Search results for: the trend
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1870

Search results for: the trend

880 Smart in Performance: More to Practical Life than Hardware and Software

Authors: Faten Hatem

Abstract:

This paper promotes the importance of focusing on spatial aspects and affective factors that impact smart urbanism. This helps to better inform city governance, spatial planning, and policymaking to focus on what Smart does and what it can achieve for cities in terms of performance rather than on using the notion for prestige in a worldwide trend towards becoming a smart city. By illustrating how this style of practice compromises the social aspects and related elements of space making through an interdisciplinary comparative approach, the paper clarifies the impact of this compromise on the overall smart city performance. In response, this paper recognizes the importance of establishing a new meaning for urban progress by moving beyond improving basic services of the city to enhance the actual human experience which is essential for the development of authentic smart cities. The topic is presented under five overlooked areas that discuss the relation between smart cities’ potential and efficiency paradox, the social aspect, connectedness with nature, the human factor, and untapped resources. However, these themes are not meant to be discussed in silos, instead, they are presented to collectively examine smart cities in performance, arguing there is more to the practical life of smart cities than software and hardware inventions. The study is based on a case study approach, presenting Milton Keynes as a living example to learn from while engaging with various methods for data collection including multi-disciplinary semi-structured interviews, field observations, and data mining.

Keywords: smart design, the human in the city, human needs and urban planning, sustainability, smart cities, smart

Procedia PDF Downloads 83
879 Women in Teaching Profession: Impacts and Challenges

Authors: A. M. Sultana, Norhirdawati Binti Mhd Zahir, Norzalan Hadi Yaacob

Abstract:

Recently in Malaysia, women's participation in teaching profession has increased. The increasing trend of women’s participation in the teaching profession poses challenges in families, especially in the developing countries like Malaysia. One of these challenges, concerns in balancing their role between family and job responsibility that faced by many women teachers. The purpose of this study is to discover how women teachers' impact on family happiness and the challenges faced by them in balancing their role between family and job responsibility. The findings presented in this study are based on survey research in a secondary school Dato’ Bijaya Setia in the district of Gugusan Manjoi which is located in Kedah, Malaysia. The study found that employment of women in economic activity has several beneficial impacts of improving the economic condition of the family. The results also revealed that in low income earning families, both husbands and wives’ employment contribute to the family income that less likely to experience of family poverty. The study also showed despite women's teachers’ significant role towards the overall development of the family, the majority of women teachers encountered a number of difficulties in balancing their role between family and job responsibility especially when they need to work more than the normal working time. Therefore, it is common for the majority of women suffering from psychological stress when they are unable to complete the task at a fixed time. The present study also suggests implication of family friendly policy and its appropriate practice to support the women teachers who are significantly contributing to family, community and the country.

Keywords: emotional exhaustion, family friendly policy, work family conflict, women teacher

Procedia PDF Downloads 413
878 Cows Milk Quality on Different Sized Dairy Farms

Authors: Ramutė Miseikienė, Saulius Tusas

Abstract:

Somatic cell count and bacteria count are the main indicators of cow milk quality. The aim of this study was to analyze and compare parameters of milk quality in different-sized cows herds. Milk quality of ten dairy cows farms during one year period was analyzed. Dairy farms were divided into five groups according to number of cows in the farm (under 50 cows, 51–100 cows, 101–200 cows, 201–400 cows and more than 400 cows). The averages of somatic cells bacteria count in milk and milk freezing temperature were analyzed. Also, these parameters of milk quality were compared during outdoor (from May to September) and indoor (from October to April) periods. The largest number of SCC was established in the smallest farms, i.e., in farms under 50 cows and 51-100 cows (respectively 264±9,19 and 300±10,24 thousand/ml). Reliable link between the smallest and largest dairy farms and farms with 101-200 and 201-400 cows and count of somatic cells in milk has not been established (P > 0.05). Bacteria count had a low tendency to decrease when the number of cows in farms increased. The highest bacteria number was determined in the farms with 51-100 cows and the the lowest bacteria count was in milk when 201-400 and more than 401 cows were kept. With increasing the number of cows milk maximal freezing temperature decreases (significant negative trend), i. e, indicator is improving. It should be noted that in all farms milk freezing point never exceeded requirements (-0.515 °C). The highest difference between SCC in milk during the indoor and outdoor periods was established in farms with 201-400 cows (respectively 218.49 thousand/ml and 268.84 thousand/ml). However, the count of SC was significantly higher (P < 0.05) during outdoor period in large farms (201-400 and more cows). There was no significant difference between bacteria count in milk during both – outdoor and indoor – periods (P > 0.05).

Keywords: bacteria, cow, farm size, somatic cell count

Procedia PDF Downloads 251
877 Zoning and Planning Response to Low-Carbon Development Transition in the Chengdu-Chongqing City Clusters, China

Authors: Hanyu Wang, Guangdong Wang

Abstract:

County-level areas serve as vital spatial units for advancing new urbanization and implementing the principles of low-carbon development, representing critical regions where conflicts between the two are pronounced. Using the 142 county-level units in the Chengdu-Chongqing city clusters as a case study, a coupled coordination model is employed to investigate the coupled coordination relationship and its spatiotemporal evolution between county-level new urbanization and low-carbon development levels. Results indicate that (1) from 2005 to 2020, the overall levels of new urbanization and low-carbon development in the Chengdu-Chongqing city clusters showed an upward trend but with significant regional disparities. The new urbanization level exhibited a spatial differentiation pattern of "high in the suburban areas, low in the distant suburbs, and some counties standing out." The temporal change in low-carbon development levels was not pronounced, yet spatial disparities were notable. (2) The overall coupling coordination degree between new urbanization and low-carbon development is transitioning from barely coordinated to moderately coordinated. The lag in new urbanization levels serves as a primary factor constraining the coordinated development of most counties. (3) Based on the temporal evolution of development states, all county units can be categorized into four types: coordinated demonstration areas, synergistic improvement areas, low-carbon transformation areas, and development lag areas. The research findings offer crucial reference points for spatial planning and the formulation of low-carbon development policies.

Keywords: county units, coupling coordination, low-carbon development, new urbanization

Procedia PDF Downloads 68
876 Aircraft Components, Manufacturing and Design: Opportunities, Bottlenecks, and Challenges

Authors: Ionel Botef

Abstract:

Aerospace products operate in very aggressive environments characterized by high temperature, high pressure, large stresses on individual components, the presence of oxidizing and corroding atmosphere, as well as internally created or externally ingested particulate materials that induce erosion and impact damage. Consequently, during operation, the materials of individual components degrade. In addition, the impact of maintenance costs for both civil and military aircraft was estimated at least two to three times greater than initial purchase values, and this trend is expected to increase. As a result, for viable product realisation and maintenance, a spectrum of issues regarding novel processing technologies, innovation of new materials, performance, costs, and environmental impact must constantly be addressed. One of these technologies, namely the cold-gas dynamic-spray process has enabled a broad range of coatings and applications, including many that have not been previously possible or commercially practical, hence its potential for new aerospace applications. Therefore, the purpose of this paper is to summarise the state of the art of this technology alongside its theoretical and experimental studies, and explore how the cold-gas dynamic-spray process could be integrated within a framework that finally could lead to more efficient aircraft maintenance. Based on the paper's qualitative findings supported by authorities, evidence, and logic essentially it is argued that the cold-gas dynamic-spray manufacturing process should not be viewed in isolation, but should be viewed as a component of a broad framework that finally leads to more efficient aerospace operations.

Keywords: aerospace, aging aircraft, cold spray, materials

Procedia PDF Downloads 105
875 Correlation Between Ore Mineralogy and the Dissolution Behavior of K-Feldspar

Authors: Adrian Keith Caamino, Sina Shakibania, Lena Sunqvist-Öqvist, Jan Rosenkranz, Yousef Ghorbani

Abstract:

Feldspar minerals are one of the main components of the earth’s crust. They are tectosilicate, meaning that they mainly contain aluminum and silicon. Besides aluminum and silicon, they contain either potassium, sodium, or calcium. Accordingly, feldspar minerals are categorized into three main groups: K-feldspar, Na-feldspar, and Ca-feldspar. In recent years, the trend to use K-feldspar has grown tremendously, considering its potential to produce potash and alumina. However, the feldspar minerals, in general, are difficult to decompose for the dissolution of their metallic components. Several methods, including intensive milling, leaching under elevated pressure and temperature, thermal pretreatment, and the use of corrosive leaching reagents, have been proposed to improve its low dissolving efficiency. In this study, as part of the POTASSIAL EU project, to overcome the low dissolution efficiency of the K-feldspar components, mechanical activation using intensive milling followed by leaching using hydrochloric acid (HCl) was practiced. Grinding operational parameters, namely time, rotational speed, and ball-to-sample weight ratio, were studied using the Taguchi optimization method. Then, the mineralogy of the grinded samples was analyzed using a scanning electron microscope (SEM) equipped with automated quantitative mineralogy. After grinding, the prepared samples were subjected to HCl leaching. In the end, the dissolution efficiency of the main elements and impurities of different samples were correlated to the mineralogical characterization results. K-feldspar component dissolution is correlated with ore mineralogy, which provides insight into how to best optimize leaching conditions for selective dissolution. Further, it will have an effect on purifying steps taken afterward and the final value recovery procedures

Keywords: K-feldspar, grinding, automated mineralogy, impurity, leaching

Procedia PDF Downloads 61
874 Urbanization on Green Cover and Groundwater Relationships in Delhi, India

Authors: Kiranmay Sarma

Abstract:

Recent decades have witnessed rapid increase in urbanization, for which, rural-urban migration is stated to be the principal reason. Urban growth throughout the world has already outstripped the capacities of most of the cities to provide basic amenities to the citizens, including clean drinking water and consequently, they are struggling to get fresh and clean water to meet water demands. Delhi, the capital of India, is one of the rapid fast growing metropolitan cities of the country. As a result, there has been large influx of population during the last few decades and pressure exerted to the limited available water resources, mainly on groundwater. Considering this important aspect, the present research has been designed to study the effects of urbanization on the green cover and groundwater and their relationships of Delhi. For the purpose, four different land uses of the study area have been considered, viz., protected forest area, trees outside forest, maintained park and settlement area. Samples for groundwater and vegetation were collected seasonally in post-monsoon (October), winter (February) and summer (June) at each study site for two years during 2012 and 2014. The results were integrated into GIS platform. The spatial distribution of groundwater showed that the concentration of most of the ions is decreasing from northern to southern parts of Delhi, thus groundwater shows an improving trend from north to south. The depth was found to be improving from south to north Delhi, i.e., opposite to the water quality. The study concludes the groundwater properties in Delhi vary spatially with depending on the types of land cover.

Keywords: groundwater, urbanization, GIS, green cover, Delhi

Procedia PDF Downloads 273
873 ICT for Smart Appliances: Current Technology and Identification of Future ICT Trend

Authors: Abubakar Uba Ibrahim, Ibrahim Haruna Shanono

Abstract:

Smart metering and demand response are gaining ground in industrial and residential applications. Smart Appliances have been given concern towards achieving Smart home. The success of Smart grid development relies on the successful implementation of Information and Communication Technology (ICT) in power sector. Smart Appliances have been the technology under development and many new contributions to its realization have been reported in the last few years. The role of ICT here is to capture data in real time, thereby allowing bi-directional flow of information/data between producing and utilization point; that lead a way for the attainment of Smart appliances where home appliances can communicate between themselves and provide a self-control (switch on and off) using the signal (information) obtained from the grid. This paper depicts the background on ICT for smart appliances paying a particular attention to the current technology and identifying the future ICT trends for load monitoring through which smart appliances can be achieved to facilitate an efficient smart home system which promote demand response program. This paper grouped and reviewed the recent contributions, in order to establish the current state of the art and trends of the technology, so that the reader can be provided with a comprehensive and insightful review of where ICT for smart appliances stands and is heading to. The paper also presents a brief overview of communication types, and then narrowed the discussion to the load monitoring (Non-intrusive Appliances Load Monitoring ‘NALM’). Finally, some future trends and challenges in the further development of the ICT framework are discussed to motivate future contributions that address open problems and explore new possibilities.

Keywords: communication technology between appliances, demand response, load monitoring, smart appliances, smart grid

Procedia PDF Downloads 595
872 Dispersions of Carbon Black in Microemulsions

Authors: Mohamed Youssry, Dominique Guyomard, Bernard Lestriez

Abstract:

In order to enhance the energy and power densities of electrodes for energy storage systems, the formulation and processing of electrode slurries proved to be a critical issue in determining the electrode performance. In this study, we introduce novel approach to formulate carbon black slurries based on microemulsion and lyotropic liquid crystalline phases (namely, lamellar phase) composed of non-ionic surfactant (Triton X100), decanol and water. Simultaneous measurements of electrical properties of slurries under shear flow (rheology) have been conducted to elucidate the microstructure evolution with the surfactant concentration and decanol/water ratio at rest, as well as, the structural transition under steady-shear which has been confirmed by rheo-microscopy. Interestingly, the carbon black slurries at low decanol/water ratio are weak-gel (flowable) with higher electrical conductivity than those at higher ratio which behave strong-gel viscoelastic response. In addition, the slurries show recoverable electrical behaviour under shear flow in tandem with the viscosity trend. It is likely that oil-in-water microemulsion enhances slurries’ stability without affecting on the percolating network of carbon black. On the other hand, the oil-in-water analogous and bilayer structure of lamellar phase cause the slurries less conductive as a consequence of losing the network percolation. These findings are encouraging to formulate microemulsion-based electrodes for energy storage system (lithium-ion batteries).

Keywords: electrode slurries, microemulsion, microstructure transition, rheo-electrical properties

Procedia PDF Downloads 244
871 Electrospun Alginate Nanofibers Containing Spirulina Extract Double-Layered with Polycaprolactone Nanofibers

Authors: Seon Yeong Byeon, Hwa Sung Shin

Abstract:

Nanofibrous sheets are of interest in the beauty industries due to the properties of moisturizing, adhesion to skin and delivery of nutrient materials. The benefit and function of the cosmetic products should not be considered without safety thus a non-toxic manufacturing process is ideal when fabricating the products. In this study, we have developed cosmetic patches consisting of alginate and Spirulina extract, a marine resource which has antibacterial and antioxidant effects, without addition of harmful cross-linkers. The patches obtained their structural stabilities by layer-upon-layer electrospinning of an alginate layer on a formerly spread polycaprolactone (PCL) layer instead of crosslinking method. The morphological characteristics, release of Spirulina extract, water absorption, skin adhesiveness and cytotoxicity of the double-layered patches were assessed. The image of scanning electron microscopy (SEM) showed that the addition of Spirulina extract has made the fiber diameter of alginate layers thinner. Impregnation of Spirulina extract increased their hydrophilicity, moisture absorption ability and skin adhesive ability. In addition, wetting the pre-dried patches resulted in releasing the Spirulina extract within 30 min. The patches were detected to have no cytotoxicity in the human keratinocyte cell-based MTT assay, but rather showed increased cell viability. All the results indicate the bioactive and hydro-adhesive double-layered patches have an excellent applicability to bioproducts for personal skin care in the trend of ‘A mask pack a day’.

Keywords: alginate, cosmetic patch, electrospun nanofiber, polycaprolactone, Spirulina extract

Procedia PDF Downloads 334
870 Study of Storms on the Javits Center Green Roof

Authors: Alexander Cho, Harsho Sanyal, Joseph Cataldo

Abstract:

A quantitative analysis of the different variables on both the South and North green roofs of the Jacob K. Javits Convention Center was taken to find mathematical relationships between net radiation and evapotranspiration (ET), average outside temperature, and the lysimeter weight. Groups of datasets were analyzed, and the relationships were plotted on linear and semi-log graphs to find consistent relationships. Antecedent conditions for each rainstorm were also recorded and plotted against the volumetric water difference within the lysimeter. The first relation was the inverse parabolic relationship between the lysimeter weight and the net radiation and ET. The peaks and valleys of the lysimeter weight corresponded to valleys and peaks in the net radiation and ET respectively, with the 8/22/15 and 1/22/16 datasets showing this trend. The U-shaped and inverse U-shaped plots of the two variables coincided, indicating an inverse relationship between the two variables. Cross variable relationships were examined through graphs with lysimeter weight as the dependent variable on the y-axis. 10 out of 16 of the plots of lysimeter weight vs. outside temperature plots had R² values > 0.9. Antecedent conditions were also recorded for rainstorms, categorized by the amount of precipitation accumulating during the storm. Plotted against the change in the volumetric water weight difference within the lysimeter, a logarithmic regression was found with large R² values. The datasets were compared using the Mann Whitney U-test to see if the datasets were statistically different, using a significance level of 5%; all datasets compared showed a U test statistic value, proving the null hypothesis of the datasets being different from being true.

Keywords: green roof, green infrastructure, Javits Center, evapotranspiration, net radiation, lysimeter

Procedia PDF Downloads 100
869 An Economic Analysis of Bottled Drinking Water Industry in India

Authors: Swadhin Mondal

Abstract:

While safe drinking water is an effective defense against the infection of water borne diseases, a large number of populations suffering from these diseases do not have access to safe drinking water due inadequacy of supply. Private entrepreneurs entered this sector and made bottled drinking water available by supplying various kinds of bottled water. In this study we found that the bottled drinking water industry has experienced a spectacular growth over the past two decades and it has a huge growth potential because of rising demand for safe drinking. High profit margin (217 %) is the main attraction to the entrepreneur to invest in this industry. Health awareness, lack of safe drinking water facilities, rising income, urbanization, migration and rising trend in tourism industries are the major influencing factors of demand for bottled drinking water (BDW). This industry also partially fulfills the demand for drinking water. More than 2 percent of household’s demands were met by this industry and many more households (additional 4 percent) coping with BDW during water crisis. Poor households spend around 4 percent of their total monthly household’s consumption expenditure on BDW which may have an adverse impact on household because households could have spent this for purchasing other goods. Like other developed counties, a large section of Indian households are shifting from their traditional sources of water to BDW. However, there are some concerns about the quality of BDW. Many cases, BDW contains chemical toxins at more than permissible level that can be harmful for health. Hence, there is an urgent need for appropriate intervention to regulate price, reduce potential harm and improve the quality of water provided by this industry.

Keywords: drinking water, public health public failure, privatization, development, public policy

Procedia PDF Downloads 320
868 Experiencing Daylight in Architectural Spaces: A Case Study of Public Buildings in the Context of Karachi, Pakistan

Authors: Safia Asif, Saadia Bano

Abstract:

In a world with rapidly depleting resources, using artificial lighting during daytime is an act of human ignorance. Imitated light is the major source of energy consumption in public buildings. Despite, the fact that substantial working hours of these buildings usually persist in natural daylight time; there is a trend of isolated, un-fenestrated and a-contextual interiors majorly dependent on active energy sources. On the contrary, if direct and un-controlled sunlight is allowed inside the building, it will create visual and thermal discomfort. Controlled daylighting with appropriate design mechanisms is one of the important aspects of achieving thermal and visual comfort. The natural sunlight can be utilized intelligently with the help of architectural thermal controlling mechanisms to achieve a healthy and productive environment. This paper is an attempt to investigate and analyze the importance of daylighting with reference to energy efficiency and thermal comfort. For this purpose, three public buildings including two educational institutions and one general post office are selected, as case-studies in the context of Karachi, Pakistan. Various parameters of visual and thermal comfort are analyzed which includes orientation, ceiling heights, overall building profile along with daylight controlling mechanisms in terms of penetration, distribution, protection, and control. In the later part of the research, a questionnaire survey is also conducted to evaluate the user experience in terms of adequate daylighting and thermal comfort.

Keywords: daylight, public buildings, sustainable architecture, visual and thermal comfort

Procedia PDF Downloads 194
867 Design and Landscape Architecture in the Vernacular Housing of Algiers

Authors: Leila Chebaiki-Adli, Naima Chabbi-Chemrouk

Abstract:

In the Algiers context, the historical city (the old medina) was in the middle age surrounded by several residencies and gardens. They were built in the aim to spend hot days of the year. Among these later, the residences of AbdelTif and the gardens of the dey (which exist always), benefit from important criteria which increase interior comfort. Their know-how is today in trend and can give us several considerations to the architectural design and to the landscape architecture. Their particularity is seen in the built-garden interactions and the design solutions. These later let the user live with vegetation, sky and water through maximum of places in the constructions. On the basis on an aesthetic-tectonic approach, which make in evidence the architectural criteria of the two quoted cases studies (the AbdelTif residence and the gardens of the dey), we will explain in the proposed paper, some important characteristics and design solutions, which contribute strongly to the concretisation and the materialisation of a landscape architecture, and which can be used in all the Mediterranean area. The proposed aesthetic-tectonic approach is based on the fusion between interior and exterior, in the aim to distinguish syntactic criteria. The syntactic criteria correspond to: The composition and the articulation between interior and exterior spaces, the employed materials in the quoted spaces, the manifestation processes. The major finding of this study is the identification of paradigmatic processes related to the architectural design. These later reveal more figurative (direct) than expressive (no direct) way of design and creativeness. While the figurative way benefits from a high level of manifestation, the expressive one benefits from more composed and articulated materials.

Keywords: aesthetic/tectonic approach, Algiers context, design, landscape architecture

Procedia PDF Downloads 393
866 Satellite Derived Snow Cover Status and Trends in the Indus Basin Reservoir

Authors: Muhammad Tayyab Afzal, Muhammad Arslan, Mirza Muhammad Waqar

Abstract:

Snow constitutes an important component of the cryosphere, characterized by high temporal and spatial variability. Because of the contribution of snow melt to water availability, snow is an important focus for research on climate change and adaptation. MODIS satellite data have been used to identify spatial-temporal trends in snow cover in the upper Indus basin. For this research MODIS satellite 8 day composite data of medium resolution (250m) have been analysed from 2001-2005.Pixel based supervised classification have been performed and extent of snow have been calculated of all the images. Results show large variation in snow cover between years while an increasing trend from west to east is observed. Temperature data for the Upper Indus Basin (UIB) have been analysed for seasonal and annual trends over the period 2001-2005 and calibrated with the results acquired by the research. From the analysis it is concluded that there are indications that regional warming is one of the factor that is affecting the hydrology of the upper Indus basin due to accelerated glacial melting during the simulation period, stream flow in the upper Indus basin can be predicted with a high degree of accuracy. This conclusion is also supported by the research of ICIMOD in which there is an observation that the average annual precipitation over a five year period is less than the observed stream flow and supported by positive temperature trends in all seasons.

Keywords: indus basin, MODIS, remote sensing, snow cover

Procedia PDF Downloads 370
865 Salicylic Acid Signalling in Relation to Root Colonization in Rice

Authors: Seema Garcha, Sheetal Chopra, Navraj Sarao

Abstract:

Plant hormones play a role in internal colonization by beneficial microbes and also systemic acquired resistance. They define qualitative and quantitative nature of root microbiome and also influence dynamics of root rhizospheric soil. The present study is an attempt to relate salicylic acid (signal molecule) content and qualitative nature of root endophytes at various stages in the growth of rice varieties of commercial value- Parmal 121 and Basmati 1121. Root seedlings of these varieties were raised using tissue culture techniques and then they were transplanted in the fields. Cultivation was done using conventional methods in agriculture. Field soil contained 0.39% N, 75.12 Kg/hectare of phosphorus and 163.0 Kg/hectare of potassium. Microfloral profiling of the root tissue was done using the selective microbiological medium. The salicylic acid content was estimated using HPLC-Agilent 1100 HPLC Series. Salicylic acid level of Basmati 1121 remained relatively low at the time of transplant and 90 days after transplant. It increased marginally at 60 days. A similar trend was observed with Parmal 121 as well. However, Parmal variety recorded 0.935 ug/g of salicylic acid at 60 days after transplant. Salicylic acid content decreased after 90 days as both the rice varieties remained disease free. The endophytic root microflora was established by 60 days after transplant in both the varieties after which their population became constant. Rhizobium spp dominated over Azotobacter spp. Genetic profiling of endophytes for nitrogen-fixing ability is underway.

Keywords: plant-microbe interaction, rice, root microbiome, salicylic acid

Procedia PDF Downloads 185
864 Analysis of Road Accidents in India 2016 to 2021

Authors: Ajin Frank J., Shridevi Jeevan Kamble

Abstract:

The primary objective of this research paper is to identify significant patterns and insights in road accident data in India spanning from 2016 to 2021. The study reveals that the frequency of accidents, injuries, and fatalities varies depending on numerous factors such as the type of vehicle, time of accidents, age of the vehicle, age and gender of the driver, among others. Notably, the COVID-19 pandemic and subsequent lockdown measures have significantly impacted these figures. One of the key findings of the analysis is the rise in the number of accidents and deaths involving two-wheeler vehicles, particularly among younger individuals, in major states across India. This trend is of concern, and there is a need for increased awareness and precautions to prevent these types of accidents. Additionally, with the imminent rise of electric vehicles in the coming years, ensuring their safety on the road is a critical matter. Another significant factor contributing to road accidents is the age of vehicles. As vehicles age, their handling becomes more challenging compared to new ones, increasing the risk of accidents. Thus, it is imperative for the government to impose stringent regulations and laws to reduce these accident-causing factors and raise awareness among individuals about taking necessary precautions to avoid accidents. This study highlights the importance of understanding the underlying patterns and factors contributing to road accidents in India. Through this knowledge, policymakers and stakeholders can develop effective strategies to address these challenges and promote road safety, ultimately reducing the number of accidents, injuries, and fatalities on Indian roads.

Keywords: road accidents, India, road safety, accident deaths

Procedia PDF Downloads 71
863 Enhancement of Mechanical Properties for Al-Mg-Si Alloy Using Equal Channel Angular Pressing

Authors: W. H. El Garaihy, A. Nassef, S. Samy

Abstract:

Equal channel angular pressing (ECAP) of commercial Al-Mg-Si alloy was conducted using two strain rates. The ECAP processing was conducted at room temperature and at 250 °C. Route A was adopted up to a total number of four passes in the present work. Structural evolution of the aluminum alloy discs was investigated before and after ECAP processing using optical microscopy (OM). Following ECAP, simple compression tests and Vicker’s hardness were performed. OM micrographs showed that, the average grain size of the as-received Al-Mg-Si disc tends to be larger than the size of the ECAP processed discs. Moreover, significant difference in the grain morphologies of the as-received and processed discs was observed. Intensity of deformation was observed via the alignment of the Al-Mg-Si consolidated particles (grains) in the direction of shear, which increased with increasing the number of passes via ECAP. Increasing the number of passes up to 4 resulted in increasing the grains aspect ratio up to ~5. It was found that the pressing temperature has a significant influence on the microstructure, Hv-values, and compressive strength of the processed discs. Hardness measurements demonstrated that 1-pass resulted in increase of Hv-value by 42% compared to that of the as-received alloy. 4-passes of ECAP processing resulted in additional increase in the Hv-value. A similar trend was observed for the yield and compressive strength. Experimental data of the Hv-values demonstrated that there is a lack of any significant dependence on the processing strain rate.

Keywords: Al-Mg-Si alloy, equal channel angular pressing, grain refinement, severe plastic deformation

Procedia PDF Downloads 426
862 Co-Administration Effects of Conjugated Linoleic Acid and L-Carnitine on Weight Gain and Biochemical Profile in Diet Induced Obese Rats

Authors: Maryam Nazari, Majid Karandish, Alihossein Saberi

Abstract:

Obesity as a global health challenge motivates pharmaceutical industries to produce anti-obesity drugs. However, effectiveness of these agents is remained unclear. Because of popularity of dietary supplements, the aim of this study was tp investigate the effects of Conjugated Linoleic Acid (CLA) and L-carnitine (LC) on serum glucose, triglyceride, cholesterol and weight changes in diet induced obese rats. 48 male Wistar rats were randomly divided into two groups: Normal fat diet (n=8), and High fat diet (HFD) (n=32). After eight weeks, the second group which was maintained on HFD until the end of study, was subdivided into four categories: a) 500 mg Corn Oil (as control group), b) 500 mg CLA, c) 200 mg LC, d) 500 mg CLA+ 200 mg LC.All doses are planned per kg body weights, which were administered by oral gavage for four weeks. Body weights were measured and recorded weekly by means of a digital scale. At the end of the study, blood samples were collected for biochemical markers measurement. SPSS Version 16 was used for statistical analysis. At the end of 8th week, a significant difference in weight was observed between HFD and NFD group. After 12 weeks, LC significantly reduced weight gain by 4.2%. Trend of weight gain in CLA and CLA+LC groups was insignificantly decelerated. CLA+LC reduced triglyceride level significantly, but just CLA had significant influence on total cholesterol and insignificant decreasing effect on FBS. Our results showed that an obesogenic diet in a relative short time led to obesity and dyslipidemia which can be modified by LC and CLA to some extent.

Keywords: conjugated linoleic acid, high fat diet, L-Carnitine, obesity

Procedia PDF Downloads 142
861 Predictive Analytics of Bike Sharing Rider Parameters

Authors: Bongs Lainjo

Abstract:

The evolution and escalation of bike-sharing programs (BSP) continue unabated. Since the sixties, many countries have introduced different models and strategies of BSP. These include variations ranging from dockless models to electronic real-time monitoring systems. Reasons for using this BSP include recreation, errands, work, etc. And there is all indication that complex, and more innovative rider-friendly systems are yet to be introduced. The objective of this paper is to analyze current variables established by different operators and streamline them identifying the most compelling ones using analytics. Given the contents of available databases, there is a lack of uniformity and common standard on what is required and what is not. Two factors appear to be common: user type (registered and unregistered, and duration of each trip). This article uses historical data provided by one operator based in the greater Washington, District of Columbia, USA area. Several variables including categorical and continuous data types were screened. Eight out of 18 were considered acceptable and significantly contribute to determining a useful and reliable predictive model. Bike-sharing systems have become popular in recent years all around the world. Although this trend has resulted in many studies on public cycling systems, there have been few previous studies on the factors influencing public bicycle travel behavior. A bike-sharing system is a computer-controlled system in which individuals can borrow bikes for a fee or free for a limited period. This study has identified unprecedented useful, and pragmatic parameters required in improving BSP ridership dynamics.

Keywords: sharing program, historical data, parameters, ridership dynamics, trip duration

Procedia PDF Downloads 122
860 Binderless Naturally-extracted Metal-free Electrocatalyst for Efficient NOₓ Reduction

Authors: Hafiz Muhammad Adeel Sharif, Tian Li, Changping Li

Abstract:

Recently, the emission of nitrogen-sulphur oxides (NOₓ, SO₂) has become a global issue and causing serious threats to health and the environment. Catalytic reduction of NOx and SOₓ gases into friendly gases is considered one of the best approaches. However, regeneration of the catalyst, higher bond-dissociation energy for NOx, i.e., 150.7 kcal/mol, escape of intermediate gas (N₂O, a greenhouse gas) with treated flue-gas, and limited activity of catalyst remains a great challenge. Here, a cheap, binderless naturally-extracted bass-wood thin carbon electrode (TCE) is presented, which shows excellent catalytic activity towards NOx reduction. The bass-wood carbonization at 900 ℃ followed by thermal activation in the presence of CO2 gas at 750 ℃. The thermal activation resulted in an increase in epoxy groups on the surface of the TCE and enhancement in the surface area as well as the degree of graphitization. The TCE unique 3D strongly inter-connected network through hierarchical micro/meso/macro pores that allow large electrode/electrolyte interface. Owing to these characteristics, the TCE exhibited excellent catalytic efficiency towards NOx (~83.3%) under ambient conditions and enhanced catalytic response under pH and sulphite exposure as well as excellent stability up to 168 hours. Moreover, a temperature-dependent activity trend was found where the highest catalytic activity was achieved at 80 ℃, beyond which the electrolyte became evaporative and resulted in a performance decrease. The designed electrocatalyst showed great potential for effective NOx-reduction, which is highly cost-effective, green, and sustainable.

Keywords: electrocatalyst, NOx-reduction, bass-wood electrode, integrated wet-scrubbing, sustainable

Procedia PDF Downloads 58
859 Cost Valuation Method for Development Concurrent, Phase Appropriate Requirement Valuation Using the Example of Load Carrier Development in the Lithium-Ion-Battery Production

Authors: Achim Kampker, Christoph Deutskens, Heiner Hans Heimes, Mathias Ordung, Felix Optehostert

Abstract:

In the past years electric mobility became part of a public discussion. The trend to fully electrified vehicles instead of vehicles fueled with fossil energy has notably gained momentum. Today nearly every big car manufacturer produces and sells fully electrified vehicles, but electrified vehicles are still not as competitive as conventional powered vehicles. As the traction battery states the largest cost driver, lowering its price is a crucial objective. In addition to improvements in product and production processes a non-negligible, but widely underestimated cost driver of production can be found in logistics, since the production technology is not continuous yet and neither are the logistics systems. This paper presents an approach to evaluate cost factors on different designs of load carrier systems. Due to numerous interdependencies, the combination of costs factors for a particular scenario is not transparent. This is effecting actions for cost reduction negatively, but still cost reduction is one of the major goals for simultaneous engineering processes. Therefore a concurrent and phase appropriate cost valuation method is necessary to serve cost transparency. In this paper the four phases of this cost valuation method are defined and explained, which based upon a new approach integrating the logistics development process in to the integrated product and process development.

Keywords: research and development, technology and innovation, lithium-ion-battery production, load carrier development process, cost valuation method

Procedia PDF Downloads 573
858 Effects of Drying Temperatures on the Qualitative and Quantitative Phytochemicals of Aqueous Extracts If the Calyces of Hibiscus Sabdariffa

Authors: John O. Efosa, S. Egielewa, M. A. Azeke

Abstract:

Hibiscus sabdariffa (Hs) is known for its delicacy and also for medicinal properties. The flower calyces are usually sun- or oven-dried after harvesting. There are unverified claims that calyces dried at lower temperatures have better medicinal potentials than those dried at higher temperatures. The present work, therefore, aimed to study the effects of drying temperatures on the photochemical composition and antioxidant potential of aqueous extracts of the calyces of Hs. The calyces were dried at different temperatures (freeze-drying at -580C, drying at 300C, 400C, and 500 C.) respectively to constant weight. Samples (25 g) of dried calyces from each drying temperatures were weighed and placed in clean conical flasks and extracted; each was used for the analysis. Validated analytical assays were used for the determination of the different Phytochemicals. From the results obtained, it was observed that drying at 30°C resulted in the highest retention of total phenols, total flavonoids, tannins, alkaloids and saponins. Using the Inhibition Concentration values (IC50), some antioxidant parameters were found to follow the same trend as the earlier mentioned phytochemicals. Drying at 30°C resulted in the highest retention of DPPH Radical Scavenging Activity, Ferric Reducing Antioxidant Potential (FRAP), Nitrite radical scavenging Activity, 2, 2-azinobis-3-ethylbenzotiazoline-6-sulfonic acid (ABTS) radical scavenging activity There were, however, significant reductions in vitamin C and oxalate contents as the drying temperature increased (P < 0.05). From the results, it recommended that the calyces of Hibiscus sabdariffa be dried at 30°C in order to optimally elicit its medicinal potentials.

Keywords: antioxidant, drying temperature, hibiscus sabdariffa, phytochemicals, quantitative

Procedia PDF Downloads 149
857 An Adaptive Back-Propagation Network and Kalman Filter Based Multi-Sensor Fusion Method for Train Location System

Authors: Yu-ding Du, Qi-lian Bao, Nassim Bessaad, Lin Liu

Abstract:

The Global Navigation Satellite System (GNSS) is regarded as an effective approach for the purpose of replacing the large amount used track-side balises in modern train localization systems. This paper describes a method based on the data fusion of a GNSS receiver sensor and an odometer sensor that can significantly improve the positioning accuracy. A digital track map is needed as another sensor to project two-dimensional GNSS position to one-dimensional along-track distance due to the fact that the train’s position can only be constrained on the track. A model trained by BP neural network is used to estimate the trend positioning error which is related to the specific location and proximate processing of the digital track map. Considering that in some conditions the satellite signal failure will lead to the increase of GNSS positioning error, a detection step for GNSS signal is applied. An adaptive weighted fusion algorithm is presented to reduce the standard deviation of train speed measurement. Finally an Extended Kalman Filter (EKF) is used for the fusion of the projected 1-D GNSS positioning data and the 1-D train speed data to get the estimate position. Experimental results suggest that the proposed method performs well, which can reduce positioning error notably.

Keywords: multi-sensor data fusion, train positioning, GNSS, odometer, digital track map, map matching, BP neural network, adaptive weighted fusion, Kalman filter

Procedia PDF Downloads 233
856 Examination of the Self-Expression Model with Reference to Luxury Watches with Particular Regard of the Buying-Reasons

Authors: Christopher Benedikt Jakob

Abstract:

Human beings are intrigued by luxury watches for decades. It is fascinating that customers pay an enormous amount of money for specific wristwatch models. It is fascinating that customers of the luxury watch industry accept a yearly price increase. This behavior increases their desirability even more. Luxury watches are perceived as status symbols, but they are additionally accepted as a currency without the disadvantage of currency fluctuations. It is obvious that the symbolic value is more important as the functional value with reference to the buying-reasons as regards luxury watches. Nowadays human beings do not need a wristwatch to read the time. Tablets, notebooks, smartphones, the watch in the car and watches on public places are used to inform people about the current time. This is one of the reasons why there is a trend that people do not wear wristwatches anymore. Due to these facts, this study has the intention to give answers to the question why people invest an enormous amount of money on the consumption of luxury watches and why those watches are seen as a status symbol. The study examines why the luxury watch industry records significant growth rates. The self-expression model is used as an appropriate methodology to find reasons why human beings purchase specific luxury watches. This evaluative approach further discusses if human beings are aware of their current self and their ideal self and how they express them. Furthermore, the research critically evaluates the people’s social self and their ideal social self. One of the goals is to identify if customers know why they like specific luxury watches and dislike others although they have the same quality and cost comparable prices.

Keywords: luxury watch, brand awareness, buying-behaviour, consumer, self-expression

Procedia PDF Downloads 147
855 Environmental Virtue Ethics for the Anthropocene in Barbara Kingsolver’s Animal Dreams

Authors: Xu Lan, Zainor Izat Zainal

Abstract:

Human intervention in Earth’s macro system has ushered in the age of the Anthropocene, prompting introspection among humans, the action agent. This epoch demands a reawakening of human conscience and inner motivation to mitigate the irreversible trend so as to shape the trajectory of the Anthropocene. Environmental virtue ethics claims that the fundamental cause of environmental crisis lies in humans themselves. Rather than focusing more on what humans should do, environmental virtue ethics seeks to specify environmental virtues to appeal to what kind of person a human should be. Renowned Pulitzer Prize-winning author Barbara Kingsolver illustrates her contentions about environmental ethics through the narrative of Codi and her sister Hallie’s environmental choices and actions in Animal Dreams (1990). This study adopts a textual analysis approach of the character traits exhibited by Codi and Hallie that are constitutive of making them environmentally virtuous, exploring how emotions and inner motivations drive actions. This paper is informed by Ronald Sandler’s (2007) virtues of sustainability, virtues of communion with nature, and virtues of environmental stewardship and activism. It aims to examine how Codi and Hallie’s character traits are built around these virtues. Furthermore, this study underscores the importance of internalizing principles and cultivating virtues for the environment and humans’ flourishing in the Anthropocene. As a tentative practice in applying environmental virtue ethics to examine environmental virtues for the Anthropocene, this study reveals Kingsolver’s endeavor of setting environmental virtue exemplars from fictional characters to inspire humans’ long-term and stable contribution to a better future.

Keywords: anthopocene, environmental ethics, environmental virtues, virtue ethics

Procedia PDF Downloads 13
854 Global Historical Distribution Range of Brown Bear (Ursus Arctos)

Authors: Tariq Mahmood, Faiza Lehrasab, Faraz Akrim, Muhammad Sajid nadeem, Muhammad Mushtaq, Unza waqar, Ayesha Sheraz, Shaista Andleeb

Abstract:

Brown bear (Ursus arctos), a member of the family Ursidae, is distributed in a wide range of habitats in North America, Europe and Asia. Suspectedly, the global distribution range of brown bears is decreasing at the moment due to various factors. The carnivore species is categorized as ‘Least Concern’ globally by the IUCN Red List of Threatened Species. However, there are some fragmented, small populations that are on the verge of extinction, as is in Pakistan, where the species is listed as ‘Critically Endangered’, with a declining population trend. Importantly, the global historical distribution range of brown bears is undocumented. Therefore, in the current study, we reconstructed and estimated the historical distribution range of brown bears using QGIS software and also analyzed the network of protected areas in the past and current ranges of the species. Results showed that brown bear was more widely distributed in historic times, encompassing 52.6 million km² area as compared to their current distribution of 38.8 million km², resulting in a total range contraction of up to approximately 28 %. In the past, a total of N = 62,234 protected Areas, covering approximately 3.89 million km² were present in the distribution range of the species, while now a total of N= 33,313 Protected Areas, covering approximately 2.75 million km² area, are present in the current distribution range of the brown bear. The brown bear distribution range in the protected areas has also contracted by 1.15 million km² and the total percentage reduction of PAs is 29%.

Keywords: brown bear, historic distribution, range contraction, protected areas

Procedia PDF Downloads 29
853 Green approach of Anticorrosion Coating of Steel Based on Polybenzoxazine/Henna Nanocomposites

Authors: Salwa M. Elmesallamy, Ahmed A. Farag, Magd M. Badr, Dalia S. Fathy, Ahmed Bakry, Mona A. El-Etre

Abstract:

The term green environment is an international trend. It is become imperative to treat the corrosion of steel with a green coating to protect the environment. From the potential adverse effects of the traditional materials.A series of polybenzoxazine/henna composites (PBZ/henna), with different weight percent (3,5, and 7 wt % (of henna), were prepared for corrosion protection of carbon steel. The structures of the prepared composites were verified using FTIR analysis. The mechanical properties of the resins, such as adhesion, hardness, binding, and tensile strength, were also measured. It was found that the tensile strength increases by henna loading up to 25% higher than the tidy resin. The thermal stability was investigated by thermogravimetric analysis (TGA) the loading of lawsone (henna) molecules into the PBZ matrix increases the thermal stability of the composite. UV stability was tested by the UV weathering accelerator to examine the possibility that henna can also act as an aging UV stabilizer. The effect of henna content on the corrosion resistance of composite coatings was tested using potentiostatic polarization and electrochemical spectroscopy. The presence of henna in the coating matrix enhances the protection efficiency of polybenzoxazine coats. Increasing henna concentration increases the protection efficiency of composites. The quantum chemical calculations for polybenzoxazine/henna composites have resulted that the highest corrosion inhibition efficiency, has the highest EHOMO and lowest ELUMO; which is in good agreement with results obtained from experiments.

Keywords: polybenzoxazine, corrosion, green chemistry, carbon steel

Procedia PDF Downloads 81
852 Climate Change Based Frontier Research in Landscape Architecture

Authors: Xiaoyan Wang, Zhongde Wang

Abstract:

The issue of climate change, which originated in the middle of the twentieth century, has become a focus of international political, academic, and non-governmental organizations and public attention. In order to address the problems caused by climate change, the Chinese government has proposed a dual-carbon target and taken some national measures, such as ecological priority and green low-carbon development. These goals and measures are highly aligned with the values of the landscape architecture industry. This is an opportunity for the architectural discipline and the landscape architecture industry, so it is very necessary to summarize and analyze the hotspots related to climate change in the field of building science in China, which can assist the landscape architecture industry and related organizations in formulating more rational professional goals and taking actions that contribute to the betterment of societal, environmental development. Through the study, it is found as follows: firstly, after 20 years of rapid development, the research on climate change in the major architectural disciplines has shown a trend of diversification of research perspectives, interdisciplinary cross-cutting, and broadening of content; secondly, the research contents of landscape architecture focuses on the strategies to adapt to climate change, such as selection of urban tree species, the urban green infrastructure space layout, and the resilient city. Finally, in the future, climate change-based landscape architecture research will make the content system more diversified, but at the same time, it is still necessary to further deepen the research on quantitative methodology and construct scale systematic planning and design methods.

Keywords: climate change, landscape architecture, knowledge mapping, cites-pace

Procedia PDF Downloads 42
851 Borrowing Performance: A Network Connectivity Analysis of Second-Tier Cities in Turkey

Authors: Eğinç Simay Ertürk, Ferhan Gezi̇ci̇

Abstract:

The decline of large cities and the rise of second-tier cities have been observed as a global trend with significant implications for economic development and urban planning. In this context, the concepts of agglomeration shadow and borrowed size have gained importance as network externalities that affect the growth and development of surrounding areas. Istanbul, Izmir, and Ankara are Turkey's most significant metropolitan cities and play a significant role in the country's economy. The surrounding cities rely on these metropolitan cities for economic growth and development. However, the concentration of resources and investment in a single location can lead to agglomeration shadows in the surrounding areas. On the other hand, network connectivity between metropolitan and second-tier cities can result in borrowed function and performance, enabling smaller cities to access resources, investment, and knowledge they would not otherwise have access. The study hypothesizes that the network connectivity between second-tier and metropolitan cities in Turkey enables second-tier cities to increase their urban performance by borrowing size through these networks. Regression analysis will be used to identify specific network connectivity parameters most strongly associated with urban performance. Network connectivity will be measured with parameters such as transportation nodes and telecommunications infrastructure, and urban performance will be measured with an index, including parameters such as employment, education, and industry entrepreneurship, with data at the province levels. The contribution of the study lies in its research on how networking can benefit second-tier cities in Turkey.

Keywords: network connectivity, borrowed size, agglomeration shadow, secondary cities

Procedia PDF Downloads 63