Search results for: compressor design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12548

Search results for: compressor design

2108 Safe and Scalable Framework for Participation of Nodes in Smart Grid Networks in a P2P Exchange of Short-Term Products

Authors: Maciej Jedrzejczyk, Karolina Marzantowicz

Abstract:

Traditional utility value chain is being transformed during last few years into unbundled markets. Increased distributed generation of energy is one of considerable challenges faced by Smart Grid networks. New sources of energy introduce volatile demand response which has a considerable impact on traditional middlemen in E&U market. The purpose of this research is to search for ways to allow near-real-time electricity markets to transact with surplus energy based on accurate time synchronous measurements. A proposed framework evaluates the use of secure peer-2-peer (P2P) communication and distributed transaction ledgers to provide flat hierarchy, and allow real-time insights into present and forecasted grid operations, as well as state and health of the network. An objective is to achieve dynamic grid operations with more efficient resource usage, higher security of supply and longer grid infrastructure life cycle. Methods used for this study are based on comparative analysis of different distributed ledger technologies in terms of scalability, transaction performance, pluggability with external data sources, data transparency, privacy, end-to-end security and adaptability to various market topologies. An intended output of this research is a design of a framework for safer, more efficient and scalable Smart Grid network which is bridging a gap between traditional components of the energy network and individual energy producers. Results of this study are ready for detailed measurement testing, a likely follow-up in separate studies. New platforms for Smart Grid achieving measurable efficiencies will allow for development of new types of Grid KPI, multi-smart grid branches, markets, and businesses.

Keywords: autonomous agents, Distributed computing, distributed ledger technologies, large scale systems, micro grids, peer-to-peer networks, Self-organization, self-stabilization, smart grids

Procedia PDF Downloads 300
2107 Indoor Air Assessment and Health Risk of Volatile Organic Compounds in Secondary School Classrooms in Benin City, Edo State, Nigeria

Authors: Osayomwanbor E. Oghama, John O. Olomukoro

Abstract:

The school environment, apart from home, is probably the most important indoor environment for children. Children spend as much as 80-90% of their indoor time either at school or at home; an average of 35 - 40 hours per week in schools, hence are at the risk of indoor air pollutants such as volatile organic compounds (VOCs). Concentrations of VOCs vary widely but are generally higher indoors than outdoors. This research was, therefore, carried out to evaluate the levels of VOCs in secondary school classrooms in Benin City, Edo State. Samples were obtained from a total of 18 classrooms in 6 secondary schools. Samples were collected 3 times from each school and from 3 different classrooms in each school using Draeger ORSA 5 tubes. Samplers were left to stay for a school-week (5 days). The VOCs detected and analyzed were benzene, ethlybenzene, isopropylbenzene, naphthalene, n-butylbenzene, n-propylbenzene, toluene, m-xylene, p-xylene, o-xylene, styrene, chlorobenzene, chloroform, 1,2-dichloropropane, 2,2-dichloropropane, tetrachloroethane, tetrahydrofuran, isopropyl acetate, α-pinene, and camphene. The results showed that chloroform, o-xylene, and styrene were the most abundant while α-pinene and camphene were the least abundant. The health risk assessment was done in terms of carcinogenic (CRI) and non-carcinogenic risks (THR). The CRI values of the schools ranged from 1.03 × 10-5 to 1.36 × 10-5 μg/m³ (a mean of 1.16 × 10-5 μg/m³) with School 6 and School 3 having the highest and lowest values respectively. The THR values of the study schools ranged from 0.071-0.086 μg/m³ (a mean of 0.078 μg/m³) with School 3 and School 2 having the highest and lowest values respectively. The results show that all the schools pose a potential carcinogenic risks having CRI values greater than the recommended limit of 1 × 10-6 µg/m³ and no non-carcinogenic risk having THR values less than the USEPA hazard quotient of 1 µg/m³. It is recommended that school authorities should ensure adequate ventilation in their schools, supplementing natural ventilation with mechanical sources, where necessary. In addition, indoor air quality should be taken into consideration in the design and construction of classrooms.

Keywords: carcinogenic risk indicator, health risk, indoor air, non-carcinogenic risk indicator, secondary schools, volatile organic compounds

Procedia PDF Downloads 191
2106 Effect of Plant Density and Planting Pattern on Yield and Quality of Single Cross 704 Silage Corn (Zea mays L.) in Isfahan

Authors: Seyed Mohammad Ali Zahedi

Abstract:

This field experiment was conducted in Isfahan in 2011 in order to study the effect of plant density and planting pattern on growth, yield and quality of silage corn (SC 704) using a randomized complete block design with split plot layout and four replications. The main plot consisted of three planting patterns (60 and 75 cm single planting row and 75 cm double planting row referred to as 60S, 75S and 75T, respectively). The subplots consisted of four levels of plant densities (65000, 80000, 95000 and 110000 plants per hectare). Each subplot consisted of 7 rows, each with 10m length. Vegetative and reproductive characteristics of plants at silking and hard dough stages (when the plants were harvested for silage) were evaluated. Results of variance analysis showed that the effects of planting pattern and plant density were significant on leaf area per plant, leaf area index (at silking), plant height, stem diameter, dry weights of leaf, stem and ear in silking and harvest stages and on fresh and dry yield, dry matter percentage and crude protein percentage at harvest. There was no planting pattern × plant density interaction for these parameters. As row space increased from 60 cm with single planting to 75 cm with single planting, leaf area index and plant height increased, but leaf area per plant, stem diameter, dry weight of leaf, stem and ear, dry matter percentage, dry matter yield and crude protein percentage decreased. Dry matter yield reduced from 24.9 to 18.5 t/ha and crude protein percentage decreased from 6.11 to 5.60 percent. When the plant density increased from 65000 to 110000 plant per hectare, leaf area index, plant height, dry weight of leaf, stem and ear and dry matter yield increased from 19.2 to 23.3 t/ha, whereas leaf area per plant, stem diameter, dry matter percentage and crude protein percentage decreased from 6.30 to 5.25. The best results were obtained with 60 cm row distance with single planting and 110000 plants per hectare.

Keywords: silage corn, plant density, planting pattern, yield

Procedia PDF Downloads 336
2105 Climate Change Adaptation: Methodologies and Tools to Define Resilience Scenarios for Existing Buildings in Mediterranean Urban Areas

Authors: Francesca Nicolosi, Teresa Cosola

Abstract:

Climate changes in Mediterranean areas, such as the increase of average seasonal temperatures, the urban heat island phenomenon, the intensification of solar radiation and the extreme weather threats, cause disruption events, so that climate adaptation has become a pressing issue. Due to the strategic role that the built heritage holds in terms of environmental impact and energy waste and its potentiality, it is necessary to assess the vulnerability and the adaptive capacity of the existing building to climate change, in order to define different mitigation scenarios. The aim of this research work is to define an optimized and integrated methodology for the assessment of resilience levels and adaptation scenarios for existing buildings in Mediterranean urban areas. Moreover, the study of resilience indicators allows us to define building environmental and energy performance in order to identify the design and technological solutions for the improvement of the building and its urban area potentialities. The methodology identifies step-by-step different phases, starting from the detailed study of characteristic elements of urban system: climatic, natural, human, typological and functional components are analyzed in their critical factors and their potential. Through the individuation of the main perturbing factors and the vulnerability degree of the system to the risks linked to climate change, it is possible to define mitigation and adaptation scenarios. They can be different, according to the typological, functional and constructive features of the analyzed system, divided into categories of intervention, and characterized by different analysis levels (from the single building to the urban area). The use of software simulations allows obtaining information on the overall behavior of the building and the urban system, to generate predictive models in the medium and long-term environmental and energy retrofit and to make a comparative study of the mitigation scenarios identified. The studied methodology is validated on a case study.

Keywords: climate impact mitigation, energy efficiency, existing building heritage, resilience

Procedia PDF Downloads 238
2104 Estimation of Fragility Curves Using Proposed Ground Motion Selection and Scaling Procedure

Authors: Esra Zengin, Sinan Akkar

Abstract:

Reliable and accurate prediction of nonlinear structural response requires specification of appropriate earthquake ground motions to be used in nonlinear time history analysis. The current research has mainly focused on selection and manipulation of real earthquake records that can be seen as the most critical step in the performance based seismic design and assessment of the structures. Utilizing amplitude scaled ground motions that matches with the target spectra is commonly used technique for the estimation of nonlinear structural response. Representative ground motion ensembles are selected to match target spectrum such as scenario-based spectrum derived from ground motion prediction equations, Uniform Hazard Spectrum (UHS), Conditional Mean Spectrum (CMS) or Conditional Spectrum (CS). Different sets of criteria exist among those developed methodologies to select and scale ground motions with the objective of obtaining robust estimation of the structural performance. This study presents ground motion selection and scaling procedure that considers the spectral variability at target demand with the level of ground motion dispersion. The proposed methodology provides a set of ground motions whose response spectra match target median and corresponding variance within a specified period interval. The efficient and simple algorithm is used to assemble the ground motion sets. The scaling stage is based on the minimization of the error between scaled median and the target spectra where the dispersion of the earthquake shaking is preserved along the period interval. The impact of the spectral variability on nonlinear response distribution is investigated at the level of inelastic single degree of freedom systems. In order to see the effect of different selection and scaling methodologies on fragility curve estimations, results are compared with those obtained by CMS-based scaling methodology. The variability in fragility curves due to the consideration of dispersion in ground motion selection process is also examined.

Keywords: ground motion selection, scaling, uncertainty, fragility curve

Procedia PDF Downloads 582
2103 The Relationship between Sleep Traits and Tinnitus in UK Biobank: A Population-Based Cohort Study

Authors: Jiajia Peng, Yijun Dong, Jianjun Ren, Yu Zhao

Abstract:

Objectives: Understanding the association between sleep traits and tinnitus could help prevent and provide appropriate interventions against tinnitus. Therefore, this study aimed to assess the relationship between different sleep patterns and tinnitus. Design: A cross-sectional analysis using baseline data (2006–2010, n=168,064) by logistic regressions was conducted to evaluate the association between sleep traits (including the overall health sleep score and five sleep behaviors), and the occurrence (yes/no), frequency (constant/transient), and severity (upsetting/not upsetting) of tinnitus. Further, a prospective analysis of participants without tinnitus at baseline (n=9,581) was performed, who had been followed up for seven years (2012–2019) to assess the association between new-onset tinnitus and sleep characteristics. Moreover, a subgroup analysis was also carried out to estimate the differences in sex by dividing the participants into male and female groups. A sensitivity analysis was also conducted by excluding ear-related diseases to avoid their confounding effects on tinnitus (n=102,159). Results: In the cross-sectional analysis, participants with “current tinnitus” (OR: 1.13, 95% CI: 1.04–1.22, p=0.004) had a higher risk of having a poor overall healthy sleep score and unhealthy sleep behaviors such as short sleep durations (OR: 1.09, 95% CI: 1.04–1.14, p<0.001), late chronotypes (OR: 1.09, 95% CI: 1.05–1.13, p<0.001), and sleeplessness (OR: 1.16, 95% CI: 1.11–1.22, p<0.001) than those participants who “did not have current tinnitus.” However, this trend was not obvious between “constant tinnitus” and “transient tinnitus.” When considering the severity of tinnitus, the risk of “upsetting tinnitus” was obviously higher if participants had lower overall healthy sleep scores (OR: 1.31, 95% CI: 1.13–1.53, p<0.001). Additionally, short sleep duration (OR: 1.22, 95% CI: 1.12–1.33, p<0.001), late chronotypes (OR: 1.13, 95% CI: 1.04–1.22, p=0.003), and sleeplessness (OR: 1.43, 95% CI: 1.29–1.59, p<0.001) showed positive correlations with “upsetting tinnitus.” In the prospective analysis, sleeplessness presented a consistently significant association with “upsetting tinnitus” (RR: 2.28, P=0.001). Consistent results were observed in the sex subgroup analysis, where a much more pronounced trend was identified in females compared with males. The results of the sensitivity analysis were consistent with those of the cross-sectional and prospective analyses. Conclusions: Different types of sleep disturbance may be associated with the occurrence and severity of tinnitus; therefore, precise interventions for different types of sleep disturbance, particularly sleeplessness, may help in the prevention and treatment of tinnitus.

Keywords: tinnitus, sleep, sleep behaviors, sleep disturbance

Procedia PDF Downloads 140
2102 Principles of Risk Management in Surgery Department

Authors: Mohammad H. Yarmohammadian, Masoud Ferdosi, Abbas Haghshenas, Fatemeh Rezaei

Abstract:

Surgical procedures aim at preserving human life and improving quality of their life. However, there are many potential risk sources that can cause serious harm to patients. For centuries, managers believed that technical competence of a surgeon is the only key to a successful surgery. But over the past decade, risks are considered in terms of process-based safety procedures, teamwork and inter departmental communication. Aims: This study aims to determine how the process- biased surgical risk management should be done in terms of project management tool named ABS (Activity Breakdown Structure). Settings and Design: This study was conducted in two stages. First, literature review and meeting with professors was done to determine principles and framework of surgical risk management. Next, responsible teams for surgical patient journey were involved in following meeting to develop the process- biased surgical risk management. Methods and Material: This study is a qualitative research in which focus groups with the inductive approach is used. Sampling was performed to achieve representativeness through intensity sampling biased on experience and seniority. Analysis Method used: context analysis of interviews and consensus themes extracted from FDG meetings discussion was the analysis tool. Results: we developed the patient journey process in 5 main phases, 24 activities and 108 tasks. Then, responsible teams, transposition and allocated places for performing determined. Some activities and tasks themes were repeated in each phases like patient identification and records review because of their importance. Conclusions: Risk management of surgical departments is significant as this facility is the hospital’s largest cost and revenue center. Good communication between surgical team and other clinical teams outside surgery department through process- biased perspective could improve safety of patient under this procedure.

Keywords: risk management, activity breakdown structure (ABS), surgical department, medical sciences

Procedia PDF Downloads 300
2101 An Ancient Rule for Constructing Dodecagonal Quasi-Periodic Formations

Authors: Rima A. Ajlouni

Abstract:

The discovery of quasi-periodic structures in material science is revealing an exciting new class of symmetries, which has never been explored before. Due to their unique structural and visual properties, these symmetries are drawing interest from many scientific and design disciplines. Especially, in art and architecture, these symmetries can provide a rich source of geometry for exploring new patterns, forms, systems, and structures. However, the structural systems of these complicated symmetries are still posing a perplexing challenge. While much of their local order has been explored, the global governing system is still unresolved. Understanding their unique global long-range order is essential to their generation and application. The recent discovery of dodecagonal quasi-periodic patterns in historical Islamic architecture is generating a renewed interest into understanding the mathematical principles of traditional Islamic geometry. Astonishingly, many centuries before its description in the modern science, ancient artists, by using the most primitive tools (a compass and a straight edge), were able to construct patterns with quasi-periodic formations. These ancient patterns can be found all over the ancient Islamic world, many of which exhibit formations with 5, 8, 10 and 12 quasi-periodic symmetries. Based on the examination of these historical patterns and derived from the generating principles of Islamic geometry, a global multi-level structural model is presented that is able to describe the global long-range order of dodecagonal quasi-periodic formations in Islamic Architecture. Furthermore, this method is used to construct new quasi-periodic tiling systems as well as generating their deflation and inflation rules. This method can be used as a general guiding principle for constructing infinite patches of dodecagon-based quasi-periodic formations, without the need for local strategies (tiling, matching, grid, substitution, etc.) or complicated mathematics; providing an easy tool for scientists, mathematicians, teachers, designers and artists, to generate and study a wide range of dodecagonal quasi-periodic formations.

Keywords: dodecagonal, Islamic architecture, long-range order, quasi-periodi

Procedia PDF Downloads 401
2100 Development of Transmission and Packaging for Parallel Hybrid Light Commercial Vehicle

Authors: Vivek Thorat, Suhasini Desai

Abstract:

The hybrid electric vehicle is widely accepted as a promising short to mid-term technical solution due to noticeably improved efficiency and low emissions at competitive costs. Retro fitment of hybrid components into a conventional vehicle for achieving better performance is the best solution so far. But retro fitment includes major modifications into a conventional vehicle with a high cost. This paper focuses on the development of a P3x hybrid prototype with rear wheel drive parallel hybrid electric Light Commercial Vehicle (LCV) with minimum and low-cost modifications. This diesel Hybrid LCV is different from another hybrid with regard to the powertrain. The additional powertrain consists of continuous contact helical gear pair followed by chain and sprocket as a coupler for traction motor. Vehicle powertrain which is designed for the intended high-speed application. This work focuses on targeting of design, development, and packaging of this unique parallel diesel-electric vehicle which is based on multimode hybrid advantages. To demonstrate the practical applicability of this transmission with P3x hybrid configuration, one concept prototype vehicle has been build integrating the transmission. The hybrid system makes it easy to retrofit existing vehicle because the changes required into the vehicle chassis are a minimum. The additional system is designed for mainly five modes of operations which are engine only mode, electric-only mode, hybrid power mode, engine charging battery mode and regenerative braking mode. Its driving performance, fuel economy and emissions are measured and results are analyzed over a given drive cycle. Finally, the output results which are achieved by the first vehicle prototype during experimental testing is carried out on a chassis dynamometer using MIDC driving cycle. The results showed that the prototype hybrid vehicle is about 27% faster than the equivalent conventional vehicle. The fuel economy is increased by 20-25% approximately compared to the conventional powertrain.

Keywords: P3x configuration, LCV, hybrid electric vehicle, ROMAX, transmission

Procedia PDF Downloads 253
2099 An Investigation into the Crystallization Tendency/Kinetics of Amorphous Active Pharmaceutical Ingredients: A Case Study with Dipyridamole and Cinnarizine

Authors: Shrawan Baghel, Helen Cathcart, Biall J. O'Reilly

Abstract:

Amorphous drug formulations have great potential to enhance solubility and thus bioavailability of BCS class II drugs. However, the higher free energy and molecular mobility of the amorphous form lowers the activation energy barrier for crystallization and thermodynamically drives it towards the crystalline state which makes them unstable. Accurate determination of the crystallization tendency/kinetics is the key to the successful design and development of such systems. In this study, dipyridamole (DPM) and cinnarizine (CNZ) has been selected as model compounds. Thermodynamic fragility (m_T) is measured from the heat capacity change at the glass transition temperature (Tg) whereas dynamic fragility (m_D) is evaluated using methods based on extrapolation of configurational entropy to zero 〖(m〗_(D_CE )), and heating rate dependence of Tg 〖(m〗_(D_Tg)). The mean relaxation time of amorphous drugs was calculated from Vogel-Tammann-Fulcher (VTF) equation. Furthermore, the correlation between fragility and glass forming ability (GFA) of model drugs has been established and the relevance of these parameters to crystallization of amorphous drugs is also assessed. Moreover, the crystallization kinetics of model drugs under isothermal conditions has been studied using Johnson-Mehl-Avrami (JMA) approach to determine the Avrami constant ‘n’ which provides an insight into the mechanism of crystallization. To further probe into the crystallization mechanism, the non-isothermal crystallization kinetics of model systems was also analysed by statistically fitting the crystallization data to 15 different kinetic models and the relevance of model-free kinetic approach has been established. In addition, the crystallization mechanism for DPM and CNZ at each extent of transformation has been predicted. The calculated fragility, glass forming ability (GFA) and crystallization kinetics is found to be in good correlation with the stability prediction of amorphous solid dispersions. Thus, this research work involves a multidisciplinary approach to establish fragility, GFA and crystallization kinetics as stability predictors for amorphous drug formulations.

Keywords: amorphous, fragility, glass forming ability, molecular mobility, mean relaxation time, crystallization kinetics, stability

Procedia PDF Downloads 351
2098 Role of Higher Education Commission (HEC) in Strengthening the Academia and Industry Relationships: The Case of Pakistan

Authors: Shah Awan, Fahad Sultan, Shahid Jan Kakakhel

Abstract:

Higher education in the 21st century has been faced with game-changing developments impacting teaching and learning and also strengthening the academia and industry relationship. The academia and industry relationship plays a key role in economic development in developed, developing and emerging economies. The partnership not only explores innovation but also provide a real time experience of the theoretical knowledge. For this purpose, the paper assessing the role of HEC in the Pakistan and discusses the way in academia and industry contribute their role in improving Pakistani economy. Successive studies have reported the importance of innovation and technology , research development initiatives in public sector universities, and the significance of role of higher education commission in strengthening the academia and industrial relationship to improve performance and minimize failure. The paper presents the results of interviews conducted, using semi-structured interviews amongst 26 staff members of two public sector universities, higher education commission and managers from corporate sector.The study shows public sector universities face the several barriers in developing economy like Pakistan, to establish the successful collaboration between universities and industry. Of the participants interviewed, HEC provides an insufficient road map to improve organisational capabilities in facilitating and enhance the performance. The results of this study have demonstrated that HEC has to embrace and internalize support to industry and public sector universities to compete in the era of globalization. Publication of this research paper will help higher education sector to further strengthen research sector through industry and university collaboration. The research findings corroborate the findings of Dooley and Kirk who highlights the features of university-industry collaboration. Enhanced communication has implications for the quality of the product and human resource. Crucial for developing economies, feasible organisational design and framework is essential for the university-industry relationship.

Keywords: higher education commission, role, academia and industry relationship, Pakistan

Procedia PDF Downloads 467
2097 Field Emission Scanning Microscope Image Analysis for Porosity Characterization of Autoclaved Aerated Concrete

Authors: Venuka Kuruwita Arachchige Don, Mohamed Shaheen, Chris Goodier

Abstract:

Aerated autoclaved concrete (AAC) is known for its lightweight, easy handling, high thermal insulation, and extremely porous structure. Investigation of pore behavior in AAC is crucial for characterizing the material, standardizing design and production techniques, enhancing the mechanical, durability, and thermal performance, studying the effectiveness of protective measures, and analyzing the effects of weather conditions. The significant details of pores are complicated to observe with acknowledged accuracy. The High-resolution Field Emission Scanning Electron Microscope (FESEM) image analysis is a promising technique for investigating the pore behavior and density of AAC, which is adopted in this study. Mercury intrusion porosimeter and gas pycnometer were employed to characterize porosity distribution and density parameters. The analysis considered three different densities of AAC blocks and three layers in the altitude direction within each block. A set of understandings was presented to extract and analyze the details of pore shape, pore size, pore connectivity, and pore percentages from FESEM images of AAC. Average pore behavior outcomes per unit area were presented. Comparison of porosity distribution and density parameters revealed significant variations. FESEM imaging offered unparalleled insights into porosity behavior, surpassing the capabilities of other techniques. The analysis conducted from a multi-staged approach provides porosity percentage occupied by various pore categories, total porosity, variation of pore distribution compared to AAC densities and layers, number of two-dimensional and three-dimensional pores, variation of apparent and matrix densities concerning pore behaviors, variation of pore behavior with respect to aluminum content, and relationship among shape, diameter, connectivity, and percentage in each pore classification.

Keywords: autoclaved aerated concrete, density, imaging technique, microstructure, porosity behavior

Procedia PDF Downloads 66
2096 Lateralisation of Visual Function in Yellow-Eyed Mullet (Aldrichetta forsteri) and Its Role in Schooling Behaviour

Authors: Karen L. Middlemiss, Denham G. Cook, Peter Jaksons, Alistair Jerrett, William Davison

Abstract:

Lateralisation of cognitive function is a common phenomenon found throughout the animal kingdom. Strong biases in functional behaviours have evolved from asymmetrical brain hemispheres which differ in structure and/or cognitive function. In fish, lateralisation is involved in visually mediated behaviours such as schooling, predator avoidance, and foraging, and is considered to have a direct impact on species fitness. Currently, there is very little literature on the role of lateralisation in fish schools. The yellow-eyed mullet (Aldrichetta forsteri), is an estuarine and coastal species found commonly throughout temperate regions of Australia and New Zealand. This study sought to quantify visually mediated behaviours in yellow-eyed mullet to identify the significance of lateralisation, and the factors which influence functional behaviours in schooling fish. Our approach to study design was to conduct a series of tank based experiments investigating; a) individual and population level lateralisation, b) schooling behaviour, and d) optic lobe anatomy. Yellow-eyed mullet showed individual variation in direction and strength of lateralisation in juveniles, and trait specific spatial positioning within the school was evidenced in strongly lateralised fish. In combination with observed differences in schooling behaviour, the possibility of ontogenetic plasticity in both behavioural lateralisation and optic lobe morphology in adults is suggested. These findings highlight the need for research into the genetic and environmental factors (epigenetics) which drive functional behaviours such as schooling, feeding and aggression. Improved knowledge on collective behaviour could have significant benefits to captive rearing programmes through improved culture techniques and will add to the limited body of knowledge on the complex ecophysiological interactions present in our inshore fisheries.

Keywords: cerebral asymmetry, fisheries, schooling, visual bias

Procedia PDF Downloads 212
2095 Finite Element Analysis of Shape Memory Alloy Stents in Coronary Arteries

Authors: Amatulraheem Al-Abassi, K. Khanafer, Ibrahim Deiab

Abstract:

The coronary artery stent is a promising technology that can treat various coronary diseases. Materials used for manufacturing medical stents should have high biocompatible properties. Stent alloys, in particular, are remarkably promising good clinical outcomes, however, there is threaten of restenosis (reoccurring of artery narrowing due to fatty plaque), stent recoiling, or in long-term the occurrence of stent fracture. However, stents that are made of Nickel-titanium (Nitinol) can bare extensive plastic deformation and resist restenosis. This shape memory alloy has outstanding mechanical properties. Nitinol is a unique shape memory alloy as it has unique mechanical properties such as; biocompatibility, super-elasticity, and recovery to original shape under certain loads. Stent failure may cause complications in vascular diseases and possibly blockage of blood flow. Thus, studying the behaviors of the stent under different medical conditions will help the doctors and cardiologists to predict when it is necessary to change the stent in order to prevent any severe morbidity outcomes. To the best of our knowledge, there are limited published papers that analyze the stent behavior with regards to the contact surfaces of plaque layer and blood vessel. Thus, stent material properties will be discussed in this investigation to highlight the mechanical and clinical differences between various stents. This research analyzes the performance of Nitinol stent in well-known stent design to determine its bearing with stress and its dislocation in blood vessels, in comparison to stents made of different biocompatible materials. In addition, a study of its performance will be represented in the system. Finite Element Analysis is the core of this study. Thus, a physical representative model will be discussed to show the distribution of stress and strain along the interaction surface between the stent and the artery. The reaction of vascular tissue to the stent will be evaluated to predict the possibility of restenosis within the treated area.

Keywords: shape memory alloy, stent, coronary artery, finite element analysis

Procedia PDF Downloads 200
2094 Aerodynamic Optimization of Oblique Biplane by Using Supercritical Airfoil

Authors: Asma Abdullah, Awais Khan, Reem Al-Ghumlasi, Pritam Kumari, Yasir Nawaz

Abstract:

Introduction: This study verified the potential applications of two Oblique Wing configurations that were initiated by the Germans Aerodynamicists during the WWII. Due to the end of the war, this project was not completed and in this research is targeting the revival of German Oblique biplane configuration. The research draws upon the use of two Oblique wings mounted on the top and bottom of the fuselage through a single pivot. The wings are capable of sweeping at different angles ranging from 0° at takeoff to 60° at cruising Altitude. The top wing, right half, behaves like a forward swept wing and the left half, behaves like a backward swept wing. Vice Versa applies to the lower wing. This opposite deflection of the top and lower wing cancel out the rotary moment created by each wing and the aircraft remains stable. Problem to better understand or solve: The purpose of this research is to investigate the potential of achieving improved aerodynamic performance and efficiency of flight at a wide range of sweep angles. This will help examine the most accurate value for the sweep angle at which the aircraft will possess both stability and better aerodynamics. Explaining the methods used: The Aircraft configuration is designed using Solidworks after which a series of Aerodynamic prediction are conducted, both in the subsonic and the supersonic flow regime. Computations are carried on Ansys Fluent. The results are then compared to theoretical and flight data of different Supersonic fighter aircraft of the same category (AD-1) and with the Wind tunnel testing model at subsonic speed. Results: At zero sweep angle, the aircraft has an excellent lift coefficient value with almost double that found for fighter jets. In acquiring of supersonic speed the sweep angle is increased to maximum 60 degrees depending on the mission profile. General findings: Oblique biplane can be the future fighter jet aircraft because of its high value performance in terms of aerodynamics, cost, structural design and weight.

Keywords: biplane, oblique wing, sweep angle, supercritical airfoil

Procedia PDF Downloads 276
2093 Developing Women Entrepreneurial Leadership: 'From Vision to Practice

Authors: Saira Maqbool, Qaisara Parveen, Muhammad Arshad Dahar

Abstract:

Improving females' involvement in management and enterprises in Pakistan requires the development of female entrepreneurs as leaders. Entrepreneurial education aims for providing students the knowledge, aptitudes and motivation to energize innovative accomplishment in various settings. Assortments of venture instruction are advertised at all stages of mentoring, from fundamental or discretionary institutes through graduate institutional platforms. The business enterprise will be considered the procedure by which a looming business visionary or business person pursues after openings without respect to the resources they directly regulate. This entails the ability of the business visionary to join every single other generation. This study explores the relationship between developing Women's Leadership skills and Entrepreneurship Education The essential reason for this consider was to analyze the role of Entrepreneurship Edification (EE) towards women's Leadership and develop entrepreneurial intentions among students. The major goal of this study was to foster entrepreneurial attitudes among PMAS Arid Agriculture University undergraduate students concerning their choice to work for themselves. This study focuses on the motivation and interest of female students in the social sciences to build entrepreneurial leadership skills. The quantitative analysis used a true-experimental, pretest-posttest control group research design. Female undergraduate students from PMAS Arid Agriculture University made up the study population. For entrepreneurial activity, a training module has been created. The students underwent a three-week training program at PMAS Arid Agriculture University, where they learned about entrepreneurial leadership abilities. The quantitative data were analyzed using descriptive statistics and T-tests. The findings indicated that students acquired entrepreneurial leadership skills and intentions after training. They have decided to launch their businesses as leaders. It is advised that other PMAS Arid Agriculture University departments use the training module and course outline because the research's usage of them has important results.

Keywords: business, entrepreneurial, intentions, leadership, women

Procedia PDF Downloads 64
2092 Designing an Adventure: University of Southern California’s Experiment in Using Alternate Reality Games to Educate Students and Inspire Change

Authors: Anahita Dalmia

Abstract:

There has been a recent rise in ‘audience-centric’ and immersive storytelling. This indicates audiences are gaining interest in experiencing real adventure with everything that encompasses the struggle, the new friendships, skill development, and growth. This paper examines two themed alternate reality games created by a group of students at the University of Southern California as an experiment in how to design an adventure and to evaluate its impact on participants. The experiences combined immersive improvisational theatre and live-action roleplaying to create socially aware experiences within the timespan of four hours, using Harry Potter and mythology as themes. In each experiment, over 500 players simultaneously embarked on quests -a series of challenges including puzzle-solving, scavenger-hunting, and character interactions- to join a narrative faction. While playing, the participants were asked to choose faction alignments based on the characters they interacted with, as well as their own backgrounds and moral values. During the narrative finale, the impact of their individual choices on the larger story and game were revealed. After the conclusion of each experience, participants filled out questionnaires and were interviewed. Through this, it was discovered that participants developed transferable problem-solving, team-work, and persuasion skills. They also learned about the theme of the experience and reflected on their own moral values and judgment-making abilities after they realized the consequences of their actions in the game-world, inspiring some participants to make changes outside of it. This reveals that alternative reality games can lead to socialization, educational development, and real-world change in a variety of contexts when implemented correctly. This experiment has begun to discover the value of alternate reality games in a real-world context and to develop a reproducible format to continue to create such an impact.

Keywords: adventure, alternate reality games, education, immersive entertainment, interactive entertainment

Procedia PDF Downloads 131
2091 Use of SUDOKU Design to Assess the Implications of the Block Size and Testing Order on Efficiency and Precision of Dulce De Leche Preference Estimation

Authors: Jéssica Ferreira Rodrigues, Júlio Silvio De Sousa Bueno Filho, Vanessa Rios De Souza, Ana Carla Marques Pinheiro

Abstract:

This study aimed to evaluate the implications of the block size and testing order on efficiency and precision of preference estimation for Dulce de leche samples. Efficiency was defined as the inverse of the average variance of pairwise comparisons among treatments. Precision was defined as the inverse of the variance of treatment means (or effects) estimates. The experiment was originally designed to test 16 treatments as a series of 8 Sudoku 16x16 designs being 4 randomized independently and 4 others in the reverse order, to yield balance in testing order. Linear mixed models were assigned to the whole experiment with 112 testers and all their grades, as well as their partially balanced subgroups, namely: a) experiment with the four initial EU; b) experiment with EU 5 to 8; c) experiment with EU 9 to 12; and b) experiment with EU 13 to 16. To record responses we used a nine-point hedonic scale, it was assumed a mixed linear model analysis with random tester and treatments effects and with fixed test order effect. Analysis of a cumulative random effects probit link model was very similar, with essentially no different conclusions and for simplicity, we present the results using Gaussian assumption. R-CRAN library lme4 and its function lmer (Fit Linear Mixed-Effects Models) was used for the mixed models and libraries Bayesthresh (default Gaussian threshold function) and ordinal with the function clmm (Cumulative Link Mixed Model) was used to check Bayesian analysis of threshold models and cumulative link probit models. It was noted that the number of samples tested in the same session can influence the acceptance level, underestimating the acceptance. However, proving a large number of samples can help to improve the samples discrimination.

Keywords: acceptance, block size, mixed linear model, testing order, testing order

Procedia PDF Downloads 320
2090 Spectral Response Measurements and Materials Analysis of Ageing Solar Photovoltaic Modules

Authors: T. H. Huang, C. Y. Gao, C. H. Lin, J. L. Kwo, Y. K. Tseng

Abstract:

The design and reliability of solar photovoltaic modules are crucial to the development of solar energy, and efforts are still being made to extend the life of photovoltaic modules to improve their efficiency because natural aging is time-consuming and does not provide manufacturers and investors with timely information, accelerated aging is currently the best way to estimate the life of photovoltaic modules. In this study, the accelerated aging of different light sources was combined with spectral response measurements to understand the effect of light sources on aging tests. In this study, there are two types of experimental samples: packaged and unpackaged and then irradiated with full-spectrum and UVC light sources for accelerated aging, as well as a control group without aging. The full-spectrum aging was performed by irradiating the solar cell with a xenon lamp like the solar spectrum for two weeks, while the accelerated aging was performed by irradiating the solar cell with a UVC lamp for two weeks. The samples were first visually observed, and infrared thermal images were taken, and then the electrical (IV) and Spectral Responsivity (SR) data were obtained by measuring the spectral response of the samples, followed by Scanning Electron Microscopy (SEM), Raman spectroscopy (Raman), and X-ray Diffraction (XRD) analysis. The results of electrical (IV) and Spectral Responsivity (SR) and material analyses were used to compare the differences between packaged and unpackaged solar cells with full spectral aging, accelerated UVC aging, and unaged solar cells. The main objective of this study is to compare the difference in the aging of packaged and unpackaged solar cells by irradiating different light sources. We determined by infrared thermal imaging that both full-spectrum aging and UVC accelerated aging increase the defects of solar cells, and IV measurements demonstrated that the conversion efficiency of solar cells decreases after full-spectrum aging and UVC accelerated aging. SEM observed some scorch marks on both unpackaged UVC accelerated aging solar cells and unpackaged full-spectrum aging solar cells. Raman spectroscopy examines the Si intensity of solar cells, and XRD confirms the crystallinity of solar cells by the intensity of Si and Ag winding peaks.

Keywords: solar cell, aging, spectral response measurement

Procedia PDF Downloads 98
2089 Application of Response Surface Methodology in Optimizing Chitosan-Argan Nutshell Beads for Radioactive Wastewater Treatment

Authors: F. F. Zahra, E. G. Touria, Y. Samia, M. Ahmed, H. Hasna, B. M. Latifa

Abstract:

The presence of radioactive contaminants in wastewater poses a significant environmental and health risk, necessitating effective treatment solutions. This study investigates the optimization of chitosan-Argan nutshell beads for the removal of radioactive elements from wastewater, utilizing Response Surface Methodology (RSM) to enhance the treatment efficiency. Chitosan, known for its biocompatibility and adsorption properties, was combined with Argan nutshell powder to form composite beads. These beads were then evaluated for their capacity to remove radioactive contaminants from synthetic wastewater. The Box-Behnken design (BBD) under RSM was employed to analyze the influence of key operational parameters, including initial contaminant concentration, pH, bead dosage, and contact time, on the removal efficiency. Experimental results indicated that all tested parameters significantly affected the removal efficiency, with initial contaminant concentration and pH showing the most substantial impact. The optimized conditions, as determined by RSM, were found to be an initial contaminant concentration of 50 mg/L, a pH of 6, a bead dosage of 0.5 g/L, and a contact time of 120 minutes. Under these conditions, the removal efficiency reached up to 95%, demonstrating the potential of chitosan-Argan nutshell beads as a viable solution for radioactive wastewater treatment. Furthermore, the adsorption process was characterized by fitting the experimental data to various isotherm and kinetic models. The adsorption isotherms conformed well to the Langmuir model, indicating monolayer adsorption, while the kinetic data were best described by the pseudo-second-order model, suggesting chemisorption as the primary mechanism. This study highlights the efficacy of chitosan-Argan nutshell beads in removing radioactive contaminants from wastewater and underscores the importance of optimizing treatment parameters using RSM. The findings provide a foundation for developing cost-effective and environmentally friendly treatment technologies for radioactive wastewater.

Keywords: adsorption, argan nutshell, beads, chitosan, mechanism, optimization, radioactive wastewater, response surface methodology

Procedia PDF Downloads 29
2088 Executive Functions Directly Associated with Severity of Perceived Pain above and beyond Depression in the Context of Medical Rehabilitation

Authors: O. Elkana, O Heyman, S. Hamdan, M. Franko, J. Vatine

Abstract:

Objective: To investigate whether a direct link exists between perceived pain (PP) and executive functions (EF), above and beyond the influence of depression symptoms, in the context of medical rehabilitation. Design: Cross-sectional study. Setting: Rehabilitation Hospital. Participants: 125 medical records of hospitalized patients were screened for matching to our inclusion criteria. Only 60 patients were found fit and were asked to participate. 19 decline to participate on personal basis. The 41 neurologically intact patients (mean age 46, SD 14.96) that participated in this study were in their sub-acute stage of recovery, with fluent Hebrew, with intact upper limb (to neutralize influence on psychomotor performances) and without an organic brain damage. Main Outcome Measures: EF were assessed using the Wisconsin Card Sorting Test (WCST) and the Stop-Signal Test (SST). PP was measured using 3 well-known pain questionnaires: Pain Disability Index (PDI), The Short-Form McGill Questionnaire (SF-MPQ) and the Pain Catastrophizing Scale (PCS). Perceived pain index (PPI) was calculated by the mean score composite from the 3 pain questionnaires. Depression symptoms were assessed using the Patient Health Questionnaire (PHQ-9). Results: The results indicate that irrespective of the presence of depression symptoms, PP is directly correlated with response inhibition (SST partial correlation: r=0.5; p=0.001) and mental flexibility (WSCT partial correlation: r=-0.37; p=0.021), suggesting decreased performance in EF as PP severity increases. High correlations were found between the 3 pain measurements: SF-MPQ with PDI (r=0.62, p<0.001), SF-MPQ with PCS (r=0.58, p<0.001) and PDI with PCS (r=0.38, p=0.016) and each questionnaire alone was also significantly associated with EF; thus, no specific questionnaires ‘pulled’ the results obtained by the general index (PPI). Conclusion: Examining the direct association between PP and EF, beyond the contribution of depression symptoms, provides further clinical evidence suggesting that EF and PP share underlying mediating neuronal mechanisms. Clinically, the importance of assessing patients' EF abilities as well as PP severity during rehabilitation is underscored.

Keywords: depression, executive functions, mental-flexibility, neuropsychology, pain perception, perceived pain, response inhibition

Procedia PDF Downloads 247
2087 Polymer-Layered Gold Nanoparticles: Preparation, Properties and Uses of a New Class of Materials

Authors: S. M. Chabane sari S. Zargou, A.R. Senoudi, F. Benmouna

Abstract:

Immobilization of nano particles (NPs) is the subject of numerous studies pertaining to the design of polymer nano composites, supported catalysts, bioactive colloidal crystals, inverse opals for novel optical materials, latex templated-hollow inorganic capsules, immunodiagnostic assays; “Pickering” emulsion polymerization for making latex particles and film-forming composites or Janus particles; chemo- and biosensors, tunable plasmonic nano structures, hybrid porous monoliths for separation science and technology, biocidal polymer/metal nano particle composite coatings, and so on. Particularly, in the recent years, the literature has witnessed an impressive progress of investigations on polymer coatings, grafts and particles as supports for anchoring nano particles. This is actually due to several factors: polymer chains are flexible and may contain a variety of functional groups that are able to efficiently immobilize nano particles and their precursors by dispersive or van der Waals, electrostatic, hydrogen or covalent bonds. We review methods to prepare polymer-immobilized nano particles through a plethora of strategies in view of developing systems for separation, sensing, extraction and catalysis. The emphasis is on methods to provide (i) polymer brushes and grafts; (ii) monoliths and porous polymer systems; (iii) natural polymers and (iv) conjugated polymers as platforms for anchoring nano particles. The latter range from soft bio macromolecular species (proteins, DNA) to metallic, C60, semiconductor and oxide nano particles; they can be attached through electrostatic interactions or covalent bonding. It is very clear that physicochemical properties of polymers (e.g. sensing and separation) are enhanced by anchored nano particles, while polymers provide excellent platforms for dispersing nano particles for e.g. high catalytic performances. We thus anticipate that the synergetic role of polymeric supports and anchored particles will increasingly be exploited in view of designing unique hybrid systems with unprecedented properties.

Keywords: gold, layer, polymer, macromolecular

Procedia PDF Downloads 390
2086 Outcome of Bowel Management Program in Patient with Spinal Cord Injury

Authors: Roongtiwa Chobchuen, Angkana Srikhan, Pattra Wattanapan

Abstract:

Background: Neurogenic bowel is common condition after spinal cord injury. Most of spinal cord injured patients have motor weakness, mobility impairment which leads to constipation. Moreover, the neural pathway involving bowel function is interrupted. Therefore, the bowel management program should be implemented in nursing care in the earliest time after the onset of the disease to prevent the morbidity and mortality. Objective: To study the outcome of bowel management program of the patients with spinal cord injury who admitted for rehabilitation program. Study design: Descriptive study. Setting: Rehabilitation ward in Srinagarind Hospital. Populations: patients with subacute to chronic spinal cord injury who admitted at rehabilitation ward, Srinagarind hospital, aged over 18 years old. Instrument: The neurogenic bowel dysfunction score (NBDS) was used to determine the severity of neurogenic bowel. Procedure and statistical analysis: All participants were asked to complete the demographic data; age gender, duration of disease, diagnosis. The individual bowel function was assessed using NBDS at admission. The patients and caregivers were trained by nurses about the bowel management program which consisted of diet modification, abdominal massage, digital stimulation, stool evacuation including medication and physical activity. The outcome of the bowel management program was assessed by NBDS at discharge. The chi-square test was used to detect the difference in severity of neurogenic bowel at admission and discharge. Results: Sixteen spinal cord injured patients were enrolled in the study (age 45 ± 17 years old, 69% were male). Most of them (50%) were tetraplegia. On the admission, 12.5%, 12.5%, 43.75% and 31.25% were categorized as very minor (NBDS 0-6), minor (NBDS 7-9), moderate (NBDS 10-13) and severe (NBDS 14+) respectively. The severity of neurogenic bowel was decreased significantly at discharge (56.25%, 18.755%, 18.75% and 6.25% for very minor, minor, moderate and severe group respectively; p < 0.001) compared with NBDS at admission. Conclusions: Implementation of the effective bowel program decrease the severity of the neurogenic bowel in patient with spinal cord injury.

Keywords: neurogenic bowel, NBDS, spinal cord injury, bowel program

Procedia PDF Downloads 242
2085 Improving Fluid Catalytic Cracking Unit Performance through Low Cost Debottlenecking

Authors: Saidulu Gadari, Manoj Kumar Yadav, V. K. Satheesh, Debasis Bhattacharyya, S. S. V. Ramakumar, Subhajit Sarkar

Abstract:

Most Fluid Catalytic Cracking Units (FCCUs) are big profit makers and hence, always operated with several constraints. It is the primary source for production of gasoline, light olefins as petrochemical feedstocks, feedstock for alkylate & oxygenates, LPG, etc. in a refinery. Increasing unit capacity and improving product yields as well as qualities such as gasoline RON have dramatic impact on the refinery economics. FCCUs are often debottlenecked significantly beyond their original design capacities. Depending upon the unit configuration, operating conditions, and feedstock quality, the FCC unit can have a variety of bottlenecks. While some of these are aimed to increase the feed rate, improve the conversion, etc., the others are aimed to improve the reliability of the equipment or overall unit. Apart from investment cost, the other factors considered generally while evaluating the debottlenecking options are shutdown days, faster payback, risk on investment, etc. A low-cost solution such as replacement of feed injectors, air distributor, steam distributors, spent catalyst distributor, efficient cyclone system, etc. are the preferred way of upgrading FCCU. It also has lower lead time from idea inception to implementation. This paper discusses various bottlenecks generally encountered in FCCU and presents a case study on improvement of performance of one of the FCCUs in IndianOil through implementation of cost-effective technical solution including use of improved internals in Reactor-Regeneration (R-R) section. After implementation reduction in regenerator air, gas superficial velocity in regenerator and cyclone velocities by about 10% and improvement of CLO yield from 10 to 6 wt% have been achieved. By ensuring proper pressure balance and optimum immersion of cyclone dipleg in the standpipe, frequent formation of perforations in regenerator cyclones could be addressed which in turn improved the unit on-stream factor.

Keywords: FCC, low-cost, revamp, debottleneck, internals, distributors, cyclone, dipleg

Procedia PDF Downloads 214
2084 Increasing Sulfur Handling Cost Efficiency Using the Eco Sulfur Paving Block Method at PT Pertamina EP Field Cepu

Authors: Adha Bayu Wijaya, A. Zainal Abidin, Naufal Baihaqi, Joko Suprayitno, Astika Titistiti, Muslim Adi Wijaya, Endah Tri Lestari, Agung Wibowo

Abstract:

Sulfur is a non-metallic chemical element in the form of a yellow crystalline solid with the chemical formula, and is formed from several types of natural and artificial chemical reactions. Commercial applications of sulfur processed products can be found in various aspects of life, for example in the use of processed sulfur as paving blocks. The Gundih Central Processing Plant (CPP) is capable of producing 14 tons/day of sulfur pellets. This amount comes from the high H2S content of the wells with a total concentration of 20,000 ppm and a volume accumulation of 14 MMSCFD acid gas. H2S is converted to sulfur using the thiobacillus microbe in the Biological Sulfur Recovery Unit (BSRU) with a sulfur product purity level greater than 95%. In 2018 sulfur production at Gundih CPP was recorded at 4044 tons which could potentially trigger serious problems from an environmental aspect. The use of sulfur as material for making paving blocks is an alternative solution in addressing the potential impact on the environment, as regulated by Government Regulation No.22 of Year 2021 concerning the Waste Management of Non-Hazardous and Toxic Substances (B3), and the high cost of handling sulfur by third parties. The design mix of ratio sulfur paving blocks is 22% cements, rock ash 67%, and 11% of sulfur pellets. The sulfur used in making the paving mixture is pure sulfur, namely the side product category without any contaminants, thereby eliminating the potential for environmental pollution when implementing sulfur paving. Strength tests of sulfur paving materials have also been confirmed by external laboratories. The standard used in making sulfur paving blocks refers to the SNI 03-0691-1996 standard. With the results of sulfur paving blocks made according to quality B. Currently, sulfur paving blocks are used in building access to wells locations and in public roads in the Cepu Field area as a contribution from Corporate Social Responsibility (CSR).

Keywords: sulphur, innovation, paving block, CSR, sulphur paving

Procedia PDF Downloads 74
2083 Neonatal Mortality, Infant Mortality, and Under-five Mortality Rates in the Provinces of Zimbabwe: A Geostatistical and Spatial Analysis of Public Health Policy Provisions

Authors: Jevonte Abioye, Dylan Savary

Abstract:

The aim of this research is to present a disaggregated geostatistical analysis of the subnational provincial trends of child mortality variation in Zimbabwe from a child health policy perspective. Soon after gaining independence in 1980, the government embarked on efforts towards promoting equitable health care, namely through the provision of primary health care. Government intervention programmes brought hope and promise, but achieving equity in primary health care coverage was hindered by previous existing disparities in maternal health care disproportionately concentrated in urban settings to the detriment of rural communities. The article highlights policies and programs adopted by the government during the millennium development goals period between 1990-2015 as a response to the inequities that characterised the country’s maternal health care. A longitudinal comparative method for a spatial variation on child mortality rates across provinces is developed based on geostatistical analysis. Cross-sectional and time-series data was extracted from the World Health Organisation (WHO) global health observatory data repository, demographic health survey reports, and previous academic and technical publications. Results suggest that although health care policy was uniform across provinces, not all provinces received the same antenatal and perinatal services. Accordingly, provincial rates of child mortality growth between 1994 and 2015 varied significantly. Evidence on the trends of child mortality rates and maternal health policies in Zimbabwe can be valuable for public child health policy planning and public service delivery design both in Zimbabwe and across developing countries pursuing the sustainable development agenda.

Keywords: antenatal care, perinatal care, infant mortality rate, neonatal mortality rate, under-five mortality rate, millennium development goals, sustainable development agenda

Procedia PDF Downloads 203
2082 Climate Smart Agriculture: Nano Technology in Solar Drying

Authors: Figen Kadirgan, M. A. Neset Kadirgan, Gokcen A. Ciftcioglu

Abstract:

Addressing food security and climate change challenges have to be done in an integrated manner. To increase food production and to reduce emissions intensity, thus contributing to mitigate climate change, food systems have to be more efficient in the use of resources. To ensure food security and adapt to climate change they have to become more resilient. The changes required in agricultural and food systems will require the creation of supporting institutions and enterprises to provide services and inputs to smallholders, fishermen and pastoralists, and transform and commercialize their production more efficiently. Thus there is continously growing need to switch to green economy where simultaneously causes reduction in carbon emissions and pollution, enhances energy and resource-use efficiency; and prevents the loss of biodiversity and ecosystem services. Smart Agriculture takes into account the four dimensions of food security, availability, accessibility, utilization, and stability. It is well known that, the increase in world population will strengthen the population-food imbalance. The emphasis on reduction of food losses makes a point on production, on farmers, on increasing productivity and income ensuring food security. Where also small farmers enhance their income and stabilize their budget. The use of solar drying for agricultural, marine or meat products is very important for preservation. Traditional sun drying is a relatively slow process where poor food quality is seen due to an infestation of insects, enzymatic reactions, microorganism growth and micotoxin development. In contrast, solar drying has a sound solution to all these negative effects of natural drying and artificial mechanical drying. The technical directions in the development of solar drying systems for agricultural products are compact collector design with high efficiency and low cost. In this study, using solar selective surface produced in Selektif Teknoloji Co. Inc. Ltd., solar dryers with high efficiency will be developed and a feasibility study will be realized.

Keywords: energy, renewable energy, solar collector, solar drying

Procedia PDF Downloads 223
2081 Animal-Assisted Therapy: A Perspective From Singapore

Authors: Julia Wong, Hua Beng Lim, Petrina Goh, Johanna Foo, Caleb Ng, Nurul ‘Aqilah Bte Mohd Taufek

Abstract:

Animal-assisted therapy (AAT) utilizes human-animal interaction to achieve specific therapeutic goals, and its efficacy has been demonstrated across various settings overseas. The use of AAT in Singapore, however, is still limited. Ang Mo Kio-Thye Hua Kwan (AMKH) is one of the first community hospitals in Singapore to use AAT to complement its occupational therapy services with elderly patients. This study explored the perspectives of AMKH’s occupational therapists (OTs) in relation to AAT to understand barriers and enablers in implementing and practising AAT. We also examined how OTs at-large across practice settings perceive AAT. A mixed method design was used. 64 OTs at-large participated in on online survey, and 7 AMKH OTs were interviewed individually via Zoom. Survey results were analysed with descriptive and Mann-Whitney U tests. Interviews were thematically analysed. AMKH OTs perceived various benefits of AAT articulated in overseas studies in domains such as motivation and participation, emotional, social interaction, sensory tactile stimulation, and cognition. Interestingly, this perception was also supported by 67% of OTs who had responded to the survey, even though most of the OTs who had participated in the survey had no experience in AAT. Despite the perceived benefits of AAT, both OTs from AMKH and those at-large articulated concerns on risks pertaining to AAT (e.g., allergies, unexpected animal behaviour, infections, etc). However, AMKH OTs shared several ways to mitigate these risks, demonstrating their ability to develop a safe program. For e.g., volunteers and their dogs must meet specific recruitment criteria, stringent protocols are used to screen and match dogs with patients, and there are strict exclusion criteria for patients participating in AAT. AMKH OTs’ experience suggests that additional skills and knowledge are required to implement AAT, therefore, healthcare institutions should first consider improving their staff training and risk mitigation knowledge before implementing AAT. They can also refer to AMKH’s AAT protocols and those found in overseas studies, but institutions must adapt the protocols to fit their institutional settings and patients’ profiles.

Keywords: animal-assisted therapy, dog-assisted therapy, occupational therapy, complementary therapy

Procedia PDF Downloads 148
2080 Ethical Considerations in the Execution of Post-Fuel Subsidy Removal Support Initiatives in Kwara State, Nigeria: A Focus from Islamic Principles

Authors: Muhammad Jum’at Dasuki

Abstract:

This study investigates the ethical implications of post-fuel subsidy removal support initiatives in Kwara State, Nigeria, with a focus on the application of Islamic principles. The contentious issue of subsidy removal carries significant social and economic consequences, emphasizing the crucial role of ethical considerations in policy implementation. The research provides a comprehensive background on fuel subsidy removal in Nigeria and its implications. Examining post-fuel subsidy removal palliative measures in Kwara State, the study focuses on design and implementation challenges, ethical considerations, transparency, equity, and public trust. Utilizing a case study approach offers insights and best practices. The methodology includes primary sources through in-depth oral interviews and secondary sources like textbooks and journals, aiming for a holistic understanding of the ethical dimensions of support initiatives within the context of Islamic principles in Kwara State. The objective is to contribute to policy decisions and community development. The study recommends an ethically sound implementation of post-fuel subsidy removal support initiatives, emphasizing transparency, accountability, and inclusivity. It advocates for the inclusiveness of governmental palliatives, reaching both civil servants and common individuals in the state. Continuous distribution during fuel subsidy removal challenges is deemed vital. Additionally, extending free or subsidized transportation beyond higher institutions to the general populace is suggested. Consideration should also be given to reducing governmental hospital bills or providing free health services. The study underscores the importance of Islamic ethics in Nigerian governance and employs a case study approach to assess palliative measures in Kwara State, offering practical insights for policymakers and stakeholders.

Keywords: considerations, ethical, palliative, post-fuel subsidy removal

Procedia PDF Downloads 43
2079 Designing Stochastic Non-Invasively Applied DC Pulses to Suppress Tremors in Multiple Sclerosis by Computational Modeling

Authors: Aamna Lawrence, Ashutosh Mishra

Abstract:

Tremors occur in 60% of the patients who have Multiple Sclerosis (MS), the most common demyelinating disease that affects the central and peripheral nervous system, and are the primary cause of disability in young adults. While pharmacological agents provide minimal benefits, surgical interventions like Deep Brain Stimulation and Thalamotomy are riddled with dangerous complications which make non-invasive electrical stimulation an appealing treatment of choice for dealing with tremors. Hence, we hypothesized that if the non-invasive electrical stimulation parameters (mainly frequency) can be computed by mathematically modeling the nerve fibre to take into consideration the minutest details of the axon morphologies, tremors due to demyelination can be optimally alleviated. In this computational study, we have modeled the random demyelination pattern in a nerve fibre that typically manifests in MS using the High-Density Hodgkin-Huxley model with suitable modifications to account for the myelin. The internode of the nerve fibre in our model could have up to ten demyelinated regions each having random length and myelin thickness. The arrival time of action potentials traveling the demyelinated and the normally myelinated nerve fibre between two fixed points in space was noted, and its relationship with the nerve fibre radius ranging from 5µm to 12µm was analyzed. It was interesting to note that there were no overlaps between the arrival time for action potentials traversing the demyelinated and normally myelinated nerve fibres even when a single internode of the nerve fibre was demyelinated. The study gave us an opportunity to design DC pulses whose frequency of application would be a function of the random demyelination pattern to block only the delayed tremor-causing action potentials. The DC pulses could be delivered to the peripheral nervous system non-invasively by an electrode bracelet that would suppress any shakiness beyond it thus paving the way for wearable neuro-rehabilitative technologies.

Keywords: demyelination, Hodgkin-Huxley model, non-invasive electrical stimulation, tremor

Procedia PDF Downloads 127