ) and electrical resistivity (ρ) were measured from directionally solidified samples. The dependence of microstructures, microhardness and electrical resistivity on growth rate (V) was also determined by statistical analysis. According to these results, it has been found that for increasing values of V, the values of HV, σ and ρ increase. Variations of electrical resistivity for casting Al-Si-Cu alloy were also measured at the temperature in range 300-500 K. The enthalpy (ΔH) and the specific heat (Cp) for the Al-Si-Cu alloy were determined by differential scanning calorimeter (DSC) from heating trace during the transformation from solid to liquid. The results obtained in this work were compared with the similar experimental results in the literature.Keywords: Al-Si-Cu alloy, microstructures, micro-hardness, tensile stress electrical resistivity, enthalpy
Procedia PDF Downloads 27728299 A Knowledge-As-A-Service Support Framework for Ambient Learning in Kenya
Authors: Lucy W. Mburu, Richard Karanja, Simon N. Mwendia
Abstract:
Over recent years, learners have experienced a constant need to access on demand knowledge that is fully aligned with the paradigm of cloud computing. As motivated by the global sustainable development goal to ensure inclusive and equitable learning opportunities, this research has developed a framework hinged on the knowledge-as-a-service architecture that utilizes knowledge from ambient learning systems. Through statistical analysis and decision tree modeling, the study discovers influential variables for ambient learning among university students. The main aim is to generate a platform for disseminating and exploiting the available knowledge to aid the learning process and, thus, to improve educational support on the ambient learning system. The research further explores how collaborative effort can be used to form a knowledge network that allows access to heterogeneous sources of knowledge, which benefits knowledge consumers, such as the developers of ambient learning systems.Keywords: actionable knowledge, ambient learning, cloud computing, decision trees, knowledge as a service
Procedia PDF Downloads 15828298 CCK/Gastrin Immunoreactivity in Gastrointestinal Tract of Vimba vimba
Authors: Nurgül Şenol, Melda Azman
Abstract:
In this study, gastrointestinal immunohistochemistry in the Vimba vimba and the localization of CCK/gastrin were determined. Although there are a number of studies which relate to the gastrointestinal histochemistry and the localization of the peptides, a literature research in this field revealed that no histochemical or immunohistochemical study covering also the species had been found in our country. In this research, species will be provided from Vimba vimba located in Eğirdir lake. Stomach samples and intestinal samples of these fish will be exposed to routine histological tissue process, embedded in paraffin blocks, and 5-6 μ -thick sections will be taken. Using the PAP (Peroxidase anti-peroxidase) method, localization of the peptides CCK/gastrin was to be found. The densities of peptides of this species were compared, and then the findings obtained were to be evaluated through the statistical analysis methods (SPSS). Endocrine cells reactive to gastrin/CCK antiserum were demonstrated in the stomach and intestinal mucosa. There is a significant difference between gastrin and CCK when compared to regions.Keywords: CCK, gastrin, immunoreactivity, vimba vimba
Procedia PDF Downloads 31128297 Pattern Recognition Approach Based on Metabolite Profiling Using In vitro Cancer Cell Line
Authors: Amanina Iymia Jeffree, Reena Thriumani, Mohammad Iqbal Omar, Ammar Zakaria, Yumi Zuhanis Has-Yun Hashim, Ali Yeon Md Shakaff
Abstract:
Metabolite profiling is a strategy to be approached in the pattern recognition method focused on three types of cancer cell line that driving the most to death specifically lung, breast, and colon cancer. The purpose of this study was to discriminate the VOCs pattern among cancerous and control group based on metabolite profiling. The sampling was executed utilizing the cell culture technique. All culture flasks were incubated till 72 hours and data collection started after 24 hours. Every running sample took 24 minutes to be completed accordingly. The comparative metabolite patterns were identified by the implementation of headspace-solid phase micro-extraction (HS-SPME) sampling coupled with gas chromatography-mass spectrometry (GCMS). The optimizations of the main experimental variables such as oven temperature and time were evaluated by response surface methodology (RSM) to get the optimal condition. Volatiles were acknowledged through the National Institute of Standards and Technology (NIST) mass spectral database and retention time libraries. To improve the reliability of significance, it is of crucial importance to eliminate background noise which data from 3rd minutes to 17th minutes were selected for statistical analysis. Targeted metabolites, of which were annotated as known compounds with the peak area greater than 0.5 percent were highlighted and subsequently treated statistically. Volatiles produced contain hundreds to thousands of compounds; therefore, it will be optimized by chemometric analysis, such as principal component analysis (PCA) as a preliminary analysis before subjected to a pattern classifier for identification of VOC samples. The volatile organic compound profiling has shown to be significantly distinguished among cancerous and control group based on metabolite profiling.Keywords: in vitro cancer cell line, metabolite profiling, pattern recognition, volatile organic compounds
Procedia PDF Downloads 36228296 The Role of Social Infrastructure on Entrepreneurship Performance
Authors: Obasan Kehinde
Abstract:
Social Infrastructure such as transport, telecommunications, energy, water, health, housing, and educational facilities have become part and parcel of human existence and have since been seen as prerequisite for the development of any economy. It is difficult to imagine a modern world without these facilities. Using a survey research design, data was gathered through a multi-stage sampling and a random sampling method from a total of 117 respondents, the study investigates the role of social infrastructure on the performance of entrepreneurs drawn from 10 Local Government Areas across two carefully selected states in the South-West, Nigeria. The data was analyzed using a descriptive statistical analysis and a t-test. The result shows that the impact of social infrastructure on entrepreneur performance is significant at 0.00 level of significant. Thus, this study recommends that entrepreneurs should take note of the social infrastructures available in the environment for the purpose of citing business in order to reduce the cost of production and other business costs.Keywords: social infrastructure, entrepreneur performance, entrepreneurship, business
Procedia PDF Downloads 39728295 The Role of Environmental Analysis in Managing Knowledge in Small and Medium Sized Enterprises
Authors: Liu Yao, B. T. Wan Maseri, Wan Mohd, B. T. Nurul Izzah, Mohd Shah, Wei Wei
Abstract:
Effectively managing knowledge has become a vital weapon for businesses to survive or to succeed in the increasingly competitive market. But do they perform environmental analysis when managing knowledge? If yes, how is the level and significance? This paper established a conceptual framework covering the basic knowledge management activities (KMA) to examine their contribution towards organizational performance (OP). Environmental analysis (EA) was then investigated from both internal and external aspects, to identify its effects on that contribution. Data was collected from 400 Chinese SMEs by questionnaires. Cronbach's α and factor analysis were conducted. Regression results show that the external analysis presents higher level than internal analysis. However, the internal analysis mediates the effects of external analysis on the KMA-OP relation and plays more significant role in the relation comparing with the external analysis. Thus, firms shall improve environmental analysis especially the internal analysis to enhance their KM practices.Keywords: knowledge management, environmental analysis, performance, mediating, small sized enterprises, medium sized enterprises
Procedia PDF Downloads 61228294 An Investigation of the Quantitative Correlation between Urban Spatial Morphology Indicators and Block Wind Environment
Authors: Di Wei, Xing Hu, Yangjun Chen, Baofeng Li, Hong Chen
Abstract:
To achieve the research purpose of guiding the spatial morphology design of blocks through the indicators to obtain a good wind environment, it is necessary to find the most suitable type and value range of each urban spatial morphology indicator. At present, most of the relevant researches is based on the numerical simulation of the ideal block shape and rarely proposes the results based on the complex actual block types. Therefore, this paper firstly attempted to make theoretical speculation on the main factors influencing indicators' effectiveness by analyzing the physical significance and formulating the principle of each indicator. Then it was verified by the field wind environment measurement and statistical analysis, indicating that Porosity(P₀) can be used as an important indicator to guide the design of block wind environment in the case of deep street canyons, while Frontal Area Density (λF) can be used as a supplement in the case of shallow street canyons with no height difference. Finally, computational fluid dynamics (CFD) was used to quantify the impact of block height difference and street canyons depth on λF and P₀, finding the suitable type and value range of λF and P₀. This paper would provide a feasible wind environment index system for urban designers.Keywords: urban spatial morphology indicator, urban microclimate, computational fluid dynamics, block ventilation, correlation analysis
Procedia PDF Downloads 13528293 Coevaluations Software among Students in Active Learning Methodology
Authors: Adriano Pinargote, Josue Mosquera, Eduardo Montero, Dalton Noboa, Jenny Venegas, Genesis Vasquez Escuela
Abstract:
In the framework of Pre University learning of the Polytechnic School of the Litoral, Guayaquil, Ecuador, the methodology of Active Learning (Flipped Classroom) has been implemented for applicants who wish to obtain a quota within the university. To complement the Active Learning cycle, it has been proposed that the respective students influence the qualification of their work groups, for which a web platform has been created that allows them to evaluate the performance of their peers through a digital coevaluation that measures through statistical methods, the group and individual performance score that can reflect in numbers a weighting score corresponding to the grade of each student. Their feedback provided by the group help to improve the performance of the activities carried out in classes because the note reflects the commitment with their classmates shown in the class, within this analysis we will determine if this implementation directly influences the performance of the grades obtained by the student.Keywords: active learning, coevaluation, flipped classroom, pre university
Procedia PDF Downloads 13628292 Effect of White Roofing on Refrigerated Buildings
Authors: Samuel Matylewicz, K. W. Goossen
Abstract:
The deployment of white or cool (high albedo) roofing is a common energy savings recommendation for a variety of buildings all over the world. Here, the effect of a white roof on the energy savings of an ice rink facility in the northeastern US is determined by measuring the effect of solar irradiance on the consumption of the rink's ice refrigeration system. The consumption of the refrigeration system was logged over a year, along with multiple weather vectors, and a statistical model was applied. The experimental model indicates that the expected savings of replacing the existing grey roof with a white roof on the consumption of the refrigeration system is only 4.7 %. This overall result of the statistical model is confirmed with isolated instances of otherwise similar weather days, but cloudy vs. sunny, where there was no measurable difference in refrigeration consumption up to the noise in the local data, which was a few percent. This compares with a simple theoretical calculation that indicates 30% savings. The difference is attributed to a lack of convective cooling of the roof in the theoretical model. The best experimental model shows a relative effect of the weather vectors dry bulb temperature, solar irradiance, wind speed, and relative humidity on refrigeration consumption of 1, 0.026, 0.163, and -0.056, respectively. This result can have an impact on decisions to apply white roofing to refrigerated buildings in general.Keywords: cool roofs, solar cooling load, refrigerated buildings, energy-efficient building envelopes
Procedia PDF Downloads 12828291 Presentation of the Model of Reliability of the Signaling System with Emphasis on Determining Best Time Schedule for Repairments and Preventive Maintenance in the Iranian Railway
Authors: Maziar Yazdani, Ahmad Khodaee, Fatemeh Hajizadeh
Abstract:
The purpose of this research was analysis of the reliability of the signaling system in the railway and planning repair and maintenance of its subsystems. For this purpose, it will be endeavored to introduce practical strategies for activities control and appropriate planning for repair and preventive maintenance by statistical modeling of reliability. Therefore, modeling, evaluation, and promotion of reliability of the signaling system appear very critical. Among the key goals of the railway is provision of quality service for passengers and this purpose is gained by increasing reliability, availability, maintainability and safety of (RAMS). In this research, data were analyzed, and the reliability of the subsystems and entire system was calculated and with emphasis on preservation of performance of each of the subsystems with a reliability of 80%, a plan for repair and preventive maintenance of the subsystems of the signaling system was introduced.Keywords: reliability, modeling reliability, plan for repair and preventive maintenance, signaling system
Procedia PDF Downloads 18028290 Hybrid Reliability-Similarity-Based Approach for Supervised Machine Learning
Authors: Walid Cherif
Abstract:
Data mining has, over recent years, seen big advances because of the spread of internet, which generates everyday a tremendous volume of data, and also the immense advances in technologies which facilitate the analysis of these data. In particular, classification techniques are a subdomain of Data Mining which determines in which group each data instance is related within a given dataset. It is used to classify data into different classes according to desired criteria. Generally, a classification technique is either statistical or machine learning. Each type of these techniques has its own limits. Nowadays, current data are becoming increasingly heterogeneous; consequently, current classification techniques are encountering many difficulties. This paper defines new measure functions to quantify the resemblance between instances and then combines them in a new approach which is different from actual algorithms by its reliability computations. Results of the proposed approach exceeded most common classification techniques with an f-measure exceeding 97% on the IRIS Dataset.Keywords: data mining, knowledge discovery, machine learning, similarity measurement, supervised classification
Procedia PDF Downloads 46228289 On the Influence of Sleep Habits for Predicting Preterm Births: A Machine Learning Approach
Authors: C. Fernandez-Plaza, I. Abad, E. Diaz, I. Diaz
Abstract:
Births occurring before the 37th week of gestation are considered preterm births. A threat of preterm is defined as the beginning of regular uterine contractions, dilation and cervical effacement between 23 and 36 gestation weeks. To author's best knowledge, the factors that determine the beginning of the birth are not completely defined yet. In particular, the incidence of sleep habits on preterm births is weekly studied. The aim of this study is to develop a model to predict the factors affecting premature delivery on pregnancy, based on the above potential risk factors, including those derived from sleep habits and light exposure at night (introduced as 12 variables obtained by a telephone survey using two questionnaires previously used by other authors). Thus, three groups of variables were included in the study (maternal, fetal and sleep habits). The study was approved by Research Ethics Committee of the Principado of Asturias (Spain). An observational, retrospective and descriptive study was performed with 481 births between January 1, 2015 and May 10, 2016 in the University Central Hospital of Asturias (Spain). A statistical analysis using SPSS was carried out to compare qualitative and quantitative variables between preterm and term delivery. Chi-square test qualitative variable and t-test for quantitative variables were applied. Statistically significant differences (p < 0.05) between preterm vs. term births were found for primiparity, multi-parity, kind of conception, place of residence or premature rupture of membranes and interruption during nights. In addition to the statistical analysis, machine learning methods to look for a prediction model were tested. In particular, tree based models were applied as the trade-off between performance and interpretability is especially suitable for this study. C5.0, recursive partitioning, random forest and tree bag models were analysed using caret R-package. Cross validation with 10-folds and parameter tuning to optimize the methods were applied. In addition, different noise reduction methods were applied to the initial data using NoiseFiltersR package. The best performance was obtained by C5.0 method with Accuracy 0.91, Sensitivity 0.93, Specificity 0.89 and Precision 0.91. Some well known preterm birth factors were identified: Cervix Dilation, maternal BMI, Premature rupture of membranes or nuchal translucency analysis in the first trimester. The model also identifies other new factors related to sleep habits such as light through window, bedtime on working days, usage of electronic devices before sleeping from Mondays to Fridays or change of sleeping habits reflected in the number of hours, in the depth of sleep or in the lighting of the room. IF dilation < = 2.95 AND usage of electronic devices before sleeping from Mondays to Friday = YES and change of sleeping habits = YES, then preterm is one of the predicting rules obtained by C5.0. In this work a model for predicting preterm births is developed. It is based on machine learning together with noise reduction techniques. The method maximizing the performance is the one selected. This model shows the influence of variables related to sleep habits in preterm prediction.Keywords: machine learning, noise reduction, preterm birth, sleep habit
Procedia PDF Downloads 14528288 Stress Hyperglycemia: A Predictor of Major Adverse Cardiac Events in Non-Diabetic Patients With Acute Heart Failure
Authors: Fahad Raj Khan, Suleman Khan
Abstract:
There is a lack of consensus about the predictive value of raised blood glucose levels in terms of major adverse cardiac events (MACEs) in non-diabetic patients admitted for acute decompensated heart failure. The purpose of this research was to examine the long-term prognosis of acute decompensated heart failure (ADHF) in non-diabetic persons who had increased blood glucose levels, i.e., stress hyperglycemia, at the time of their ADHF hospitalization. The research involved 650 non-diabetic patients. Based on their admission stress hyperglycemia, they were divided into two groups.ie with and without (SHGL). The two groups' one-year outcomes for major adverse cardiac events (MACEs) were compared, and key predictors of MACEs were discovered. For statistical analysis, the two-tailed Mann-Whitney U test, Fisher's exact test, and binary logistic regression analysis were utilized. SHGL was found in 353 (54.3%) individuals. It was more frequent in men than in women. About 27% of patients with SHGL had previously been admitted for ADHF. Almost 62% were hypertensive, whereas 14 % had CKD. MACEs were significantly predicted by SHGL, HTN, prior hospitalization for ADHF, CKD, and cardiogenic shock upon admission. SHGL at the time of ADHF admission, independent of DM status, may be a predictive indication of MACEs.Keywords: stress hyperglycemia, acute heart failure, major adverse cardiac events, MACEs
Procedia PDF Downloads 9328287 Enhanced Automated Teller Machine Using Short Message Service Authentication Verification
Authors: Rasheed Gbenga Jimoh, Akinbowale Nathaniel Babatunde
Abstract:
The use of Automated Teller Machine (ATM) has become an important tool among commercial banks, customers of banks have come to depend on and trust the ATM conveniently meet their banking needs. Although the overwhelming advantages of ATM cannot be over-emphasized, its alarming fraud rate has become a bottleneck in it’s full adoption in Nigeria. This study examined the menace of ATM in the society another cost of running ATM services by banks in the country. The researcher developed a prototype of an enhanced Automated Teller Machine Authentication using Short Message Service (SMS) Verification. The developed prototype was tested by Ten (10) respondents who are users of ATM cards in the country and the data collected was analyzed using Statistical Package for Social Science (SPSS). Based on the results of the analysis, it is being envisaged that the developed prototype will go a long way in reducing the alarming rate of ATM fraud in Nigeria.Keywords: ATM, ATM fraud, e-banking, prototyping
Procedia PDF Downloads 31828286 Effect of Nutrition and Rehabilitation Programs in Treating High Blood Cholesterol For Ages (30-40) Years
Authors: Luma Hameed Abd, Ammar Hamza Hadi, Amjed Abid Ali Mahdi
Abstract:
Context: The study focused on treating high blood cholesterol in individuals aged 30-40 years using rehabilitation and nutrition programs compared to medical drugs. Research aim: To compare the effectiveness of exercise rehabilitation and nutrition programs with medical drugs in reducing high blood cholesterol levels. Methodology: An experimental method with equal groups was utilized, involving 160 patients from Najaf Hospital. SPSS was used for data analysis. Findings: The study showed that both the exercise and nutrition program, as well as medical drugs, contributed to lowering cholesterol levels, with the first group showing better results. Theoretical importance: The research highlights the significance of a holistic approach combining exercise, nutrition, and medical treatment in managing high cholesterol. Data collection: Blood cholesterol tests were conducted before and after the programs to assess improvements. Analysis procedures: Statistical methods such as arithmetic mean, standard deviation, Torsion coefficient, and T-test for correlated samples were employed to analyze the results. Questions addressed: The study addressed the effectiveness of rehabilitation and nutrition programs compared to medical drugs in treating high blood cholesterol. Conclusion: The research concluded that the combination of exercise rehabilitation and nutrition programs was more effective in reducing blood cholesterol levels compared to medical drugs.Keywords: nutrition, rehabilitation, programs, high blood cholesterol
Procedia PDF Downloads 1628285 Comparing Groundwater Fluoride Level with WHO Guidelines and Classifying At-Risk Age Groups; Based on Health Risk Assessment
Authors: Samaneh Abolli, Kamyar Yaghmaeian, Ali Arab Aradani, Mahmood Alimohammadi
Abstract:
The main route of fluoride uptake is drinking water. Fluoride absorption in the acceptable range (0.5-1.5 mg L-¹) is suitable for the body, but it's too much consumption can have irreversible health effects. To compare fluoride concentration with the WHO guidelines, 112 water samples were taken from groundwater aquifers in 22 villages of Garmsar County, the central part of Iran, during 2018 to 2019.Fluoride concentration was measured by the SPANDS method, and its non-carcinogenic impacts were calculated using EDI and HQ. The statistical population was divided into four categories of infant, children, teenagers, and adults. Linear regression and Spearman rank correlation coefficient tests were used to investigate the relationships between the well's depth and fluoride concentration in the water samples. The annual mean concentrations of fluoride in 2018 and2019 were 0.75 and 0.64 mg -¹ and, the fluoride mean concentration in the samples classifying the cold and hot seasons of the studied years was 0.709 and 0.689 mg L-¹, respectively. The amount of fluoride in 27% of the samples in both years was less than the acceptable minimum (0.5 mg L-¹). Also, 11% of the samples in2018 (6 samples) had fluoride levels higher than 1.5 mg L-¹. The HQ showed that the children were vulnerable; teenagers and adults were in the next ranks, respectively. Statistical tests showed a reverse and significant correlation (R2 = 0.02, < 0.0001) between well depth and fluoride content. The border between the usefulness/harmfulness of fluoride is very narrow and requires extensive studies.Keywords: fluoride, groundwater, health risk assessment, hazard quotient, Garmsar
Procedia PDF Downloads 6928284 Legal Allocation of Risks: A Computational Analysis of Force Majeure Clauses
Authors: Farshad Ghodoosi
Abstract:
This article analyzes the effect of supervening events in contracts. Contracts serve an important function: allocation of risks. In spite of its importance, the case law and the doctrine are messy and inconsistent. This article provides a fresh look at excuse doctrines (i.e., force majeure, impracticability, impossibility, and frustration) with a focus on force majeure clauses. The article makes the following contributions: First, it furnishes a new conceptual and theoretical framework of excuse doctrines. By distilling the decisions, it shows that excuse doctrines rests on the triangle of control, foreseeability, and contract language. Second, it analyzes force majeure clauses used by S&P 500 companies to understand the stickiness and similarity of such clauses and the events they cover. Third, using computational and statistical tools, it analyzes US cases since 1810 in order to assess the weight given to the triangle of control, foreseeability, and contract language. It shows that the control factor plays an important role in force majeure analysis, while the contractual interpretation is the least important factor. The Article concludes that it is the standard for control -whether the supervening event is beyond the control of the party- that determines the outcome of cases in the force majeure context and not necessarily the contractual language. This article has important implications on COVID-19-related contractual cases. Unlike the prevailing narrative that it is the language of the force majeure clause that’s determinative, this article shows that the primarily focus of the inquiry will be on whether the effects of COVID-19 have been beyond the control of the promisee. Normatively, the Article suggests that the trifactor of control, foreseeability, and contractual language are not effective for allocation of legal risks in times of crises. It puts forward a novel approach to force majeure clauses whereby that the courts should instead focus on the degree to which parties have relied on (expected) performance, in particular during the time of crisis.Keywords: contractual risks, force majeure clauses, foreseeability, control, contractual language, computational analysis
Procedia PDF Downloads 14628283 Identifying the Factors that Influence Water-Use Efficiency in Agriculture: Case Study in a Spanish Semi-Arid Region
Authors: Laura Piedra-Muñoz, Ángeles Godoy-Durán, Emilio Galdeano-Gómez, Juan C. Pérez-Mesa
Abstract:
The current agricultural system in some arid and semi-arid areas is not sustainable in the long term. In southeast Spain, groundwater is the main water source and is overexploited, while alternatives like desalination are still limited. The Water Plan for the Mediterranean Basins 2015-2020 indicates a global deficit of 73.42 hm3 and an overexploitation of the aquifers of 205.58hm3. In order to solve this serious problem, two major actions can be taken: increasing available water, and/or improving the efficiency of its use. This study focuses on the latter. The main aim of this study is to present the major factors related to water usage efficiency in farming. It focuses on Almería province, southeast Spain, one of the most arid areas of the country, and in particular on family farms as the main direct managers of water use in this zone. Many of these farms are among the most water efficient in Spanish agriculture, but this efficiency is not generalized throughout the sector. This work conducts a comprehensive assessment of water performance in this area, using on-farm water-use, structural, socio-economic and environmental information. Two statistical techniques are used: descriptive analysis and cluster analysis. Thus, two groups are identified: the least and the most efficient farms regarding water usage. By analyzing both the common characteristics within each group and the differences between the groups with a one-way ANOVA analysis, several conclusions can be reached. The main differences between the two clusters center on the extent to which innovation and new technologies are used in irrigation. The most water efficient farms are characterized by more educated farmers, a greater degree of innovation, new irrigation technology, specialized production and awareness of water issues and environmental sustainability. The research shows that better practices and policies can have a substantial impact on achieving a more sustainable and efficient use of water. The findings of this study can be extended to farms in similar arid and semi-arid areas and contribute to foster appropriate policies to improve the efficiency of water usage in the agricultural sector.Keywords: cluster analysis, family farms, Spain, water-use efficiency
Procedia PDF Downloads 286