Search results for: structures & structural stability
49 Design and Fabrication of AI-Driven Kinetic Facades with Soft Robotics for Optimized Building Energy Performance
Authors: Mohammadreza Kashizadeh, Mohammadamin Hashemi
Abstract:
This paper explores a kinetic building facade designed for optimal energy capture and architectural expression. The system integrates photovoltaic panels with soft robotic actuators for precise solar tracking, resulting in enhanced electricity generation compared to static facades. Driven by the growing interest in dynamic building envelopes, the exploration of facade systems are necessitated. Increased energy generation and regulation of energy flow within buildings are potential benefits offered by integrating photovoltaic (PV) panels as kinetic elements. However, incorporating these technologies into mainstream architecture presents challenges due to the complexity of coordinating multiple systems. To address this, the design leverages soft robotic actuators, known for their compliance, resilience, and ease of integration. Additionally, the project investigates the potential for employing Large Language Models (LLMs) to streamline the design process. The research methodology involved design development, material selection, component fabrication, and system assembly. Grasshopper (GH) was employed within the digital design environment for parametric modeling and scripting logic, and an LLM was experimented with to generate Python code for the creation of a random surface with user-defined parameters. Various techniques, including casting, Three-dimensional 3D printing, and laser cutting, were utilized to fabricate physical components. A modular assembly approach was adopted to facilitate installation and maintenance. A case study focusing on the application of this facade system to an existing library building at Polytechnic University of Milan is presented. The system is divided into sub-frames to optimize solar exposure while maintaining a visually appealing aesthetic. Preliminary structural analyses were conducted using Karamba3D to assess deflection behavior and axial loads within the cable net structure. Additionally, Finite Element (FE) simulations were performed in Abaqus to evaluate the mechanical response of the soft robotic actuators under pneumatic pressure. To validate the design, a physical prototype was created using a mold adapted for a 3D printer's limitations. Casting Silicone Rubber Sil 15 was used for its flexibility and durability. The 3D-printed mold components were assembled, filled with the silicone mixture, and cured. After demolding, nodes and cables were 3D-printed and connected to form the structure, demonstrating the feasibility of the design. This work demonstrates the potential of soft robotics and Artificial Intelligence (AI) for advancements in sustainable building design and construction. The project successfully integrates these technologies to create a dynamic facade system that optimizes energy generation and architectural expression. While limitations exist, this approach paves the way for future advancements in energy-efficient facade design. Continued research efforts will focus on cost reduction, improved system performance, and broader applicability.Keywords: artificial intelligence, energy efficiency, kinetic photovoltaics, pneumatic control, soft robotics, sustainable building
Procedia PDF Downloads 2848 Thematic Analysis of Ramayana Narrative Scroll Paintings: A Need for Knowledge Preservation
Authors: Shatarupa Thakurta Roy
Abstract:
Along the limelight of mainstream academic practices in Indian art, exist a significant lot of habitual art practices that are mutually susceptible in their contemporary forms. Narrative folk paintings of regional India has successfully dispersed to its audience social messages through pulsating pictures and orations. The paper consists of images from narrative scroll paintings on ‘Ramayana’ theme from various neighboring states as well as districts in India, describing their subtle differences in style of execution, method, and use of material. Despite sharing commonness in the choice of subject matter, habitual and ceremonial Indian folk art in its formative phase thrived within isolated locations to yield in remarkable variety in the art styles. The differences in style took place district wise, cast wise and even gender wise. An open flow is only evident in the contemporary expressions as a result of substantial changes in social structures, mode of communicative devices, cross-cultural exposures and multimedia interactivities. To decipher the complex nature of popular cultural taste of contemporary India it is important to categorically identify its root in vernacular symbolism. The realization of modernity through European primitivism was rather elevated as a perplexed identity in Indian cultural margin in the light of nationalist and postcolonial ideology. To trace the guiding factor that has still managed to obtain ‘Indianness’ in today’s Indian art, researchers need evidences from the past that are yet to be listed in most instances. They are commonly created on ephemeral foundations. The artworks are also found in endangered state and hence, not counted much friendly for frequent handling. The museums are in dearth of proper technological guidelines to preserve them. Even though restoration activities are emerging in the country, the existing withered and damaged artworks are in threat to perish. An immediacy of digital achieving is therefore envisioned as an alternative to save this cultural legacy. The method of this study is, two folded. It primarily justifies the richness of the evidences by conducting categorical aesthetic analysis. The study is supported by comments on the stylistic variants, thematic aspects, and iconographic identities alongside its anthropological and anthropomorphic significance. Further, it explores the possible ways of cultural preservation to ensure cultural sustainability that includes technological intervention in the form of digital transformation as an altered paradigm for better accessibility to the available recourses. The study duly emphasizes on visual description in order to culturally interpret and judge the rare visual evidences following Feldman’s four-stepped method of formal analysis combined with thematic explanation. A habitual design that emerges and thrives within complex social circumstances may experience change placing its principle philosophy at risk by shuffling and altering with time. A tradition that respires in the modern setup struggles to maintain timeless values that operate its creative flow. Thus, the paper hypothesizes the survival and further growth of this practice within the dynamics of time and concludes in realization of the urgency to transform the implicitness of its knowledge into explicit records.Keywords: aesthetic, identity, implicitness, paradigm
Procedia PDF Downloads 36547 Tailoring Piezoelectricity of PVDF Fibers with Voltage Polarity and Humidity in Electrospinning
Authors: Piotr K. Szewczyk, Arkadiusz Gradys, Sungkyun Kim, Luana Persano, Mateusz M. Marzec, Oleksander Kryshtal, Andrzej Bernasik, Sohini Kar-Narayan, Pawel Sajkiewicz, Urszula Stachewicz
Abstract:
Piezoelectric polymers have received great attention in smart textiles, wearables, and flexible electronics. Their potential applications range from devices that could operate without traditional power sources, through self-powering sensors, up to implantable biosensors. Semi-crystalline PVDF is often proposed as the main candidate for industrial-scale applications as it exhibits exceptional energy harvesting efficiency compared to other polymers combined with high mechanical strength and thermal stability. Plenty of approaches have been proposed for obtaining PVDF rich in the desired β-phase with electric polling, thermal annealing, and mechanical stretching being the most prevalent. Electrospinning is a highly tunable technique that provides a one-step process of obtaining highly piezoelectric PVDF fibers without the need for post-treatment. In this study, voltage polarity and relative humidity influence on electrospun PVDF, fibers were investigated with the main focus on piezoelectric β-phase contents and piezoelectric performance. Morphology and internal structure of fibers were investigated using scanning (SEM) and transmission electron microscopy techniques (TEM). Fourier Transform Infrared Spectroscopy (FITR), wide-angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC) were used to characterize the phase composition of electrospun PVDF. Additionally, surface chemistry was verified with X-ray photoelectron spectroscopy (XPS). Piezoelectric performance of individual electrospun PVDF fibers was measured using piezoresponse force microscopy (PFM), and the power output from meshes was analyzed via custom-built equipment. To prepare the solution for electrospinning, PVDF pellets were dissolved in dimethylacetamide and acetone solution in a 1:1 ratio to achieve a 24% solution. Fibers were electrospun with a constant voltage of +/-15kV applied to the stainless steel nozzle with the inner diameter of 0.8mm. The flow rate was kept constant at 6mlh⁻¹. The electrospinning of PVDF was performed at T = 25°C and relative humidity of 30 and 60% for PVDF30+/- and PVDF60+/- samples respectively in the environmental chamber. The SEM and TEM analysis of fibers produced at a lower relative humidity of 30% (PVDF30+/-) showed a smooth surface in opposition to fibers obtained at 60% relative humidity (PVDF60+/-), which had wrinkled surface and additionally internal voids. XPS results confirmed lower fluorine content at the surface of PVDF- fibers obtained by electrospinning with negative voltage polarity comparing to the PVDF+ obtained with positive voltage polarity. Changes in surface composition measured with XPS were found to influence the piezoelectric performance of obtained fibers what was further confirmed by PFM as well as by custom-built fiber-based piezoelectric generator. For PVDF60+/- samples humidity led to an increase of β-phase contents in PVDF fibers as confirmed by FTIR, WAXS, and DSC measurements, which showed almost two times higher concentrations of β-phase. A combination of negative voltage polarity with high relative humidity led to fibers with the highest β-phase contents and the best piezoelectric performance of all investigated samples. This study outlines the possibility to produce electrospun PVDF fibers with tunable piezoelectric performance in a one-step electrospinning process by controlling relative humidity and voltage polarity conditions. Acknowledgment: This research was conducted within the funding from m the Sonata Bis 5 project granted by National Science Centre, No 2015/18/E/ST5/00230, and supported by the infrastructure at International Centre of Electron Microscopy for Materials Science (IC-EM) at AGH University of Science and Technology. The PFM measurements were supported by an STSM Grant from COST Action CA17107.Keywords: crystallinity, electrospinning, PVDF, voltage polarity
Procedia PDF Downloads 13046 Optimized Electron Diffraction Detection and Data Acquisition in Diffraction Tomography: A Complete Solution by Gatan
Authors: Saleh Gorji, Sahil Gulati, Ana Pakzad
Abstract:
Continuous electron diffraction tomography, also known as microcrystal electron diffraction (MicroED) or three-dimensional electron diffraction (3DED), is a powerful technique, which in combination with cryo-electron microscopy (cryo-ED), can provide atomic-scale 3D information about the crystal structure and composition of different classes of crystalline materials such as proteins, peptides, and small molecules. Unlike the well-established X-ray crystallography method, 3DED does not require large single crystals and can collect accurate electron diffraction data from crystals as small as 50 – 100 nm. This is a critical advantage as growing larger crystals, as required by X-ray crystallography methods, is often very difficult, time-consuming, and expensive. In most cases, specimens studied via 3DED method are electron beam sensitive, which means there is a limitation on the maximum amount of electron dose one can use to collect the required data for a high-resolution structure determination. Therefore, collecting data using a conventional scintillator-based fiber coupled camera brings additional challenges. This is because of the inherent noise introduced during the electron-to-photon conversion in the scintillator and transfer of light via the fibers to the sensor, which results in a poor signal-to-noise ratio and requires a relatively higher and commonly specimen-damaging electron dose rates, especially for protein crystals. As in other cryo-EM techniques, damage to the specimen can be mitigated if a direct detection camera is used which provides a high signal-to-noise ratio at low electron doses. In this work, we have used two classes of such detectors from Gatan, namely the K3® camera (a monolithic active pixel sensor) and Stela™ (that utilizes DECTRIS hybrid-pixel technology), to address this problem. The K3 is an electron counting detector optimized for low-dose applications (like structural biology cryo-EM), and Stela is also a counting electron detector but optimized for diffraction applications with high speed and high dynamic range. Lastly, data collection workflows, including crystal screening, microscope optics setup (for imaging and diffraction), stage height adjustment at each crystal position, and tomogram acquisition, can be one of the other challenges of the 3DED technique. Traditionally this has been all done manually or in a partly automated fashion using open-source software and scripting, requiring long hours on the microscope (extra cost) and extensive user interaction with the system. We have recently introduced Latitude® D in DigitalMicrograph® software, which is compatible with all pre- and post-energy-filter Gatan cameras and enables 3DED data acquisition in an automated and optimized fashion. Higher quality 3DED data enables structure determination with higher confidence, while automated workflows allow these to be completed considerably faster than before. Using multiple examples, this work will demonstrate how to direct detection electron counting cameras enhance 3DED results (3 to better than 1 Angstrom) for protein and small molecule structure determination. We will also show how Latitude D software facilitates collecting such data in an integrated and fully automated user interface.Keywords: continuous electron diffraction tomography, direct detection, diffraction, Latitude D, Digitalmicrograph, proteins, small molecules
Procedia PDF Downloads 10545 Deciphering Information Quality: Unraveling the Impact of Information Distortion in the UK Aerospace Supply Chains
Authors: Jing Jin
Abstract:
The incorporation of artificial intelligence (AI) and machine learning (ML) in aircraft manufacturing and aerospace supply chains leads to the generation of a substantial amount of data among various tiers of suppliers and OEMs. Identifying the high-quality information challenges decision-makers. The application of AI/ML models necessitates access to 'high-quality' information to yield desired outputs. However, the process of information sharing introduces complexities, including distortion through various communication channels and biases introduced by both human and AI entities. This phenomenon significantly influences the quality of information, impacting decision-makers engaged in configuring supply chain systems. Traditionally, distorted information is categorized as 'low-quality'; however, this study challenges this perception, positing that distorted information, contributing to stakeholder goals, can be deemed high-quality within supply chains. The main aim of this study is to identify and evaluate the dimensions of information quality crucial to the UK aerospace supply chain. Guided by a central research question, "What information quality dimensions are considered when defining information quality in the UK aerospace supply chain?" the study delves into the intricate dynamics of information quality in the aerospace industry. Additionally, the research explores the nuanced impact of information distortion on stakeholders' decision-making processes, addressing the question, "How does the information distortion phenomenon influence stakeholders’ decisions regarding information quality in the UK aerospace supply chain system?" This study employs deductive methodologies rooted in positivism, utilizing a cross-sectional approach and a mono-quantitative method -a questionnaire survey. Data is systematically collected from diverse tiers of supply chain stakeholders, encompassing end-customers, OEMs, Tier 0.5, Tier 1, and Tier 2 suppliers. Employing robust statistical data analysis methods, including mean values, mode values, standard deviation, one-way analysis of variance (ANOVA), and Pearson’s correlation analysis, the study interprets and extracts meaningful insights from the gathered data. Initial analyses challenge conventional notions, revealing that information distortion positively influences the definition of information quality, disrupting the established perception of distorted information as inherently low-quality. Further exploration through correlation analysis unveils the varied perspectives of different stakeholder tiers on the impact of information distortion on specific information quality dimensions. For instance, Tier 2 suppliers demonstrate strong positive correlations between information distortion and dimensions like access security, accuracy, interpretability, and timeliness. Conversely, Tier 1 suppliers emphasise strong negative influences on the security of accessing information and negligible impact on information timeliness. Tier 0.5 suppliers showcase very strong positive correlations with dimensions like conciseness and completeness, while OEMs exhibit limited interest in considering information distortion within the supply chain. Introducing social network analysis (SNA) provides a structural understanding of the relationships between information distortion and quality dimensions. The moderately high density of ‘information distortion-by-information quality’ underscores the interconnected nature of these factors. In conclusion, this study offers a nuanced exploration of information quality dimensions in the UK aerospace supply chain, highlighting the significance of individual perspectives across different tiers. The positive influence of information distortion challenges prevailing assumptions, fostering a more nuanced understanding of information's role in the Industry 4.0 landscape.Keywords: information distortion, information quality, supply chain configuration, UK aerospace industry
Procedia PDF Downloads 6344 Agenesis of the Corpus Callosum: The Role of Neuropsychological Assessment with Implications to Psychosocial Rehabilitation
Authors: Ron Dick, P. S. D. V. Prasadarao, Glenn Coltman
Abstract:
Agenesis of the corpus callosum (ACC) is a failure to develop corpus callosum - the large bundle of fibers of the brain that connects the two cerebral hemispheres. It can occur as a partial or complete absence of the corpus callosum. In the general population, its estimated prevalence rate is 1 in 4000 and a wide range of genetic, infectious, vascular, and toxic causes have been attributed to this heterogeneous condition. The diagnosis of ACC is often achieved by neuroimaging procedures. Though persons with ACC can perform normally on intelligence tests they generally present with a range of neuropsychological and social deficits. The deficit profile is characterized by poor coordination of motor movements, slow reaction time, processing speed and, poor memory. Socially, they present with deficits in communication, language processing, the theory of mind, and interpersonal relationships. The present paper illustrates the role of neuropsychological assessment with implications to psychosocial management in a case of agenesis of the corpus callosum. Method: A 27-year old left handed Caucasian male with a history of ACC was self-referred for a neuropsychological assessment to assist him in his employment options. Parents noted significant difficulties with coordination and balance at an early age of 2-3 years and he was diagnosed with dyspraxia at the age of 14 years. History also indicated visual impairment, hypotonia, poor muscle coordination, and delayed development of motor milestones. MRI scan indicated agenesis of the corpus callosum with ventricular morphology, widely spaced parallel lateral ventricles and mild dilatation of the posterior horns; it also showed colpocephaly—a disproportionate enlargement of the occipital horns of the lateral ventricles which might be affecting his motor abilities and visual defects. The MRI scan ruled out other structural abnormalities or neonatal brain injury. At the time of assessment, the subject presented with such problems as poor coordination, slowed processing speed, poor organizational skills and time management, and difficulty with social cues and facial expressions. A comprehensive neuropsychological assessment was planned and conducted to assist in identifying the current neuropsychological profile to facilitate the formulation of a psychosocial and occupational rehabilitation programme. Results: General intellectual functioning was within the average range and his performance on memory-related tasks was adequate. Significant visuospatial and visuoconstructional deficits were evident across tests; constructional difficulties were seen in tasks such as copying a complex figure, building a tower and manipulating blocks. Poor visual scanning ability and visual motor speed were evident. Socially, the subject reported heightened social anxiety, difficulty in responding to cues in the social environment, and difficulty in developing intimate relationships. Conclusion: Persons with ACC are known to present with specific cognitive deficits and problems in social situations. Findings from the current neuropsychological assessment indicated significant visuospatial difficulties, poor visual scanning and problems in social interactions. His general intellectual functioning was within the average range. Based on the findings from the comprehensive neuropsychological assessment, a structured psychosocial rehabilitation programme was developed and recommended.Keywords: agenesis, callosum, corpus, neuropsychology, psychosocial, rehabilitation
Procedia PDF Downloads 27543 Effect of Black Cumin (Nigella sativa) Extract on Damaged Brain Cells
Authors: Batul Kagalwala
Abstract:
The nervous system is made up of complex delicate structures such as the spinal cord, peripheral nerves and the brain. These are prone to various types of injury ranging from neurodegenerative diseases to trauma leading to diseases like Parkinson's, Alzheimer's, multiple sclerosis, amyotrophic lateral sclerosis (ALS), multiple system atrophy etc. Unfortunately, because of the complicated structure of nervous system, spontaneous regeneration, repair and healing is seldom seen due to which brain damage, peripheral nerve damage and paralysis from spinal cord injury are often permanent and incapacitating. Hence, innovative and standardized approach is required for advance treatment of neurological injury. Nigella sativa (N. sativa), an annual flowering plant native to regions of southern Europe and Asia; has been suggested to have neuroprotective and anti-seizures properties. Neuroregeneration is found to occur in damaged cells when treated using extract of N. sativa. Due to its proven health benefits, lots of experiments are being conducted to extract all the benefits from the plant. The flowers are delicate and are usually pale blue and white in color with small black seeds. These seeds are the source of active components such as 30–40% fixed oils, 0.5–1.5% essential oils, pharmacologically active components containing thymoquinone (TQ), ditimoquinone (DTQ) and nigellin. In traditional medicine, this herb was identified to have healing properties and was extensively used Middle East and Far East for treating diseases such as head ache, back pain, asthma, infections, dysentery, hypertension, obesity and gastrointestinal problems. Literature studies have confirmed the extract of N. sativa seeds and TQ have inhibitory effects on inducible nitric oxide synthase and production of nitric oxide as well as anti-inflammatory and anticancer activities. Experimental investigation will be conducted to understand which ingredient of N. sativa causes neuroregeneration and roots to its healing property. An aqueous/ alcoholic extract of N. sativa will be made. Seed oil is also found to have used by researchers to prepare such extracts. For the alcoholic extracts, the seeds need to be powdered and soaked in alcohol for a period of time and the alcohol must be evaporated using rotary evaporator. For aqueous extracts, the powder must be dissolved in distilled water to obtain a pure extract. The mobile phase will be the extract while the suitable stationary phase (substance that is a good adsorbent e.g. silica gels, alumina, cellulose etc.) will be selected. Different ingredients of N. sativa will be separated using High Performance Liquid Chromatography (HPLC) for treating damaged cells. Damaged brain cells will be treated individually and in different combinations of 2 or 3 compounds for different intervals of time. The most suitable compound or a combination of compounds for the regeneration of cells will be determined using DOE methodology. Later the gene will also be determined and using Polymerase Chain Reaction (PCR) it will be replicated in a plasmid vector. This plasmid vector shall be inserted in the brain of the organism used and replicated within. The gene insertion can also be done by the gene gun method. The gene in question can be coated on a micro bullet of tungsten and bombarded in the area of interest and gene replication and coding shall be studied. Investigation on whether the gene replicates in the organism or not will be examined.Keywords: black cumin, brain cells, damage, extract, neuroregeneration, PCR, plasmids, vectors
Procedia PDF Downloads 65642 Modern Technology for Strengthening Concrete Structures Makes Them Resistant to Earthquakes
Authors: Mohsen Abdelrazek Khorshid Ali Selim
Abstract:
Disadvantages and errors of current concrete reinforcement methodsL: Current concrete reinforcement methods are adopted in most parts of the world in their various doctrines and names. They adopt the so-called concrete slab system, where these slabs are semi-independent and isolated from each other and from the surrounding environment of concrete columns or beams, so that the reinforcing steel does not cross from one slab to another or from one slab to adjacent columns. It or the beams surrounding it and vice versa are only a few centimeters and no more. The same applies exactly to the concrete columns that support the building, where the reinforcing steel does not extend from the slabs or beams to the inside of the columns or vice versa except for a few centimeters and no more, just as the reinforcing steel does not extend from inside the column at the top. The ceiling is only a few centimetres, and the same thing is literally repeated in the concrete beams that connect the columns and separate the slabs, where the reinforcing steel does not cross from one beam to another or from one beam to the slabs or columns adjacent to it and vice versa, except for a few centimeters, which makes the basic building elements of columns, slabs and beams They all work in isolation from each other and from the environment surrounding them from all sides. This traditional method of reinforcement may be valid and lasting in geographical areas that are not exposed to earthquakes and earthquakes, where all the loads and tensile forces in the building are constantly directed vertically downward due to gravity and are borne directly by the vertical reinforcement of the building. However, in the case of earthquakes and earthquakes, the loads and tensile forces in the building shift from the vertical direction to the horizontal direction at an angle of inclination that depends on the strength of the earthquake, and most of them are borne by the horizontal reinforcement extending between the basic elements of the building, such as columns, slabs and beams, and since the crossing of the reinforcement between each of the columns, slabs and beams between them And each other, and vice versa, does not exceed several centimeters. In any case, the tensile strength, cohesion and bonding between the various parts of the building are very weak, which causes the buildings to disintegrate and collapse in the horrific manner that we saw in the earthquake in Turkey and Syria in February 2023, which caused the collapse of tens of thousands of buildings in A few seconds later, it left more than 50,000 dead, hundreds of thousands injured, and millions displaced. Description of the new earthquake-resistant model: The idea of the new model in the reinforcement of concrete buildings and constructions is based on the theory that we have formulated as follows: [The tensile strength, cohesion and bonding between the basic parts of the concrete building (columns, beams and slabs) increases as the lengths of the reinforcing steel bars increase and they extend and branch and the different parts of the building share them with each other.] . In other words, the strength, solidity, and cohesion of concrete buildings increase and they become resistant to earthquakes as the lengths of the reinforcing steel bars increase, extend, branch, and share with the various parts of the building, such as columns, beams, and slabs. That is, the reinforcing skewers of the columns must extend in their lengths without cutting to cross from one floor to another until their end. Likewise, the reinforcing skewers of the beams must extend in their lengths without cutting to cross from one beam to another. The ends of these skewers must rest at the bottom of the columns adjacent to the beams. The same thing applies to the reinforcing skewers of the slabs where they must These skewers should be extended in their lengths without cutting to cross from one tile to another, and the ends of these skewers should rest either under the adjacent columns or inside the beams adjacent to the slabs as follows: First, reinforce the columns: The columns have the lion's share of the reinforcing steel in this model in terms of type and quantity, as the columns contain two types of reinforcing bars. The first type is large-diameter bars that emerge from the base of the building, which are the nerves of the column. These bars must extend over their normal length of 12 meters or more and extend to a height of three floors, if desired. In raising other floors, bars with the same diameter and the same length are added to the top after the second floor. The second type is bars with a smaller diameter, and they are the same ones that are used to reinforce beams and slabs, so that the bars that reinforce the beams and slabs facing each column are bent down inside this column and along the entire length of the column. This requires an order. Most engineers do not prefer it, which is to pour the entire columns and pour the roof at once, but we prefer this method because it enables us to extend the reinforcing bars of both the beams and slabs to the bottom of the columns so that the entire building becomes one concrete block that is cohesive and resistant to earthquakes. Secondly, arming the cameras: The beams' reinforcing skewers must also extend to a full length of 12 meters or more without cutting. The ends of the skewers are bent and dropped inside the column at the beginning of the beam to its bottom. Then the skewers are extended inside the beam so that their other end falls under the facing column at the end of the beam. The skewers may cross over the head of a column. Another passes through another adjacent beam and rests at the bottom of a third column, according to the lengths of each of the skewers and beams. Third, reinforcement of slabs: The slab reinforcing skewers must also extend their entire length, 12 meters or more, without cutting, distinguishing between two cases. The first case is the skewers opposite the columns, and their ends are dropped inside one of the columns. Then the skewers cross inside the adjacent slab and their other end falls below the opposite column. The skewers may cross over The head of the adjacent column passes through another adjacent slab and rests at the bottom of a third column, according to the dimensions of the slabs and the lengths of the skewers. The second case is the skewers opposite the beams, and their ends must be bent in the form of a square or rectangle according to the dimensions of the beam’s width and height, and this square or rectangle is dropped inside the beam at the beginning of the slab, and it serves as The skewers are for the beams, then the skewers are extended along the length of the slab, and at the end of the slab, the skewers are bent down to the bottom of the adjacent beam in the shape of the letter U, after which the skewers are extended inside the adjacent slab, and this is repeated in the same way inside the other adjacent beams until the end of the skewer, then it is bent downward in the form of a square or rectangle inside the beam, as happened. In its beginning.Keywords: earthquake resistant buildings, earthquake resistant concrete constructions, new technology for reinforcement of concrete buildings, new technology in concrete reinforcement
Procedia PDF Downloads 6141 Thermally Conductive Polymer Nanocomposites Based on Graphene-Related Materials
Authors: Alberto Fina, Samuele Colonna, Maria del Mar Bernal, Orietta Monticelli, Mauro Tortello, Renato Gonnelli, Julio Gomez, Chiara Novara, Guido Saracco
Abstract:
Thermally conductive polymer nanocomposites are of high interest for several applications including low-temperature heat recovery, heat exchangers in a corrosive environment and heat management in electronics and flexible electronics. In this paper, the preparation of thermally conductive nanocomposites exploiting graphene-related materials is addressed, along with their thermal characterization. In particular, correlations between 1- chemical and physical features of the nanoflakes and 2- processing conditions with the heat conduction properties of nanocomposites is studied. Polymers are heat insulators; therefore, the inclusion of conductive particles is the typical solution to obtain a sufficient thermal conductivity. In addition to traditional microparticles such as graphite and ceramics, several nanoparticles have been proposed, including carbon nanotubes and graphene, for the use in polymer nanocomposites. Indeed, thermal conductivities for both carbon nanotubes and graphenes were reported in the wide range of about 1500 to 6000 W/mK, despite such property may decrease dramatically as a function of the size, number of layers, the density of topological defects, re-hybridization defects as well as on the presence of impurities. Different synthetic techniques have been developed, including mechanical cleavage of graphite, epitaxial growth on SiC, chemical vapor deposition, and liquid phase exfoliation. However, the industrial scale-up of graphene, defined as an individual, single-atom-thick sheet of hexagonally arranged sp2-bonded carbons still remains very challenging. For large scale bulk applications in polymer nanocomposites, some graphene-related materials such as multilayer graphenes (MLG), reduced graphene oxide (rGO) or graphite nanoplatelets (GNP) are currently the most interesting graphene-based materials. In this paper, different types of graphene-related materials were characterized for their chemical/physical as well as for thermal properties of individual flakes. Two selected rGOs were annealed at 1700°C in vacuum for 1 h to reduce defectiveness of the carbon structure. Thermal conductivity increase of individual GNP with annealing was assessed via scanning thermal microscopy. Graphene nano papers were prepared from both conventional RGO and annealed RGO flakes. Characterization of the nanopapers evidenced a five-fold increase in the thermal diffusivity on the nano paper plane for annealed nanoflakes, compared to pristine ones, demonstrating the importance of structural defectiveness reduction to maximize the heat dissipation performance. Both pristine and annealed RGO were used to prepare polymer nanocomposites, by melt reactive extrusion. Thermal conductivity showed two- to three-fold increase in the thermal conductivity of the nanocomposite was observed for high temperature treated RGO compared to untreated RGO, evidencing the importance of using low defectivity nanoflakes. Furthermore, the study of different processing paremeters (time, temperature, shear rate) during the preparation of poly (butylene terephthalate) nanocomposites evidenced a clear correlation with the dispersion and fragmentation of the GNP nanoflakes; which in turn affected the thermal conductivity performance. Thermal conductivity of about 1.7 W/mK, i.e. one order of magnitude higher than for pristine polymer, was obtained with 10%wt of annealed GNPs, which is in line with state of the art nanocomposites prepared by more complex and less upscalable in situ polymerization processes.Keywords: graphene, graphene-related materials, scanning thermal microscopy, thermally conductive polymer nanocomposites
Procedia PDF Downloads 26340 A Parallel Cellular Automaton Model of Tumor Growth for Multicore and GPU Programming
Authors: Manuel I. Capel, Antonio Tomeu, Alberto Salguero
Abstract:
Tumor growth from a transformed cancer-cell up to a clinically apparent mass spans through a range of spatial and temporal magnitudes. Through computer simulations, Cellular Automata (CA) can accurately describe the complexity of the development of tumors. Tumor development prognosis can now be made -without making patients undergo through annoying medical examinations or painful invasive procedures- if we develop appropriate CA-based software tools. In silico testing mainly refers to Computational Biology research studies of application to clinical actions in Medicine. To establish sound computer-based models of cellular behavior, certainly reduces costs and saves precious time with respect to carrying out experiments in vitro at labs or in vivo with living cells and organisms. These aim to produce scientifically relevant results compared to traditional in vitro testing, which is slow, expensive, and does not generally have acceptable reproducibility under the same conditions. For speeding up computer simulations of cellular models, specific literature shows recent proposals based on the CA approach that include advanced techniques, such the clever use of supporting efficient data structures when modeling with deterministic stochastic cellular automata. Multiparadigm and multiscale simulation of tumor dynamics is just beginning to be developed by the concerned research community. The use of stochastic cellular automata (SCA), whose parallel programming implementations are open to yield a high computational performance, are of much interest to be explored up to their computational limits. There have been some approaches based on optimizations to advance in multiparadigm models of tumor growth, which mainly pursuit to improve performance of these models through efficient memory accesses guarantee, or considering the dynamic evolution of the memory space (grids, trees,…) that holds crucial data in simulations. In our opinion, the different optimizations mentioned above are not decisive enough to achieve the high performance computing power that cell-behavior simulation programs actually need. The possibility of using multicore and GPU parallelism as a promising multiplatform and framework to develop new programming techniques to speed-up the computation time of simulations is just starting to be explored in the few last years. This paper presents a model that incorporates parallel processing, identifying the synchronization necessary for speeding up tumor growth simulations implemented in Java and C++ programming environments. The speed up improvement that specific parallel syntactic constructs, such as executors (thread pools) in Java, are studied. The new tumor growth parallel model is proved using implementations with Java and C++ languages on two different platforms: chipset Intel core i-X and a HPC cluster of processors at our university. The parallelization of Polesczuk and Enderling model (normally used by researchers in mathematical oncology) proposed here is analyzed with respect to performance gain. We intend to apply the model and overall parallelization technique presented here to solid tumors of specific affiliation such as prostate, breast, or colon. Our final objective is to set up a multiparadigm model capable of modelling angiogenesis, or the growth inhibition induced by chemotaxis, as well as the effect of therapies based on the presence of cytotoxic/cytostatic drugs.Keywords: cellular automaton, tumor growth model, simulation, multicore and manycore programming, parallel programming, high performance computing, speed up
Procedia PDF Downloads 24239 Biophilic Design Strategies: Four Case-Studies from Northern Europe
Authors: Carmen García Sánchez
Abstract:
The UN's 17 Sustainable Development Goals – specifically the nº 3 and nº 11- urgently call for new architectural design solutions at different design scales to increase human contact with nature in the health and wellbeing promotion of primarily urban communities. The discipline of Interior Design offers an important alternative to large-scale nature-inclusive actions which are not always possible due to space limitations. These circumstances provide an immense opportunity to integrate biophilic design, a complex emerging and under-developed approach that pursues sustainable design strategies for increasing the human-nature connection through the experience of the built environment. Biophilic design explores the diverse ways humans are inherently inclined to affiliate with nature, attach meaning to and derive benefit from the natural world. It represents a biological understanding of architecture which categorization is still in progress. The internationally renowned Danish domestic architecture built in the 1950´s and early 1960´s - a golden age of Danish modern architecture - left a leading legacy that has greatly influenced the domestic sphere and has further led the world in terms of good design and welfare. This study examines how four existing post-war domestic buildings establish a dialogue with nature and her variations over time. The case-studies unveil both memorable and unique biophilic resources through sophisticated and original design expressions, where transformative processes connect the users to the natural setting and reflect fundamental ways in which they attach meaning to the place. In addition, fascinating analogies in terms of this nature interaction with particular traditional Japanese architecture inform the research. They embody prevailing lessons for our time today. The research methodology is based on a thorough literature review combined with a phenomenological analysis into how these case-studies contribute to the connection between humans and nature, after conducting fieldwork throughout varying seasons to document understanding in nature transformations multi-sensory perception (via sight, touch, sound, smell, time and movement) as a core research strategy. The cases´ most outstanding features have been studied attending the following key parameters: 1. Space: 1.1. Relationships (itineraries); 1.2. Measures/scale; 2. Context: Context: Landscape reading in different weather/seasonal conditions; 3. Tectonic: 3.1. Constructive joints, elements assembly; 3.2. Structural order; 4. Materiality: 4.1. Finishes, 4.2. Colors; 4.3. Tactile qualities; 5. Daylight interplay. Departing from an artistic-scientific exploration this groundbreaking study provides sustainable practical design strategies, perspectives, and inspiration to boost humans´ contact with nature through the experience of the interior built environment. Some strategies are associated with access to outdoor space or require ample space, while others can thrive in a dense urban context without direct access to the natural environment. The objective is not only to produce knowledge, but to phase in biophilic design in the built environment, expanding its theory and practice into a new dimension. Its long-term vision is to efficiently enhance the health and well-being of urban communities through daily interaction with Nature.Keywords: sustainability, biophilic design, architectural design, interior design, nature, Danish architecture, Japanese architecture
Procedia PDF Downloads 9838 Effect of Preoxidation on the Effectiveness of Gd₂O₃ Nanoparticles Applied as a Source of Active Element in the Crofer 22 APU Coated with a Protective-conducting Spinel Layer
Authors: Łukasz Mazur, Kamil Domaradzki, Maciej Bik, Tomasz Brylewski, Aleksander Gil
Abstract:
Interconnects used in solid oxide fuel and electrolyzer cells (SOFCₛ/SOECs) serve several important functions, and therefore interconnect materials must exhibit certain properties. Their thermal expansion coefficient needs to match that of the ceramic components of these devices – the electrolyte, anode and cathode. Interconnects also provide structural rigidity to the entire device, which is why interconnect materials must exhibit sufficient mechanical strength at high temperatures. Gas-tightness is also a prerequisite since they separate gas reagents, and they also must provide very good electrical contact between neighboring cells over the entire operating time. High-chromium ferritic steels meets these requirements to a high degree but are affected by the formation of a Cr₂O₃ scale, which leads to increased electrical resistance. The final criterion for interconnect materials is chemical inertness in relation to the remaining cell components. In the case of ferritic steels, this has proved difficult due to the formation of volatile and reactive oxyhydroxides observed when Cr₂O3 is exposed to oxygen and water vapor. This process is particularly harmful on the cathode side in SOFCs and the anode side in SOECs. To mitigate this, protective-conducting ceramic coatings can be deposited on an interconnect's surface. The area-specific resistance (ASR) of a single interconnect cannot exceed 0.1 m-2 at any point of the device's operation. The rate at which the CrO₃ scale grows on ferritic steels can be reduced significantly via the so-called reactive element effect (REE). Research has shown that the deposition of Gd₂O₃ nanoparticles on the surface of the Crofer 22 APU, already modified using a protective-conducting spinel layer, further improves the oxidation resistance of this steel. However, the deposition of the manganese-cobalt spinel layer is a rather complex process and is performed at high temperatures in reducing and oxidizing atmospheres. There was thus reason to believe that this process may reduce the effectiveness of Gd₂O₃ nanoparticles added as an active element source. The objective of the present study was, therefore, to determine any potential impact by introducing a preoxidation stage after the nanoparticle deposition and before the steel is coated with the spinel. This should have allowed the nanoparticles to incorporate into the interior of the scale formed on the steel. Different samples were oxidized for 7000 h in air at 1073 K under quasi-isothermal conditions. The phase composition, chemical composition, and microstructure of the oxidation products formed on the samples were determined using X-ray diffraction, Raman spectroscopy, and scanning electron microscopy combined with energy-dispersive X-ray spectroscopy. A four-point, two-probe DC method was applied to measure ASR. It was found that coating deposition does indeed reduce the beneficial effect of Gd₂O₃ addition, since the smallest mass gain and the lowest ASR value were determined for the sample for which the additional preoxidation stage had been performed. It can be assumed that during this stage, gadolinium incorporates into and segregates at grain boundaries in the thin Cr₂O₃ that is forming. This allows the Gd₂O₃ nanoparticles to be a more effective source of the active element.Keywords: interconnects, oxide nanoparticles, reactive element effect, SOEC, SOFC
Procedia PDF Downloads 8237 Evaluating Viability of Using South African Forestry Process Biomass Waste Mixtures as an Alternative Pyrolysis Feedstock in the Production of Bio Oil
Authors: Thembelihle Portia Lubisi, Malusi Ntandoyenkosi Mkhize, Jonas Kalebe Johakimu
Abstract:
Fertilizers play an important role in maintaining the productivity and quality of plants. Inorganic fertilizers (containing nitrogen, phosphorus, and potassium) are largely used in South Africa as they are considered inexpensive and highly productive. When applied, a portion of the excess fertilizer will be retained in the soil, a portion enters water streams due to surface runoff or the irrigation system adopted. Excess nutrient from the fertilizers entering the water stream eventually results harmful algal blooms (HABs) in freshwater systems, which not only disrupt wildlife but can also produce toxins harmful to humans. Use of agro-chemicals such as pesticides and herbicides has been associated with increased antimicrobial resistance (AMR) in humans as the plants are consumed by humans. This resistance of bacterial poses a threat as it prevents the Health sector from being able to treat infectious disease. Archaeological studies have found that pyrolysis liquids were already used in the time of the Neanderthal as a biocide and plant protection product. Pyrolysis is thermal degradation process of plant biomass or organic material under anaerobic conditions leading to production of char, bio-oils and syn gases. Bio-oil constituents can be categorized as water soluble (wood vinegar) and water insoluble fractions (tar and light oils). Wood vinegar (pyro-ligneous acid) is said to contain contains highly oxygenated compounds including acids, alcohols, aldehydes, ketones, phenols, esters, furans, and other multifunctional compounds with various molecular weights and compositions depending on the biomass material derived from and pyrolysis operating conditions. Various researchers have found the wood vinegar to be efficient in the eradication of termites, effective in plant protection and plant growth, has antibacterial characteristics and was found effective in inhibiting the micro-organisms such as candida yeast, E-coli, etc. This study investigated characterisation of South African forestry product processing waste with intention of evaluating the potential of using the respective biomass waste as feedstock for boil oil production via pyrolysis process. Ability to use biomass waste materials in production of wood-vinegar has advantages that it does not only allows for reduction of environmental pollution and landfill requirement, but it also does not negatively affect food security. The biomass wastes investigated were from the popular tree types in KZN, which are, pine saw dust (PSD), pine bark (PB), eucalyptus saw dust (ESD) and eucalyptus bark (EB). Furthermore, the research investigates the possibility of mixing the different wastes with an aim to lessen the cost of raw material separation prior to feeding into pyrolysis process and mixing also increases the amount of biomass material available for beneficiation. A 50/50 mixture of PSD and ESD (EPSD) and mixture containing pine saw dust; eucalyptus saw dust, pine bark and eucalyptus bark (EPSDB). Characterisation of the biomass waste will look at analysis such as proximate (volatiles, ash, fixed carbon), ultimate (carbon, hydrogen, nitrogen, oxygen, sulphur), high heating value, structural (cellulose, hemicellulose and lignin) and thermogravimetric analysis.Keywords: characterisation, biomass waste, saw dust, wood waste
Procedia PDF Downloads 6636 Removing Maturational Influences from Female Youth Swimming: The Application of Corrective Adjustment Procedures
Authors: Clorinda Hogan, Shaun Abbott, Mark Halaki, Marcela Torres Catiglioni, Goshi Yamauchi, Lachlan Mitchell, James Salter, Michael Romann, Stephen Cobley
Abstract:
Introduction: Common annual age-group competition structures unintentionally introduce participation inequalities, performance (dis)advantages and selection biases due to the effect of maturational variation between youth swimmers. On this basis, there are implications for improving performance evaluation strategies. Therefore the aim was to: (1) To determine maturity timing distributions in female youth swimming; (2) quantify the relationship between maturation status and 100-m FC performance; (3) apply Maturational-based Corrective Adjustment Procedures (Mat-CAPs) for removal of maturational status performance influences. Methods: (1) Cross-sectional analysis of 663 female (10-15 years) swimmers who underwent assessment of anthropometrics (mass, height and sitting height) and estimations of maturity timing and offset. (2) 100-m front-crawl performance (seconds) was assessed at Australian regional, state, and national-level competitions between 2016-2020. To determine the relationship between maturation status and 100-m front-crawl performance, MO was plotted against 100-m FC performance time. The expected maturity status - performance relationship for females aged 10-15 years of age was obtained through a quadratic function (y = ax2 + bx + c) from unstandardized coefficients. The regression equation was subsequently used for Mat-CAPs. (3) Participants aged 10-13 years were categorised into maturity-offset categories. Maturity offset distributions for Raw (‘All’, ‘Top 50%’ & ‘Top 25%’) and Correctively Adjusted swim times were examined. Chi-square, Cramer’s V and ORs determined the occurrence of maturation biases for each age group and selection level. Results—: (1) Maturity timing distributions illustrated overrepresentation of ‘normative’ maturing swimmers (11.82 ± 0.40 years), with a descriptive shift toward the early maturing relative to the normative population. (2) A curvilinear relationship between maturity-offset and swim performance was identified (R2 = 0.53, P < 0.001) and subsequently utilised for Mat-CAPs. (3) Raw maturity offset categories identified partial maturation status skewing towards biologically older swimmers at 10/11 and 12 years, with effect magnitudes increasing in the ‘Top 50%’ and ‘25%’ of performance times. Following Mat-CAPs application, maturity offset biases were removed in similar age groups and selection levels. When adjusting performance times for maturity offset, Mat-CAPs was successful in mitigating against maturational biases until approximately 1-year post Peak Height Velocity. The overrepresentation of ‘normative’ maturing female swimmers contrasted with the substantial overrepresentation of ‘early’ maturing male swimmers found previously in 100-m front-crawl. These findings suggest early maturational timing is not advantageous in females, but findings associated with Aim 2, highlight how advanced maturational status remained beneficial to performance. Observed differences between female and male maturational biases may relate to the differential impact of physiological development during pubertal years. Females experience greater increases of fat mass and potentially differing changes in body shape which can negatively affect swim performance. Conclusions: Transient maturation status-based participation and performance advantages were apparent within a large sample of Australian female youth 100-m FC swimmers. By removing maturity status performance biases within female youth swimming, Mat-CAPs could help improve participation experiences and the accuracy of identifying genuinely skilled female youth swimmers.Keywords: athlete development, long-term sport participation, performance evaluation, talent identification, youth competition
Procedia PDF Downloads 18235 Neoliberal Settler City: Socio-Spatial Segregation, Livelihood of Artists/Craftsmen in Delhi
Authors: Sophy Joseph
Abstract:
The study uses the concept of ‘Settler city’ to understand the nature of peripheralization that a neoliberal city initiates. The settler city designs powerless communities without inherent rights, title and sovereignty. Kathputli Colony, home to generations of artists/craftsmen, who have kept heritage of arts/crafts alive, has undergone eviction of its population from urban space. The proposed study, ‘Neoliberal Settler City: Socio-spatial segregation and livelihood of artists/craftsmen in Delhi’ would problematize the settler city as a colonial technology. The colonial regime has ‘erased’ the ‘unwanted’ as primitive and swept them to peripheries in the city. This study would also highlight how structural change in political economy has undermined their crafts/arts by depriving them from practicing/performing it with dignity in urban space. The interconnections between citizenship and In-Situ Private Public Partnership in Kathputli rehabilitation has become part of academic exercise. However, a comprehensive study connecting inherent characteristics of neoliberal settler city, trajectory of political economy of unorganized workers - artists/craftsmen and legal containment and exclusion leading to dispossession and marginalization of communities from the city site, is relevant to contextualize the trauma of spatial segregation. This study would deal with political, cultural, social and economic dominant behavior of the structure in the state formation, accumulation of property and design of urban space, fueled by segregation of marginalized/unorganized communities and disowning the ‘footloose proletariat’, the migrant workforce. The methodology of study involves qualitative research amongst communities and the field work-oral testimonies and personal accounts- becomes the primary material to theorize the realities. The secondary materials in the forms of archival materials about historical evolution of Delhi as a planned city from various archives, would be used. As the study also adopt ‘narrative approach’ in qualitative study, the life experiences of craftsmen/artists as performers and emotional trauma of losing their livelihood and space forms an important record to understand the instability and insecurity that marginalization and development attributes on urban poor. The study attempts to prove that though there was a change in political tradition from colonialism to constitutional democracy, new state still follows the policy of segregation and dispossession of the communities. It is this dispossession from the space, deprivation of livelihood and non-consultative process in rehabilitation that reflects the neoliberal approach of the state and also critical findings in the study. This study would entail critical spatial lens analyzing ethnographic and sociological data, representational practices and development debates to understand ‘urban otherization’ against craftsmen/artists. This seeks to develop a conceptual framework for understanding the resistance of communities against primitivity attached with them and to decolonize the city. This would help to contextualize the demand for declaring Kathputli Colony as ‘heritage artists village’. The conceptualization and contextualization would help to argue for right to city of the communities, collective rights to property, services and self-determination. The aspirations of the communities also help to draw normative orientation towards decolonization. It is important to study this site as part of the framework, ‘inclusive cities’ because cities are rarely noted as important sites of ‘community struggles’.Keywords: neoliberal settler city, socio-spatial segregation, the livelihood of artists/craftsmen, dispossession of indigenous communities, urban planning and cultural uprooting
Procedia PDF Downloads 13034 Production, Characterisation, and in vitro Degradation and Biocompatibility of a Solvent-Free Polylactic-Acid/Hydroxyapatite Composite for 3D-Printed Maxillofacial Bone-Regeneration Implants
Authors: Carlos Amnael Orozco-Diaz, Robert David Moorehead, Gwendolen Reilly, Fiona Gilchrist, Cheryl Ann Miller
Abstract:
The current gold-standard for maxillofacial reconstruction surgery (MRS) utilizes auto-grafted cancellous bone as a filler. This study was aimed towards developing a polylactic-acid/hydroxyapatite (PLA-HA) composite suitable for fused-deposition 3D printing. Functionalization of the polymer through the addition of HA was directed to promoting bone-regeneration properties so that the material can rival the performance of cancellous bone grafts in terms of bone-lesion repair. This kind of composite enables the production of MRS implants based off 3D-reconstructions from image studies – namely computed tomography – for anatomically-correct fitting. The present study encompassed in-vitro degradation and in-vitro biocompatibility profiling for 3D-printed PLA and PLA-HA composites. PLA filament (Verbatim Co.) and Captal S hydroxyapatite micro-scale HA powder (Plasma Biotal Ltd) were used to produce PLA-HA composites at 5, 10, and 20%-by-weight HA concentration. These were extruded into 3D-printing filament, and processed in a BFB-3000 3D-Printer (3D Systems Co.) into tensile specimens, and were mechanically challenged as per ASTM D638-03. Furthermore, tensile specimens were subjected to accelerated degradation in phosphate-buffered saline solution at 70°C for 23 days, as per ISO-10993-13-2010. This included monitoring of mass loss (through dry-weighing), crystallinity (through thermogravimetric analysis/differential thermal analysis), molecular weight (through gel-permeation chromatography), and tensile strength. In-vitro biocompatibility analysis included cell-viability and extracellular matrix deposition, which were performed both on flat surfaces and on 3D-constructs – both produced through 3D-printing. Discs of 1 cm in diameter and cubic 3D-meshes of 1 cm3 were 3D printed in PLA and PLA-HA composites (n = 6). The samples were seeded with 5000 MG-63 osteosarcoma-like cells, with cell viability extrapolated throughout 21 days via resazurin reduction assays. As evidence of osteogenicity, collagen and calcium deposition were indirectly estimated through Sirius Red staining and Alizarin Red staining respectively. Results have shown that 3D printed PLA loses structural integrity as early as the first day of accelerated degradation, which was significantly faster than the literature suggests. This was reflected in the loss of tensile strength down to untestable brittleness. During degradation, mass loss, molecular weight, and crystallinity behaved similarly to results found in similar studies for PLA. All composite versions and pure PLA were found to perform equivalent to tissue-culture plastic (TCP) in supporting the seeded-cell population. Significant differences (p = 0.05) were found on collagen deposition for higher HA concentrations, with composite samples performing better than pure PLA and TCP. Additionally, per-cell-calcium deposition on the 3D-meshes was significantly lower when comparing 3D-meshes to discs of the same material (p = 0.05). These results support the idea that 3D-printable PLA-HA composites are a viable resorbable material for artificial grafts for bone-regeneration. Degradation data suggests that 3D-printing of these materials – as opposed to other manufacturing methods – might result in faster resorption than currently-used PLA implants.Keywords: bone regeneration implants, 3D-printing, in vitro testing, biocompatibility, polymer degradation, polymer-ceramic composites
Procedia PDF Downloads 15433 Separation of Lanthanides Ions from Mineral Waste with Functionalized Pillar[5]Arenes: Synthesis, Physicochemical Characterization and Molecular Dynamics Studies
Authors: Ariesny Vera, Rodrigo Montecinos
Abstract:
The rare-earth elements (REEs) or rare-earth metals (REMs), correspond to seventeen chemical elements composed by the fifteen lanthanoids, as well as scandium and yttrium. Lanthanoids corresponds to lanthanum and the f-block elements, from cerium to lutetium. Scandium and yttrium are considered rare-earth elements because they have ionic radii similar to the lighter f-block elements. These elements were called rare earths because they are simply more difficult to extract and separate individually than the most metals and, generally, they do not accumulate in minerals, they are rarely found in easily mined ores and are often unfavorably distributed in common ores/minerals. REEs show unique chemical and physical properties, in comparison to the other metals in the periodic table. Nowadays, these physicochemical properties are utilized in a wide range of synthetic, catalytic, electronic, medicinal, and military applications. Because of their applications, the global demand for rare earth metals is becoming progressively more important in the transition to a self-sustaining society and greener economy. However, due to the difficult separation between lanthanoid ions, the high cost and pollution of these processes, the scientists search the development of a method that combines selectivity and quantitative separation of lanthanoids from the leaching liquor, while being more economical and environmentally friendly processes. This motivation has favored the design and development of more efficient and environmentally friendly cation extractors with the incorporation of compounds as ionic liquids, membrane inclusion polymers (PIM) and supramolecular systems. Supramolecular chemistry focuses on the development of host-guest systems, in which a host molecule can recognize and bind a certain guest molecule or ion. Normally, the formation of a host-guest complex involves non-covalent interactions Additionally, host-guest interactions can be influenced among others effects by the structural nature of host and guests. The different macrocyclic hosts for lanthanoid species that have been studied are crown ethers, cyclodextrins, cucurbituryls, calixarenes and pillararenes.Among all the factors that can influence and affect lanthanoid (III) coordination, perhaps the most basic of them is the systematic control using macrocyclic substituents that promote a selective coordination. In this sense, macrocycles pillar[n]arenes (P[n]As) present a relatively easy functionalization and they have more π-rich cavity than other host molecules. This gives to P[n]As a negative electrostatic potential in the cavity which would be responsible for the selectivity of these compounds towards cations. Furthermore, the cavity size, the linker, and the functional groups of the polar headgroups could be modified in order to control the association of lanthanoid cations. In this sense, different P[n]As systems, specifically derivatives of the pentamer P[5]A functionalized with amide, amine, phosphate and sulfate derivatives, have been designed in terms of experimental synthesis and molecular dynamics, and the interaction between these P[5]As and some lanthanoid ions such as La³+, Eu³+ and Lu³+ has been studied by physicochemical characterization by 1H-NMR, ITC and fluorescence in the case of Eu³+ systems. The molecular dynamics study of these systems was developed in hexane as solvent, also taking into account the lanthanoid ions mentioned above, and the respective comparison studies between the different ions.Keywords: lanthanoids, macrocycles, pillar[n]arenes, rare-earth metal extraction, supramolecular chemistry, supramolecular complexes.
Procedia PDF Downloads 7432 Case Report: Ocular Helminth - In Unusual Site (Lens)
Authors: Chandra Shekhar Majumder, Md. Shamsul Haque, Khondaker Anower Hossain, Md. Rafiqul Islam
Abstract:
Introduction: Ocular helminths are parasites that infect the eye or its adnexa. They can be either motile worms or sessile worms that form cysts. These parasites require two hosts for their life cycle, a definite host (usually a human) and an intermediate host (usually an insect). While there have been reports of ocular helminths infecting various structures of the eye, including the anterior chamber and subconjunctival space, there is no previous record of such a case involving the lens. Research Aim: The aim of this case report is to present a rare case of ocular helminth infection in the lens and to contribute to the understanding of this unusual site of infection. Methodology: This study is a case report, presenting the details and findings of an 80-year-old retired policeman who presented with severe pain, redness, and vision loss in the left eye. The patient had a history of diabetes mellitus and hypertension. The examination revealed the presence of a thread-like helminth in the lens. The patient underwent treatment and follow-up, and the helminth specimen was sent for identification to the department of Parasitology. Case report: An 80-year-old retired policeman attended the OPD, Faridpur Medical College Hospital with the complaints of severe pain, redness and gross dimness of vision of the left eye for 5 days. He had a history of diabetes mellitus and hypertension for 3 years. On examination, L/E visual acuity was PL only, moderate ciliary congestion, KP 2+, cells 2+ and posterior synechia from 5 to 7 O’clock position was found. Lens was opaque. A thread like helminth was found under the anterior of the lens. The worm was moving and changing its position during examination. On examination of R/E, visual acuity was 6/36 unaided, 6/18 with pinhole. There was lental opacity. Slit-lamp and fundus examination were within normal limit. Patient was admitted in Faridpur Medical College Hospital. Diabetes mellitus was controlled with insulin. ICCE with PI was done on the same day of admission under depomedrol coverage. The helminth was recovered from the lens. It was thread like, about 5 to 6 mm in length, 1 mm in width and pinkish in colour. The patient followed up after 7 days, VA was HM, mild ciliary congestion, few KPs and cells were present. Media was hazy due to vitreous opacity. The worm was sent to the department of Parasitology, NIPSOM, Dhaka for identification. Findings: The findings of this case report highlight the presence of a helminth in the lens, which has not been previously reported. The helminth was successfully removed from the lens, but the patient experienced complications such as anterior uveitis and vitreous opacity. The exact mechanism by which the helminth enters the lens remains unclear. Theoretical Importance: This case report contributes to the existing literature on ocular helminth infections by reporting a unique case involving the lens. It highlights the need for further research to understand the pathogenesis and mechanism of entry of helminths in the lens. Data Collection and Analysis Procedures: The data for this case report were collected through clinical examination and medical records of the patient. The findings were described and presented in a descriptive manner. No statistical analysis was conducted. Question Addressed: This case report addresses the question of whether ocular helminth infections can occur in the lens, which has not been previously reported. Conclusion: To the best of our knowledge, this is the first reported case of ocular helminth infection in the lens. The presence of the helminth in the lens raises interesting questions regarding its pathogenesis and entry mechanism. Further study and research are needed to explore these aspects. Ophthalmologists and parasitologists should be aware of the possibility of ocular helminth infections in unusual sites like the lens.Keywords: ocular, helminth, unsual site, lens
Procedia PDF Downloads 6331 Effect of Degree of Phosphorylation on Electrospinning and In vitro Cell Behavior of Phosphorylated Polymers as Biomimetic Materials for Tissue Engineering Applications
Authors: Pallab Datta, Jyotirmoy Chatterjee, Santanu Dhara
Abstract:
Over the past few years, phosphorous containing polymers have received widespread attention for applications such as high performance optical fibers, flame retardant materials, drug delivery and tissue engineering. Being pentavalent, phosphorous can exist in different chemical environments in these polymers which increase their versatility. In human biochemistry, phosphorous based compounds exert their functions both in soluble and insoluble form occurring as inorganic or as organophosphorous compounds. Specifically in case of biomacromolecules, phosphates are critical for functions of DNA, ATP, phosphoproteins, phospholipids, phosphoglycans and several coenzymes. Inspired by the role of phosphorous in functional biomacromolecules, design and synthesis of biomimetic materials are thus carried out by several authors to study macromolecular function or as substitutes in clinical tissue regeneration conditions. In addition, many regulatory signals of the body are controlled by phoshphorylation of key proteins present either in form of growth factors or matrix-bound scaffold proteins. This inspires works on synthesis of phospho-peptidomimetic amino acids for understanding key signaling pathways and this is extended to obtain molecules with potentially useful biological properties. Apart from above applications, phosphate groups bound to polymer backbones have also been demonstrated to improve function of osteoblast cells and augment performance of bone grafts. Despite the advantages of phosphate grafting, however, there is limited understanding on effect of degree of phosphorylation on macromolecular physicochemical and/or biological properties. Such investigations are necessary to effectively translate knowledge of macromolecular biochemistry into relevant clinical products since they directly influence processability of these polymers into suitable scaffold structures and control subsequent biological response. Amongst various techniques for fabrication of biomimetic scaffolds, nanofibrous scaffolds fabricated by electrospinning technique offer some special advantages in resembling the attributes of natural extracellular matrix. Understanding changes in physico-chemical properties of polymers as function of phosphorylation is therefore going to be crucial in development of nanofiber scaffolds based on phosphorylated polymers. The aim of the present work is to investigate the effect of phosphorous grafting on the electrospinning behavior of polymers with aim to obtain biomaterials for bone regeneration applications. For this purpose, phosphorylated derivatives of two polymers of widely different electrospinning behaviors were selected as starting materials. Poly(vinyl alcohol) is a conveniently electrospinnable polymer at different conditions and concentrations. On the other hand, electrospinning of chitosan backbone based polymers have been viewed as a critical challenge. The phosphorylated derivatives of these polymers were synthesized, characterized and electrospinning behavior of various solutions containing these derivatives was compared with electrospinning of pure poly (vinyl alcohol). In PVA, phosphorylation adversely impacted electrospinnability while in NMPC, higher phosphate content widened concentration range for nanofiber formation. Culture of MG-63 cells on electrospun nanofibers, revealed that degree of phosphate modification of a polymer significantly improves cell adhesion or osteoblast function of cultured cells. It is concluded that improvement of cell response parameters of nanofiber scaffolds can be attained as a function of controlled degree of phosphate grafting in polymeric biomaterials with implications for bone tissue engineering applications.Keywords: bone regeneration, chitosan, electrospinning, phosphorylation
Procedia PDF Downloads 21830 Reflection of Landscape Agrogenization in the Soil Cover Structure and Profile Morphology: Example of Lithuania Agroecosystem
Authors: Jonas Volungevicius, Kristina Amaleviciute, Rimantas Vaisvalavicius, Alvyra Slepetiene, Darijus Veteikis
Abstract:
Lithuanian territory is characterized by landscape with prevailing morain hills and clayey lowlands. The largest part of it has endured agrogenization of various degrees which was the cause of changes both in the structure of landscape and soil cover, transformations of soil profile and degradation of natural background soils. These changes influence negatively geoecological potential of landscape and soil and contribute to the weakening of the sustainability of agroecosystems. Research objective: to reveal the landscape agrogenization induced alterations of catenae and their appendant soil profiles in Lithuanian morain hills and clayey lowlands. Methods: Soil cover analysis and catenae charting was conducted using landscape profiling; soil morphology detected and soil type identified following WRB 2014. Granulometric composition of soil profiles was obtained by laser diffraction method (lazer diffractometer Mastersizer 2000). pH was measured in H2O extraction using potentiometric titration; SOC was determined by the Tyurin method modified by Nikitin, measuring with spectrometer Cary 50 (VARIAN) in 590 nm wavelength using glucose standards. Results: analysis showed that the decrease of forest vegetation and the other natural landscape components following the agrogenization of the research area influenced differently but significantly the structural alterations in soil cover and vertical soil profile. The research detected that due to landscape agrogenization, the suppression of zone-specific processes and the intensification of inter-zone processes determined by agrogenic factors take place in Lithuanian agroecosystems. In forested hills historically prevailing Retisols and Histosols territorial complex is transforming into the territorial complex of Regosols, Deluvial soils and drained Histosols. Processes taking place are simplification of vertical profile structure, intensive rejuvenation of profile, disappearance of the features of zone-specific soil-forming processes (podzolization, lessivage, gley formation). Erosion and deluvial processes manifest more intensively and weakly accumulating organic material more intensively spread in a vertical soil profile. The territorial soil complex of Gleyic Luvisols and Gleysols dominating in forested clayey lowlands subjected to agrogenization is transformed into the catena of drained Luvisols and pseudo Cambisols. The best expressed are their changes in moisture regime (morphological features of gley and stagnic properties are on decline) together with alterations of pH and distribution and intensity of accumulation of organic matter in profile. A specific horizon, antraquic, uncharacteristic to natural soil formation is appearing. Important to note that due to deep ploughing and other agrotechnical measures, the natural vertical differentiation of clay particles in a soil profile is destroyed which leads not only to alterations of physical qualities of soil, but also encumbers the identification of Luvisols by creating presumptions to misidentify them as Cambisols. The latter have never developed in these ecosystems under the present climatic conditions. Acknowledgements: This work was supported by the National Science Program: The effect of long-term, different-intensity management of resources on the soils of different genesis and on other components of the agro-ecosystems [grant number SIT-9/2015] funded by the Research Council of Lithuania.Keywords: agroecosystems, landscape agrogenization, luvisols, retisols, transformation of soil profile
Procedia PDF Downloads 25829 Marketing and Business Intelligence and Their Impact on Products and Services Through Understanding Based on Experiential Knowledge of Customers in Telecommunications Companies
Authors: Ali R. Alshawawreh, Francisco Liébana-Cabanillas, Francisco J. Blanco-Encomienda
Abstract:
Collaboration between marketing and business intelligence (BI) is crucial in today's ever-evolving business landscape. These two domains play pivotal roles in molding customers' experiential knowledge. Marketing insights offer valuable information regarding customer needs, preferences, and behaviors. Conversely, BI facilitates data-driven decision-making, leading to heightened operational efficiency, product quality, and customer satisfaction. Customer experiential knowledge (CEK) encompasses customers' implicit comprehension of consumption experiences influenced by diverse factors, including social and cultural influences. This study primarily focuses on telecommunications companies in Jordan, scrutinizing how experiential customer knowledge mediates the relationship between marketing intelligence and business intelligence. Drawing on theoretical frameworks such as the resource-based view (RBV) and service-dominant logic (SDL), the research aims to comprehend how organizations utilize their resources, particularly knowledge, to foster Evolution. Employing a quantitative research approach, the study collected and analyzed primary data to explore hypotheses. Structural equation modeling (SEM) facilitated by Smart PLS software evaluated the relationships between the constructs, followed by mediation analysis to assess the indirect associations in the model. The study findings offer insights into the intricate dynamics of organizational Creation, uncovering the interconnected relationships between business intelligence, customer experiential knowledge-based innovation (CEK-DI), marketing intelligence (MI), and product and service innovation (PSI), underscoring the pivotal role of advanced intelligence capabilities in developing innovative practices rooted in a profound understanding of customer experiences. Furthermore, the positive impact of BI on PSI reaffirms the significance of data-driven decision-making in shaping the innovation landscape. The significant impact of CEK-DI on PSI highlights the critical role of customer experiences in driving an organization. Companies that actively integrate customer insights into their opportunity creation processes are more likely to create offerings that match customer expectations, which drives higher levels of product and service sophistication. Additionally, the positive and significant impact of MI on CEK-DI underscores the critical role of market insights in shaping evolutionary strategies. While the relationship between MI and PSI is positive, the slightly weaker significance level indicates a subtle association, suggesting that while MI contributes to the development of ideas, In conclusion, the study emphasizes the fundamental role of intelligence capabilities, especially artificial intelligence, emphasizing the need for organizations to leverage market and customer intelligence to achieve effective and competitive innovation practices. Collaborative efforts between marketing and business intelligence serve as pivotal drivers of development, influencing customer experiential knowledge and shaping organizational strategies and practices. Future research could adopt longitudinal designs and gather data from various sectors to offer broader insights. Additionally, the study focuses on the effects of marketing intelligence, business intelligence, customer experiential knowledge, and innovation, but other unexamined variables may also influence innovation processes. Future studies could investigate additional factors, mediators, or moderators, including the role of emerging technologies like AI and machine learning in driving innovation.Keywords: marketing intelligence, business intelligence, product, customer experiential knowledge-driven innovation
Procedia PDF Downloads 2928 Simulation, Design, and 3D Print of Novel Highly Integrated TEG Device with Improved Thermal Energy Harvest Efficiency
Abstract:
Despite the remarkable advancement of solar cell technology, the challenge of optimizing total solar energy harvest efficiency persists, primarily due to significant heat loss. This excess heat not only diminishes solar panel output efficiency but also curtails its operational lifespan. A promising approach to address this issue is the conversion of surplus heat into electricity. In recent years, there is growing interest in the use of thermoelectric generators (TEG) as a potential solution. The integration of efficient TEG devices holds the promise of augmenting overall energy harvest efficiency while prolonging the longevity of solar panels. While certain research groups have proposed the integration of solar cells and TEG devices, a substantial gap between conceptualization and practical implementation remains, largely attributed to low thermal energy conversion efficiency of TEG devices. To bridge this gap and meet the requisites of practical application, a feasible strategy involves the incorporation of a substantial number of p-n junctions within a confined unit volume. However, the manufacturing of high-density TEG p-n junctions presents a formidable challenge. The prevalent solution often leads to large device sizes to accommodate enough p-n junctions, consequently complicating integration with solar cells. Recently, the adoption of 3D printing technology has emerged as a promising solution to address this challenge by fabricating high-density p-n arrays. Despite this, further developmental efforts are necessary. Presently, the primary focus is on the 3D printing of vertically layered TEG devices, wherein p-n junction density remains constrained by spatial limitations and the constraints of 3D printing techniques. This study proposes a novel device configuration featuring horizontally arrayed p-n junctions of Bi2Te3. The structural design of the device is subjected to simulation through the Finite Element Method (FEM) within COMSOL Multiphysics software. Various device configurations are simulated to identify optimal device structure. Based on the simulation results, a new TEG device is fabricated utilizing 3D Selective laser melting (SLM) printing technology. Fusion 360 facilitates the translation of the COMSOL device structure into a 3D print file. The horizontal design offers a unique advantage, enabling the fabrication of densely packed, three-dimensional p-n junction arrays. The fabrication process entails printing a singular row of horizontal p-n junctions using the 3D SLM printing technique in a single layer. Subsequently, successive rows of p-n junction arrays are printed within the same layer, interconnected by thermally conductive copper. This sequence is replicated across multiple layers, separated by thermal insulating glass. This integration created in a highly compact three-dimensional TEG device with high density p-n junctions. The fabricated TEG device is then attached to the bottom of the solar cell using thermal glue. The whole device is characterized, with output data closely matching with COMSOL simulation results. Future research endeavors will encompass the refinement of thermoelectric materials. This includes the advancement of high-resolution 3D printing techniques tailored to diverse thermoelectric materials, along with the optimization of material microstructures such as porosity and doping. The objective is to achieve an optimal and highly integrated PV-TEG device that can substantially increase the solar energy harvest efficiency.Keywords: thermoelectric, finite element method, 3d print, energy conversion
Procedia PDF Downloads 6127 Applying Concept Mapping to Explore Temperature Abuse Factors in the Processes of Cold Chain Logistics Centers
Authors: Marco F. Benaglia, Mei H. Chen, Kune M. Tsai, Chia H. Hung
Abstract:
As societal and family structures, consumer dietary habits, and awareness about food safety and quality continue to evolve in most developed countries, the demand for refrigerated and frozen foods has been growing, and the issues related to their preservation have gained increasing attention. A well-established cold chain logistics system is essential to avoid any temperature abuse; therefore, assessing potential disruptions in the operational processes of cold chain logistics centers becomes pivotal. This study preliminarily employs HACCP to find disruption factors in cold chain logistics centers that may cause temperature abuse. Then, concept mapping is applied: selected experts engage in brainstorming sessions to identify any further factors. The panel consists of ten experts, including four from logistics and home delivery, two from retail distribution, one from the food industry, two from low-temperature logistics centers, and one from the freight industry. Disruptions include equipment-related aspects, human factors, management aspects, and process-related considerations. The areas of observation encompass freezer rooms, refrigerated storage areas, loading docks, sorting areas, and vehicle parking zones. The experts also categorize the disruption factors based on perceived similarities and build a similarity matrix. Each factor is evaluated for its impact, frequency, and investment importance. Next, multiple scale analysis, cluster analysis, and other methods are used to analyze these factors. Simultaneously, key disruption factors are identified based on their impact and frequency, and, subsequently, the factors that companies prioritize and are willing to invest in are determined by assessing investors’ risk aversion behavior. Finally, Cumulative Prospect Theory (CPT) is applied to verify the risk patterns. 66 disruption factors are found and categorized into six clusters: (1) "Inappropriate Use and Maintenance of Hardware and Software Facilities", (2) "Inadequate Management and Operational Negligence", (3) "Product Characteristics Affecting Quality and Inappropriate Packaging", (4) "Poor Control of Operation Timing and Missing Distribution Processing", (5) "Inadequate Planning for Peak Periods and Poor Process Planning", and (6) "Insufficient Cold Chain Awareness and Inadequate Training of Personnel". This study also identifies five critical factors in the operational processes of cold chain logistics centers: "Lack of Personnel’s Awareness Regarding Cold Chain Quality", "Personnel Not Following Standard Operating Procedures", "Personnel’s Operational Negligence", "Management’s Inadequacy", and "Lack of Personnel’s Knowledge About Cold Chain". The findings show that cold chain operators prioritize prevention and improvement efforts in the "Inappropriate Use and Maintenance of Hardware and Software Facilities" cluster, particularly focusing on the factors of "Temperature Setting Errors" and "Management’s Inadequacy". However, through the application of CPT theory, this study reveals that companies are not usually willing to invest in the improvement of factors related to the "Inappropriate Use and Maintenance of Hardware and Software Facilities" cluster due to its low occurrence likelihood, but they acknowledge the severity of the consequences if it does occur. Hence, the main implication is that the key disruption factors in cold chain logistics centers’ processes are associated with personnel issues; therefore, comprehensive training, periodic audits, and the establishment of reasonable incentives and penalties for both new employees and managers may significantly reduce disruption issues.Keywords: concept mapping, cold chain, HACCP, cumulative prospect theory
Procedia PDF Downloads 6626 Optical Coherence Tomography in Differentiation of Acute and Non-Healing Wounds
Authors: Ananya Barui, Provas Banerjee, Jyotirmoy Chatterjee
Abstract:
Application of optical technology in medicine and biology has a long track-record. In this endeavor, OCT is able to attract both engineers and biologists to work together in the field of photonics for establishing a striking non-invasive imaging technology. In contrast to other in vivo imaging modalities like Raman imaging, confocal imaging, two-photon microscopy etc. which can perform in vivo imaging upto 100-200 micron depth due to limitation in numerical aperture or scattering, however, OCT can achieve high-resolution imaging upto few millimeters of tissue structures depending on their refractive index in different anatomical location. This tomographic system depends on interference of two light waves in an interferometer to produce a depth profile of specimen. In wound healing, frequent collection of biopsies for follow-up of repair process could be avoided by such imaging technique. Real time skin OCT (the optical biopsy) has efficacy in deeper and faster illumination of cutaneou tissue to acquire high resolution cross sectional images of their internal micro-structure. Swept Source-OCT (SS-OCT), a novel imaging technique, can generate high-speed depth profile (~ 2 mm) of wound at a sweeping rate of laser with micron level resolution and optimum coherent length of 5-6 mm. Normally multi-layered skin tissue depicts different optical properties along with variation in thickness, refractive index and composition (i.e. keratine layer, water, fat etc.) according to their anatomical location. For instance, stratum corneum, the upper-most and relatively dehydrated layer of epidermis reflects more light and produces more lucid and a sharp demarcation line with rest of the hydrated epidermal region. During wound healing or regeneration, optical properties of cutaneous tissue continuously altered with maturation of wound bed. More mature and less hydrated tissue component reflects more light and becomes visible as a brighter area in comparison to immature region which content higher amount water or fat that depicts as a darker area in OCT image. Non-healing wound possess prolonged inflammation and inhibits nascent proliferative stage. Accumulation of necrotic tissues also prevents the repair of non-healing wounds. Due to high resolution and potentiality to reflect the compositional aspects of tissues in terms of their optical properties, this tomographic method may facilitate in differentiating non-healing and acute wounds in addition to clinical observations. Non-invasive OCT offers better insight regarding specific biological status of tissue in health and pathological conditions, OCT images could be associated with histo-pathological ‘gold standard’. This correlated SS-OCT and microscopic evaluation of the wound edges can provide information regarding progressive healing and maturation of the epithelial components. In the context of searching analogy between two different imaging modalities, their relative performances in imaging of healing bed were estimated for probing an alternative approach. Present study validated utility of SS-OCT in revealing micro-anatomic structure in the healing bed with newer information. Exploring precise correspondence of OCT images features with histo-chemical findings related to epithelial integrity of the regenerated tissue could have great implication. It could establish the ‘optical biopsy’ as a potent non-invasive diagnostic tool for cutaneous pathology.Keywords: histo-pathology, non invasive imaging, OCT, wound healing
Procedia PDF Downloads 27825 Rationally Designed Dual PARP-HDAC Inhibitor Elicits Striking Anti-leukemic Effects
Authors: Amandeep Thakur, Yi-Hsuan Chu, Chun-Hsu Pan, Kunal Nepali
Abstract:
The transfer of ADP-ribose residues onto target substrates from nicotinamide adenine dinucleotide (NAD) (PARylation) is catalyzed by Poly (ADP-ribose) polymerases (PARPs). Amongst the PARP family members, the DNA damage response in cancer is majorly regulated by PARP1 and PARP2. The blockade of DNA repair by PARP inhibitors leads to the progression of DNA single-strand breaks (induced by some triggering factors) to double-strand breaks. Notably, PARP inhibitors are remarkably effective in cancers with defective homologous recombination repair (HRR). In particular, cancer cells with BRCA mutations are responsive to therapy with PARP inhibitors. The aforementioned requirement for PARP inhibitors to be effective confers a narrow activity spectrum to PARP inhibitors, which hinders their clinical applicability. Thus, the quest to expand the application horizons of PARP inhibitors beyond BRCA mutations is the need of the hour. Literature precedents reveal that HDAC inhibition induces BRCAness in cancer cells and can broaden the therapeutic scope of PARP inhibitors. Driven by such disclosures, dual inhibitors targeting both PARP and HDAC enzymes were designed by our research group to extend the efficacy of PARP inhibitors beyond BRCA-mutated cancers to cancers with induced BRCAness. The design strategy involved the installation of Veliparib, an investigational PARP inhibitor, as a surface recognition part in the HDAC inhibitor pharmacophore model. The chemical architecture of veliparib was deemed appropriate as a starting point for the generation of dual inhibitors by virtue of its size and structural flexibility. A validatory docking study was conducted at the outset to predict the binding mode of the designed dual modulatory chemical architectures. Subsequently, the designed chemical architectures were synthesized via a multistep synthetic route and evaluated for antitumor efficacy. Delightfully, one compound manifested impressive anti-leukemic effects (HL-60 cell lines) mediated via dual inhibition of PARP and class I HDACs. The outcome of the western blot analysis revealed that the compound could downregulate the expression levels of PARP1 and PARP2 and the HDAC isoforms (HDAC1, 2, and 3). Also, the dual PARP-HDAC inhibitor upregulated the protein expression of the acetyl histone H3, confirming its abrogation potential for class I HDACs. In addition, the dual modulator could arrest the cell cycle at the G0/G1 phase and induce autophagy. Further, polymer-based nanoformulation of the dual inhibitor was furnished to afford targeted delivery of the dual inhibitor at the cancer site. Transmission electron microscopy (TEM) results indicate that the nanoparticles were monodispersed and spherical. Moreover, the polymeric nanoformulation exhibited an appropriate particle size. Delightfully, pH-sensitive behavior was manifested by the polymeric nanoformulation that led to selective antitumor effects towards the HL-60 cell lines. In light of the magnificent anti-leukemic profile of the identified dual PARP-HDAC inhibitor, in-vivo studies (pharmacokinetics and pharmacodynamics) are currently being conducted. Notably, the optimistic findings of the aforementioned study have spurred our research group to initiate several medicinal chemistry campaigns to create bifunctional small molecule inhibitors addressing PARP as the primary target.Keywords: PARP inhibitors, HDAC inhibitors, BRCA mutations, leukemia
Procedia PDF Downloads 2124 Recrystallization Behavior and Microstructural Evolution of Nickel Base Superalloy AD730 Billet during Hot Forging at Subsolvus Temperatures
Authors: Marcos Perez, Christian Dumont, Olivier Nodin, Sebastien Nouveau
Abstract:
Nickel superalloys are used to manufacture high-temperature rotary engine parts such as high-pressure disks in gas turbine engines. High strength at high operating temperatures is required due to the levels of stress and heat the disk must withstand. Therefore it is necessary parts made from materials that can maintain mechanical strength at high temperatures whilst remain comparatively low in cost. A manufacturing process referred to as the triple melt process has made the production of cast and wrought (C&W) nickel superalloys possible. This means that the balance of cost and performance at high temperature may be optimized. AD730TM is a newly developed Ni-based superalloy for turbine disk applications, with reported superior service properties around 700°C when compared to Inconel 718 and several other alloys. The cast ingot is converted into billet during either cogging process or open die forging. The semi-finished billet is then further processed into its final geometry by forging, heat treating, and machining. Conventional ingot-to-billet conversion is an expensive and complex operation, requiring a significant amount of steps to break up the coarse as-cast structure and interdendritic regions. Due to the size of conventional ingots, it is difficult to achieve a uniformly high level of strain for recrystallization, resulting in non-recrystallized regions that retain large unrecrystallized grains. Non-uniform grain distributions will also affect the ultrasonic inspectability response, which is used to find defects in the final component. The main aim is to analyze the recrystallization behavior and microstructural evolution of AD730 at subsolvus temperatures from a semi-finished product (billet) under conditions representative of both cogging and hot forging operations. Special attention to the presence of large unrecrystallized grains was paid. Double truncated cones (DTCs) were hot forged at subsolvus temperatures in hydraulic press, followed by air cooling. SEM and EBSD analysis were conducted in the as-received (billet) and the as-forged conditions. AD730 from billet alloy presents a complex microstructure characterized by a mixture of several constituents. Large unrecrystallized grains present a substructure characterized by large misorientation gradients with the formation of medium to high angle boundaries in their interior, especially close to the grain boundaries, denoting inhomogeneous strain distribution. A fine distribution of intragranular precipitates was found in their interior, playing a key role on strain distribution and subsequent recrystallization behaviour during hot forging. Continuous dynamic recrystallization (CDRX) mechanism was found to be operating in the large unrecrystallized grains, promoting the formation intragranular DRX grains and the gradual recrystallization of these grains. Evidences that hetero-epitaxial recrystallization mechanism is operating in AD730 billet material were found. Coherent γ-shells around primary γ’ precipitates were found. However, no significant contribution to the overall recrystallization during hot forging was found. By contrast, strain presents the strongest effect on the microstructural evolution of AD730, increasing the recrystallization fraction and refining the structure. Regions with low level of deformation (ε ≤ 0.6) were translated into large fractions of unrecrystallized structures (strain accumulation). The presence of undissolved secondary γ’ precipitates (pinning effect), prior to hot forging operations, could explain these results.Keywords: AD730 alloy, continuous dynamic recrystallization, hot forging, γ’ precipitates
Procedia PDF Downloads 19823 Finite Element Method (FEM) Simulation, design and 3D Print of Novel Highly Integrated PV-TEG Device with Improved Solar Energy Harvest Efficiency
Abstract:
Despite the remarkable advancement of solar cell technology, the challenge of optimizing total solar energy harvest efficiency persists, primarily due to significant heat loss. This excess heat not only diminishes solar panel output efficiency but also curtails its operational lifespan. A promising approach to address this issue is the conversion of surplus heat into electricity. In recent years, there is growing interest in the use of thermoelectric generators (TEG) as a potential solution. The integration of efficient TEG devices holds the promise of augmenting overall energy harvest efficiency while prolonging the longevity of solar panels. While certain research groups have proposed the integration of solar cells and TEG devices, a substantial gap between conceptualization and practical implementation remains, largely attributed to low thermal energy conversion efficiency of TEG devices. To bridge this gap and meet the requisites of practical application, a feasible strategy involves the incorporation of a substantial number of p-n junctions within a confined unit volume. However, the manufacturing of high-density TEG p-n junctions presents a formidable challenge. The prevalent solution often leads to large device sizes to accommodate enough p-n junctions, consequently complicating integration with solar cells. Recently, the adoption of 3D printing technology has emerged as a promising solution to address this challenge by fabricating high-density p-n arrays. Despite this, further developmental efforts are necessary. Presently, the primary focus is on the 3D printing of vertically layered TEG devices, wherein p-n junction density remains constrained by spatial limitations and the constraints of 3D printing techniques. This study proposes a novel device configuration featuring horizontally arrayed p-n junctions of Bi2Te3. The structural design of the device is subjected to simulation through the Finite Element Method (FEM) within COMSOL Multiphysics software. Various device configurations are simulated to identify optimal device structure. Based on the simulation results, a new TEG device is fabricated utilizing 3D Selective laser melting (SLM) printing technology. Fusion 360 facilitates the translation of the COMSOL device structure into a 3D print file. The horizontal design offers a unique advantage, enabling the fabrication of densely packed, three-dimensional p-n junction arrays. The fabrication process entails printing a singular row of horizontal p-n junctions using the 3D SLM printing technique in a single layer. Subsequently, successive rows of p-n junction arrays are printed within the same layer, interconnected by thermally conductive copper. This sequence is replicated across multiple layers, separated by thermal insulating glass. This integration created in a highly compact three-dimensional TEG device with high density p-n junctions. The fabricated TEG device is then attached to the bottom of the solar cell using thermal glue. The whole device is characterized, with output data closely matching with COMSOL simulation results. Future research endeavors will encompass the refinement of thermoelectric materials. This includes the advancement of high-resolution 3D printing techniques tailored to diverse thermoelectric materials, along with the optimization of material microstructures such as porosity and doping. The objective is to achieve an optimal and highly integrated PV-TEG device that can substantially increase the solar energy harvest efficiency.Keywords: thermoelectric, finite element method, 3d print, energy conversion
Procedia PDF Downloads 6622 Cultural Dynamics in Online Consumer Behavior: Exploring Cross-Country Variances in Review Influence
Authors: Eunjung Lee
Abstract:
This research investigates the intricate connection between cultural differences and online consumer behaviors by integrating Hofstede's Cultural Dimensions theory with analysis methodologies such as text mining, data mining, and topic analysis. Our aim is to provide a comprehensive understanding of how national cultural differences influence individuals' behaviors when engaging with online reviews. To ensure the relevance of our investigation, we systematically analyze and interpret the cultural nuances influencing online consumer behaviors, especially in the context of online reviews. By anchoring our research in Hofstede's Cultural Dimensions theory, we seek to offer valuable insights for marketers to tailor their strategies based on the cultural preferences of diverse global consumer bases. In our methodology, we employ advanced text mining techniques to extract insights from a diverse range of online reviews gathered globally for a specific product or service like Netflix. This approach allows us to reveal hidden cultural cues in the language used by consumers from various backgrounds. Complementing text mining, data mining techniques are applied to extract meaningful patterns from online review datasets collected from different countries, aiming to unveil underlying structures and gain a deeper understanding of the impact of cultural differences on online consumer behaviors. The study also integrates topic analysis to identify recurring subjects, sentiments, and opinions within online reviews. Marketers can leverage these insights to inform the development of culturally sensitive strategies, enhance target audience segmentation, and refine messaging approaches aligned with cultural preferences. Anchored in Hofstede's Cultural Dimensions theory, our research employs sophisticated methodologies to delve into the intricate relationship between cultural differences and online consumer behaviors. Applied to specific cultural dimensions, such as individualism vs. collectivism, masculinity vs. femininity, uncertainty avoidance, and long-term vs. short-term orientation, the study uncovers nuanced insights. For example, in exploring individualism vs. collectivism, we examine how reviewers from individualistic cultures prioritize personal experiences while those from collectivistic cultures emphasize communal opinions. Similarly, within masculinity vs. femininity, we investigate whether distinct topics align with cultural notions, such as robust features in masculine cultures and user-friendliness in feminine cultures. Examining information-seeking behaviors under uncertainty avoidance reveals how cultures differ in seeking detailed information or providing succinct reviews based on their comfort with ambiguity. Additionally, in assessing long-term vs. short-term orientation, the research explores how cultural focus on enduring benefits or immediate gratification influences reviews. These concrete examples contribute to the theoretical enhancement of Hofstede's Cultural Dimensions theory, providing a detailed understanding of cultural impacts on online consumer behaviors. As online reviews become increasingly crucial in decision-making, this research not only contributes to the academic understanding of cultural influences but also proposes practical recommendations for enhancing online review systems. Marketers can leverage these findings to design targeted and culturally relevant strategies, ultimately enhancing their global marketing effectiveness and optimizing online review systems for maximum impact.Keywords: comparative analysis, cultural dimensions, marketing intelligence, national culture, online consumer behavior, text mining
Procedia PDF Downloads 4721 Female Masochism, Jouissance, and (Re)workings of Trauma: An Ethnographic Study of the Bondage, Discipline, Dominance, Submission, Sadism, and Masochism Scene in Post-WWII Japan
Authors: Maari Sugawara
Abstract:
This ethnographic research interrogates female masochism within contemporary Japan, focusing on fifteen female BDSM (Bondage, Discipline, Dominance, Submission, Sadism, and Masochism) practitioners who identify as masochists, bottoms, and/or submissives. The study employs semi-structured interviews with these practitioners, representing diverse backgrounds and ages, to explore the intersection of sexuality and individual and/or collective trauma. The study focuses on a specific group of sadomasochists who, as survivors of gender and sexual violence, reenact their trauma through BDSM practices. This exploration draws on feminist performance studies, postcolonial studies, psychoanalysis, and affect analysis to highlight the complexities of female masochism. In a cultural milieu that often reduces female masochism to mere compliance with heteropatriarchy, this study argues that specific masochistic practices transcend submission, serving as vital strategies for confronting trauma and dismantling entrenched cultural narratives. Engaging with Lacan’s concept of feminine jouissance and the notion of "creative masochism" in the context of Japan's proximity to the imperial US, the study facilitates a nuanced exploration of female masochistic enjoyment. The study shows that these practices can act as both a means of survival and a mode of resilience, challenging dominant narratives that portray masochism solely as a form of subjugation, drawing on feminist performance studies, postcolonial studies, psychoanalysis, and affect analysis. It interprets masochism as a complex terrain of affective engagement, where shared suffering and consensual pain foster transformative possibilities. By analyzing BDSM as a cultural site, this research reframes masochism not only as a personal negotiation of pain but also as a broader allegory for Japan’s ongoing geopolitical self-positioning. Central to this analysis is the concept of "creative masochism," which positions masochism as both a metaphor and a practice through which Japan addresses its historical subordination to the United States. This framework allows for a deeper understanding of how participants' lived desires intersect with national narratives, illuminating the relationship between personal experiences and larger socio-political dynamics. It incorporates sadomasochistic metaphors into Japan-U.S. interactions, reflecting underlying patterns of submission, resistance, and cultural negotiation. Additionally, this research examines the effects, affects, and limitations of masochism within the post-WWII Japanese context, providing insights into how masochism can reshape one's relationship with their surroundings. This study challenges the notion that female masochism is entirely subsumed by hegemonic structures, revealing instead that subjects can assert their autonomy within their experiences of pleasure and pain. The consensual enactment of violence within these encounters emerges as a complex and ambivalent process, wherein pain transforms into a generative force for reimagining alternative forms of sociality and belonging. Additionally, the research identifies contradictions and connections between the personal and political, examining how kink practices shape participants' daily lives and identities, and vice versa, highlighting the profound impact of these practices on their sense of self and community. Ultimately, it reaffirms agency in the face of pervasive heteronormative power dynamics, suggesting that masochism can serve as a site of both resistance and redefinition.Keywords: female masochism, BDSM, Japan, masochism, trauma, sexual violence
Procedia PDF Downloads 2020 Pharmacophore-Based Modeling of a Series of Human Glutaminyl Cyclase Inhibitors to Identify Lead Molecules by Virtual Screening, Molecular Docking and Molecular Dynamics Simulation Study
Authors: Ankur Chaudhuri, Sibani Sen Chakraborty
Abstract:
In human, glutaminyl cyclase activity is highly abundant in neuronal and secretory tissues and is preferentially restricted to hypothalamus and pituitary. The N-terminal modification of β-amyloids (Aβs) peptides by the generation of a pyro-glutamyl (pGlu) modified Aβs (pE-Aβs) is an important process in the initiation of the formation of neurotoxic plaques in Alzheimer’s disease (AD). This process is catalyzed by glutaminyl cyclase (QC). The expression of QC is characteristically up-regulated in the early stage of AD, and the hallmark of the inhibition of QC is the prevention of the formation of pE-Aβs and plaques. A computer-aided drug design (CADD) process was employed to give an idea for the designing of potentially active compounds to understand the inhibitory potency against human glutaminyl cyclase (QC). This work elaborates the ligand-based and structure-based pharmacophore exploration of glutaminyl cyclase (QC) by using the known inhibitors. Three dimensional (3D) quantitative structure-activity relationship (QSAR) methods were applied to 154 compounds with known IC50 values. All the inhibitors were divided into two sets, training-set, and test-sets. Generally, training-set was used to build the quantitative pharmacophore model based on the principle of structural diversity, whereas the test-set was employed to evaluate the predictive ability of the pharmacophore hypotheses. A chemical feature-based pharmacophore model was generated from the known 92 training-set compounds by HypoGen module implemented in Discovery Studio 2017 R2 software package. The best hypothesis was selected (Hypo1) based upon the highest correlation coefficient (0.8906), lowest total cost (463.72), and the lowest root mean square deviation (2.24Å) values. The highest correlation coefficient value indicates greater predictive activity of the hypothesis, whereas the lower root mean square deviation signifies a small deviation of experimental activity from the predicted one. The best pharmacophore model (Hypo1) of the candidate inhibitors predicted comprised four features: two hydrogen bond acceptor, one hydrogen bond donor, and one hydrophobic feature. The Hypo1 was validated by several parameters such as test set activity prediction, cost analysis, Fischer's randomization test, leave-one-out method, and heat map of ligand profiler. The predicted features were then used for virtual screening of potential compounds from NCI, ASINEX, Maybridge and Chembridge databases. More than seven million compounds were used for this purpose. The hit compounds were filtered by drug-likeness and pharmacokinetics properties. The selective hits were docked to the high-resolution three-dimensional structure of the target protein glutaminyl cyclase (PDB ID: 2AFU/2AFW) to filter these hits further. To validate the molecular docking results, the most active compound from the dataset was selected as a reference molecule. From the density functional theory (DFT) study, ten molecules were selected based on their highest HOMO (highest occupied molecular orbitals) energy and the lowest bandgap values. Molecular dynamics simulations with explicit solvation systems of the final ten hit compounds revealed that a large number of non-covalent interactions were formed with the binding site of the human glutaminyl cyclase. It was suggested that the hit compounds reported in this study could help in future designing of potent inhibitors as leads against human glutaminyl cyclase.Keywords: glutaminyl cyclase, hit lead, pharmacophore model, simulation
Procedia PDF Downloads 130