Search results for: perceived image
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4579

Search results for: perceived image

3589 Similarity Based Retrieval in Case Based Reasoning for Analysis of Medical Images

Authors: M. Dasgupta, S. Banerjee

Abstract:

Content Based Image Retrieval (CBIR) coupled with Case Based Reasoning (CBR) is a paradigm that is becoming increasingly popular in the diagnosis and therapy planning of medical ailments utilizing the digital content of medical images. This paper presents a survey of some of the promising approaches used in the detection of abnormalities in retina images as well in mammographic screening and detection of regions of interest in MRI scans of the brain. We also describe our proposed algorithm to detect hard exudates in fundus images of the retina of Diabetic Retinopathy patients.

Keywords: case based reasoning, exudates, retina image, similarity based retrieval

Procedia PDF Downloads 348
3588 Acceptance of Health Information Application in Smart National Identity Card (SNIC) Using a New I-P Framework

Authors: Ismail Bile Hassan, Masrah Azrifah Azmi Murad

Abstract:

This study discovers a novel framework of individual level technology adoption known as I-P (Individual- Privacy) towards Smart National Identity Card health information application. Many countries introduced smart national identity card (SNIC) with various applications such as health information application embedded inside it. However, the degree to which citizens accept and use some of the embedded applications in smart national identity remains unknown to many governments and application providers as well. Moreover, the previous studies revealed that the factors of trust, perceived risk, privacy concern and perceived credibility need to be incorporated into more comprehensive models such as extended Unified Theory of Acceptance and Use of Technology known as UTAUT2. UTAUT2 is a mainly widespread and leading theory existing in the information system literature up to now. This research identifies factors affecting the citizens’ behavioural intention to use health information application embedded in SNIC and extends better understanding on the relevant factors that the government and the application providers would need to consider in predicting citizens’ new technology acceptance in the future. We propose a conceptual framework by combining the UTAUT2 and Privacy Calculus Model constructs and also adding perceived credibility as a new variable. The proposed framework may provide assistance to any government planning, decision, and policy makers involving e-government projects. The empirical study may be conducted in the future to provide proof and empirically validate this I-P framework.

Keywords: unified theory of acceptance and use of technology (UTAUT) model, UTAUT2 model, smart national identity card (SNIC), health information application, privacy calculus model (PCM)

Procedia PDF Downloads 467
3587 A Nonlinear Parabolic Partial Differential Equation Model for Image Enhancement

Authors: Tudor Barbu

Abstract:

We present a robust nonlinear parabolic partial differential equation (PDE)-based denoising scheme in this article. Our approach is based on a second-order anisotropic diffusion model that is described first. Then, a consistent and explicit numerical approximation algorithm is constructed for this continuous model by using the finite-difference method. Finally, our restoration experiments and method comparison, which prove the effectiveness of this proposed technique, are discussed in this paper.

Keywords: anisotropic diffusion, finite differences, image denoising and restoration, nonlinear PDE model, anisotropic diffusion, numerical approximation schemes

Procedia PDF Downloads 313
3586 The Antecedents of Internet Addiction toward Smartphone Usage

Authors: Pui-Lai To, Chechen Liao, Hen-Yi Huang

Abstract:

Twenty years after Internet development, scholars have started to identify the negative impacts brought by the Internet. Overuse of Internet could develop Internet dependency and in turn cause addiction behavior. Therefore understanding the phenomenon of Internet addiction is important. With the joint efforts of experts and scholars, Internet addiction has been officially listed as a symptom that affects public health, and the diagnosis, causes and treatment of the symptom have also been explored. On the other hand, in the area of smartphone Internet usage, most studies are still focusing on the motivation factors of smartphone usage. Not much research has been done on smartphone Internet addiction. In view of the increasing adoption of smartphones, this paper is intended to find out whether smartphone Internet addiction exists in modern society or not. This study adopted the research methodology of online survey targeting users with smartphone Internet experience. A total of 434 effective samples were recovered. In terms of data analysis, Partial Least Square (PLS) in Structural Equation Modeling (SEM) is used for sample analysis and research model testing. Software chosen for statistical analysis is SPSS 20.0 for windows and SmartPLS 2.0. The research result successfully proved that smartphone users who access Internet service via smartphone could also develop smartphone Internet addiction. Factors including flow experience, depression, virtual social support, smartphone Internet affinity and maladaptive cognition all have significant and positive influence on smartphone Internet addiction. In the scenario of smartphone Internet use, descriptive norm has a positive and significant influence on perceived playfulness, while perceived playfulness also has a significant and positive influence on flow experience. Depression, on the other hand, is negatively influenced by actual social support and positive influenced by the virtual social support.

Keywords: internet addiction, smartphone usage, social support, perceived playfulness

Procedia PDF Downloads 245
3585 An 8-Bit, 100-MSPS Fully Dynamic SAR ADC for Ultra-High Speed Image Sensor

Authors: F. Rarbi, D. Dzahini, W. Uhring

Abstract:

In this paper, a dynamic and power efficient 8-bit and 100-MSPS Successive Approximation Register (SAR) Analog-to-Digital Converter (ADC) is presented. The circuit uses a non-differential capacitive Digital-to-Analog (DAC) architecture segmented by 2. The prototype is produced in a commercial 65-nm 1P7M CMOS technology with 1.2-V supply voltage. The size of the core ADC is 208.6 x 103.6 µm2. The post-layout noise simulation results feature a SNR of 46.9 dB at Nyquist frequency, which means an effective number of bit (ENOB) of 7.5-b. The total power consumption of this SAR ADC is only 1.55 mW at 100-MSPS. It achieves then a figure of merit of 85.6 fJ/step.

Keywords: CMOS analog to digital converter, dynamic comparator, image sensor application, successive approximation register

Procedia PDF Downloads 418
3584 A Four-Step Ortho-Rectification Procedure for Geo-Referencing Video Streams from a Low-Cost UAV

Authors: B. O. Olawale, C. R. Chatwin, R. C. D. Young, P. M. Birch, F. O. Faithpraise, A. O. Olukiran

Abstract:

Ortho-rectification is the process of geometrically correcting an aerial image such that the scale is uniform. The ortho-image formed from the process is corrected for lens distortion, topographic relief, and camera tilt. This can be used to measure true distances, because it is an accurate representation of the Earth’s surface. Ortho-rectification and geo-referencing are essential to pin point the exact location of targets in video imagery acquired at the UAV platform. This can only be achieved by comparing such video imagery with an existing digital map. However, it is only when the image is ortho-rectified with the same co-ordinate system as an existing map that such a comparison is possible. The video image sequences from the UAV platform must be geo-registered, that is, each video frame must carry the necessary camera information before performing the ortho-rectification process. Each rectified image frame can then be mosaicked together to form a seamless image map covering the selected area. This can then be used for comparison with an existing map for geo-referencing. In this paper, we present a four-step ortho-rectification procedure for real-time geo-referencing of video data from a low-cost UAV equipped with multi-sensor system. The basic procedures for the real-time ortho-rectification are: (1) Decompilation of video stream into individual frames; (2) Finding of interior camera orientation parameters; (3) Finding the relative exterior orientation parameters for each video frames with respect to each other; (4) Finding the absolute exterior orientation parameters, using self-calibration adjustment with the aid of a mathematical model. Each ortho-rectified video frame is then mosaicked together to produce a 2-D planimetric mapping, which can be compared with a well referenced existing digital map for the purpose of georeferencing and aerial surveillance. A test field located in Abuja, Nigeria was used for testing our method. Fifteen minutes video and telemetry data were collected using the UAV and the data collected were processed using the four-step ortho-rectification procedure. The results demonstrated that the geometric measurement of the control field from ortho-images are more reliable than those from original perspective photographs when used to pin point the exact location of targets on the video imagery acquired by the UAV. The 2-D planimetric accuracy when compared with the 6 control points measured by a GPS receiver is between 3 to 5 meters.

Keywords: geo-referencing, ortho-rectification, video frame, self-calibration

Procedia PDF Downloads 478
3583 An Intelligent Nondestructive Testing System of Ultrasonic Infrared Thermal Imaging Based on Embedded Linux

Authors: Hao Mi, Ming Yang, Tian-yue Yang

Abstract:

Ultrasonic infrared nondestructive testing is a kind of testing method with high speed, accuracy and localization. However, there are still some problems, such as the detection requires manual real-time field judgment, the methods of result storage and viewing are still primitive. An intelligent non-destructive detection system based on embedded linux is put forward in this paper. The hardware part of the detection system is based on the ARM (Advanced Reduced Instruction Set Computer Machine) core and an embedded linux system is built to realize image processing and defect detection of thermal images. The CLAHE algorithm and the Butterworth filter are used to process the thermal image, and then the boa server and CGI (Common Gateway Interface) technology are used to transmit the test results to the display terminal through the network for real-time monitoring and remote monitoring. The system also liberates labor and eliminates the obstacle of manual judgment. According to the experiment result, the system provides a convenient and quick solution for industrial non-destructive testing.

Keywords: remote monitoring, non-destructive testing, embedded Linux system, image processing

Procedia PDF Downloads 224
3582 Perception Differences in Children Learning to Golf with Traditional versus Modified (Scaled) Equipment

Authors: Lindsey D. Sams, Dean R. Gorman, Cathy D. Lirgg, Steve W. Dittmore, Jack C. Kern

Abstract:

Golf is a lifetime sport that provides numerous physical and psychological benefits. The game has struggled with attrition and retention within minority groups and this has exposed the lack of a modified introduction to the game that is uniformly accessible and developmentally appropriate. Factors that have been related to sport participatory behaviors include perceived competence, enjoyment and intention. The purpose of this study was to examine self-reported perception differences in competence and enjoyment between learners using modified and traditional equipment as well as the potential effects these factors could have on intent for future participation. For this study, SNAG Golf was chosen to serve as the scaled equipment used by the modified equipment group. The participants in this study were 99 children (24 traditional equipment users/ 75 modified equipment users) located across the U.S. with ages ranging from 7 to 12 years (2nd-5th grade). Utilizing a convenience sampling method, data was obtained on a voluntary basis through surveys measuring children’s golf participation and self-perceptions concerning perceived competence, enjoyment and intention to continue participation. The scales used for perceived competence and enjoyment included Susan Harter’s Self-Perception Profile for Children (SPPC) along with the Physical Activity Enjoyment Scale (PACES). Analysis revealed no significant differences for enjoyment, perceived competence or intention between children learning with traditional golf equipment and modified golf equipment. This was true even though traditional equipment users reported significantly higher experience levels than that of modified users. Intention was regressed on the enjoyment and perceived competence variables. Congruent with current literature, enjoyment was a strong predictor of intention to continue participation, for both groups. Modified equipment users demonstrated significantly lower experience levels but reported similar levels of competence, enjoyment and intent to continue participation as reported by the more experienced, and potentially more skilled, traditional users. The ability to immediately generate these positive affects suggests the potential adoption of a more effective way to learn golf and a method that is conducive to participatory behaviors related to attrition and retention. These implications in turn, highlight an equipment candidate ideal for inception into physical education programs where new learners are introduced to various sports in safe and developmentally appropriate environments. A major goal of this study was to provide foundational research that instigates the further examination of golf’s introductory teaching methodologies, as there is a lack of its presence in current literature. Future research recommendations range from improvements in the current research design to expansive approaches related to the topic, such as progressive skill development, knowledge of the game’s tactical and strategic concepts, playing ability and teaching effectiveness when utilizing modified versus traditional equipment.

Keywords: adaptive sports, enjoyment, golf participation, modified equipment, perceived competence, SNAG golf

Procedia PDF Downloads 340
3581 Establishing a Model of the Environmental Behavior of College Students: The Example of Global Climate Change

Authors: Tai-Yi Yu, Tai-Kue Yu

Abstract:

Using global climate change as its main theme, this study establishes a model for understanding the environmental behavior of college students. It examines their beliefs about the environment, sustainability, and social impact. Theories about values, beliefs, norms, and planned behaviors helped establish the path relations among various latent variables, which include the students’ values regarding sustainability, environmental concern, social impact, perceived risk, environmental attitude, and behavioral intention. Personality traits were used as moderator variables in order to analyze their role in influencing environmental behaviors. The components-based partial least square (PLS) method was adopted, and the measurements and structural models were analyzed using the SmartPLS software. The proposed model complies with various test standards, including individual item reliability, composite reliability, average variance extracted, goodness-of-fit, and cross-validated redundancy. When college students are taught the concept of environmental sustainability, sustainability becomes an environmental attitude for them, and they are more likely to uphold an ethic of sustainability. The more an individual perceives the risks of global climate change, the stronger her emotional connection to the issue becomes. This positively affects the environmental attitude of college student, pushes them to participate more proactively in improvement activities, and encourages them to display their behavioral intention to improve global climate change. When considering the interaction effect among four latent variables (values regarding sustainability, social impact, environmental concern, and perceived risk), this study found that personality traits have a moderate effect on environmental attitude.

Keywords: partial least square, personality traits, social impact, environmental concern, perceived risk

Procedia PDF Downloads 428
3580 Burnout in the Resident Physician and a Simple Means of Improvement

Authors: Jacob Dangerfield, Jacob Pollard, Jennifer DeCou

Abstract:

Introduction: Burnout, anxiety, and depression are three conditions that are prevalent in medical providers. This is especially the case in the field of anesthesia, which has a high number of providers suffering from burnout and burnout syndrome. A major contributor to this issue is isolation in the workplace, with a perceived lack of peer support as a major risk factor for burnout. Two organizational interventions that can be done to help improve this issue are small group sessions and providing affordable mental health services. Per American College of Graduate Medical Education (ACGME) Guidelines, these affordable mental health services are a requirement of all residency programs, but for a variety of reasons, many residents do not access them. As physicians, we are often not good at asking for help. With this in mind, we hypothesized that carrying out small group resiliency sessions facilitated by Graduate Medical Education (GME) Wellness Counselors would improve both resident peer support as well as the likelihood that a resident will reach out to GME Wellness in a time of need. Methods: We held small group resiliency sessions with the GME Wellness Mental Health Professionals during protected didactic time. These sessions were small groups, including the members of one’s class (i.e., first-year residents on their own), and were facilitated by 1-2 mental health professionals. After these sessions, we surveyed residents who attended using a short Google Forms survey and using a 5-point Likert Scale, asked residents about some outcomes from the session. A “strongly agree” or “agree” was considered a positive response. Results: Results from our survey showed that the resident sessions had multiple positive outcomes. This survey was sent to 29 residents, and we had a 62% response rate. We found out through this survey that these small group sessions had a perceived positive impact on resident personal well-being, increased perceived peer support from classmates, and made residents more likely to reach out to GME Wellness in the future. Perceived positive impact on well-being was found in 83% of resident respondents, improved perceived peer support in 83% of respondents, and 78% of resident respondents stated that this session increased their likelihood of reaching out to mental health professionals. Conclusions: Through this study, we can conclude that our hypothesis was correct in that Small Group Resiliency Sessions that are facilitated by GME Wellness Counselors improve both resident peer support as well as the likelihood a resident reaches out to these mental health professionals in time of need. We believe these findings are very important as they address two important factors that can aid in decreasing a provider’s risk of experiencing burnout. Through this simple means, we believe other residency programs can help the well-being of their residents, and together, we can decrease the number of cases of burnout in anesthesia.

Keywords: anesthesiology, burnout, wellness, depression, residents, trainees, mental health

Procedia PDF Downloads 54
3579 Digital Material Characterization Using the Quantum Fourier Transform

Authors: Felix Givois, Nicolas R. Gauger, Matthias Kabel

Abstract:

The efficient digital material characterization is of great interest to many fields of application. It consists of the following three steps. First, a 3D reconstruction of 2D scans must be performed. Then, the resulting gray-value image of the material sample is enhanced by image processing methods. Finally, partial differential equations (PDE) are solved on the segmented image, and by averaging the resulting solutions fields, effective properties like stiffness or conductivity can be computed. Due to the high resolution of current CT images, the latter is typically performed with matrix-free solvers. Among them, a solver that uses the explicit formula of the Green-Eshelby operator in Fourier space has been proposed by Moulinec and Suquet. Its algorithmic, most complex part is the Fast Fourier Transformation (FFT). In our talk, we will discuss the potential quantum advantage that can be obtained by replacing the FFT with the Quantum Fourier Transformation (QFT). We will especially show that the data transfer for noisy intermediate-scale quantum (NISQ) devices can be improved by using appropriate boundary conditions for the PDE, which also allows using semi-classical versions of the QFT. In the end, we will compare the results of the QFT-based algorithm for simple geometries with the results of the FFT-based homogenization method.

Keywords: most likelihood amplitude estimation (MLQAE), numerical homogenization, quantum Fourier transformation (QFT), NISQ devises

Procedia PDF Downloads 78
3578 View Synthesis of Kinetic Depth Imagery for 3D Security X-Ray Imaging

Authors: O. Abusaeeda, J. P. O. Evans, D. Downes

Abstract:

We demonstrate the synthesis of intermediary views within a sequence of X-ray images that exhibit depth from motion or kinetic depth effect in a visual display. Each synthetic image replaces the requirement for a linear X-ray detector array during the image acquisition process. Scale invariant feature transform, SIFT, in combination with epipolar morphing is employed to produce synthetic imagery. Comparison between synthetic and ground truth images is reported to quantify the performance of the approach. Our work is a key aspect in the development of a 3D imaging modality for the screening of luggage at airport checkpoints. This programme of research is in collaboration with the UK Home Office and the US Dept. of Homeland Security.

Keywords: X-ray, kinetic depth, KDE, view synthesis

Procedia PDF Downloads 265
3577 Analysis of Two Phase Hydrodynamics in a Column Flotation by Particle Image Velocimetry

Authors: Balraju Vadlakonda, Narasimha Mangadoddy

Abstract:

The hydrodynamic behavior in a laboratory column flotation was analyzed using particle image velocimetry. For complete characterization of column flotation, it is necessary to determine the flow velocity induced by bubbles in the liquid phase, the bubble velocity and bubble characteristics:diameter,shape and bubble size distribution. An experimental procedure for analyzing simultaneous, phase-separated velocity measurements in two-phase flows was introduced. The non-invasive PIV technique has used to quantify the instantaneous flow field, as well as the time averaged flow patterns in selected planes of the column. Using the novel particle velocimetry (PIV) technique by the combination of fluorescent tracer particles, shadowgraphy and digital phase separation with masking technique measured the bubble velocity as well as the Reynolds stresses in the column. Axial and radial mean velocities as well as fluctuating components were determined for both phases by averaging the sufficient number of double images. Bubble size distribution was cross validated with high speed video camera. Average turbulent kinetic energy of bubble were analyzed. Different air flow rates were considered in the experiments.

Keywords: particle image velocimetry (PIV), bubble velocity, bubble diameter, turbulent kinetic energy

Procedia PDF Downloads 510
3576 Automatic Product Identification Based on Deep-Learning Theory in an Assembly Line

Authors: Fidel Lòpez Saca, Carlos Avilés-Cruz, Miguel Magos-Rivera, José Antonio Lara-Chávez

Abstract:

Automated object recognition and identification systems are widely used throughout the world, particularly in assembly lines, where they perform quality control and automatic part selection tasks. This article presents the design and implementation of an object recognition system in an assembly line. The proposed shapes-color recognition system is based on deep learning theory in a specially designed convolutional network architecture. The used methodology involve stages such as: image capturing, color filtering, location of object mass centers, horizontal and vertical object boundaries, and object clipping. Once the objects are cut out, they are sent to a convolutional neural network, which automatically identifies the type of figure. The identification system works in real-time. The implementation was done on a Raspberry Pi 3 system and on a Jetson-Nano device. The proposal is used in an assembly course of bachelor’s degree in industrial engineering. The results presented include studying the efficiency of the recognition and processing time.

Keywords: deep-learning, image classification, image identification, industrial engineering.

Procedia PDF Downloads 160
3575 A Framework of Product Information Service System Using Mobile Image Retrieval and Text Mining Techniques

Authors: Mei-Yi Wu, Shang-Ming Huang

Abstract:

The online shoppers nowadays often search the product information on the Internet using some keywords of products. To use this kind of information searching model, shoppers should have a preliminary understanding about their interesting products and choose the correct keywords. However, if the products are first contact (for example, the worn clothes or backpack of passengers which you do not have any idea about the brands), these products cannot be retrieved due to insufficient information. In this paper, we discuss and study the applications in E-commerce using image retrieval and text mining techniques. We design a reasonable E-commerce application system containing three layers in the architecture to provide users product information. The system can automatically search and retrieval similar images and corresponding web pages on Internet according to the target pictures which taken by users. Then text mining techniques are applied to extract important keywords from these retrieval web pages and search the prices on different online shopping stores with these keywords using a web crawler. Finally, the users can obtain the product information including photos and prices of their favorite products. The experiments shows the efficiency of proposed system.

Keywords: mobile image retrieval, text mining, product information service system, online marketing

Procedia PDF Downloads 359
3574 Training a Neural Network to Segment, Detect and Recognize Numbers

Authors: Abhisek Dash

Abstract:

This study had three neural networks, one for number segmentation, one for number detection and one for number recognition all of which are coupled to one another. All networks were trained on the MNIST dataset and were convolutional. It was assumed that the images had lighter background and darker foreground. The segmentation network took 28x28 images as input and had sixteen outputs. Segmentation training starts when a dark pixel is encountered. Taking a window(7x7) over that pixel as focus, the eight neighborhood of the focus was checked for further dark pixels. The segmentation network was then trained to move in those directions which had dark pixels. To this end the segmentation network had 16 outputs. They were arranged as “go east”, ”don’t go east ”, “go south east”, “don’t go south east”, “go south”, “don’t go south” and so on w.r.t focus window. The focus window was resized into a 28x28 image and the network was trained to consider those neighborhoods which had dark pixels. The neighborhoods which had dark pixels were pushed into a queue in a particular order. The neighborhoods were then popped one at a time stitched to the existing partial image of the number one at a time and trained on which neighborhoods to consider when the new partial image was presented. The above process was repeated until the image was fully covered by the 7x7 neighborhoods and there were no more uncovered black pixels. During testing the network scans and looks for the first dark pixel. From here on the network predicts which neighborhoods to consider and segments the image. After this step the group of neighborhoods are passed into the detection network. The detection network took 28x28 images as input and had two outputs denoting whether a number was detected or not. Since the ground truth of the bounds of a number was known during training the detection network outputted in favor of number not found until the bounds were not met and vice versa. The recognition network was a standard CNN that also took 28x28 images and had 10 outputs for recognition of numbers from 0 to 9. This network was activated only when the detection network votes in favor of number detected. The above methodology could segment connected and overlapping numbers. Additionally the recognition unit was only invoked when a number was detected which minimized false positives. It also eliminated the need for rules of thumb as segmentation is learned. The strategy can also be extended to other characters as well.

Keywords: convolutional neural networks, OCR, text detection, text segmentation

Procedia PDF Downloads 161
3573 Depth Estimation in DNN Using Stereo Thermal Image Pairs

Authors: Ahmet Faruk Akyuz, Hasan Sakir Bilge

Abstract:

Depth estimation using stereo images is a challenging problem in computer vision. Many different studies have been carried out to solve this problem. With advancing machine learning, tackling this problem is often done with neural network-based solutions. The images used in these studies are mostly in the visible spectrum. However, the need to use the Infrared (IR) spectrum for depth estimation has emerged because it gives better results than visible spectra in some conditions. At this point, we recommend using thermal-thermal (IR) image pairs for depth estimation. In this study, we used two well-known networks (PSMNet, FADNet) with minor modifications to demonstrate the viability of this idea.

Keywords: thermal stereo matching, deep neural networks, CNN, Depth estimation

Procedia PDF Downloads 279
3572 Fully Automated Methods for the Detection and Segmentation of Mitochondria in Microscopy Images

Authors: Blessing Ojeme, Frederick Quinn, Russell Karls, Shannon Quinn

Abstract:

The detection and segmentation of mitochondria from fluorescence microscopy are crucial for understanding the complex structure of the nervous system. However, the constant fission and fusion of mitochondria and image distortion in the background make the task of detection and segmentation challenging. In the literature, a number of open-source software tools and artificial intelligence (AI) methods have been described for analyzing mitochondrial images, achieving remarkable classification and quantitation results. However, the availability of combined expertise in the medical field and AI required to utilize these tools poses a challenge to its full adoption and use in clinical settings. Motivated by the advantages of automated methods in terms of good performance, minimum detection time, ease of implementation, and cross-platform compatibility, this study proposes a fully automated framework for the detection and segmentation of mitochondria using both image shape information and descriptive statistics. Using the low-cost, open-source python and openCV library, the algorithms are implemented in three stages: pre-processing, image binarization, and coarse-to-fine segmentation. The proposed model is validated using the mitochondrial fluorescence dataset. Ground truth labels generated using a Lab kit were also used to evaluate the performance of our detection and segmentation model. The study produces good detection and segmentation results and reports the challenges encountered during the image analysis of mitochondrial morphology from the fluorescence mitochondrial dataset. A discussion on the methods and future perspectives of fully automated frameworks conclude the paper.

Keywords: 2D, binarization, CLAHE, detection, fluorescence microscopy, mitochondria, segmentation

Procedia PDF Downloads 357
3571 Visual Search Based Indoor Localization in Low Light via RGB-D Camera

Authors: Yali Zheng, Peipei Luo, Shinan Chen, Jiasheng Hao, Hong Cheng

Abstract:

Most of traditional visual indoor navigation algorithms and methods only consider the localization in ordinary daytime, while we focus on the indoor re-localization in low light in the paper. As RGB images are degraded in low light, less discriminative infrared and depth image pairs are taken, as the input, by RGB-D cameras, the most similar candidates, as the output, are searched from databases which is built in the bag-of-word framework. Epipolar constraints can be used to relocalize the query infrared and depth image sequence. We evaluate our method in two datasets captured by Kinect2. The results demonstrate very promising re-localization results for indoor navigation system in low light environments.

Keywords: indoor navigation, low light, RGB-D camera, vision based

Procedia PDF Downloads 460
3570 Mapping of Geological Structures Using Aerial Photography

Authors: Ankit Sharma, Mudit Sachan, Anurag Prakash

Abstract:

Rapid growth in data acquisition technologies through drones, have led to advances and interests in collecting high-resolution images of geological fields. Being advantageous in capturing high volume of data in short flights, a number of challenges have to overcome for efficient analysis of this data, especially while data acquisition, image interpretation and processing. We introduce a method that allows effective mapping of geological fields using photogrammetric data of surfaces, drainage area, water bodies etc, which will be captured by airborne vehicles like UAVs, we are not taking satellite images because of problems in adequate resolution, time when it is captured may be 1 yr back, availability problem, difficult to capture exact image, then night vision etc. This method includes advanced automated image interpretation technology and human data interaction to model structures and. First Geological structures will be detected from the primary photographic dataset and the equivalent three dimensional structures would then be identified by digital elevation model. We can calculate dip and its direction by using the above information. The structural map will be generated by adopting a specified methodology starting from choosing the appropriate camera, camera’s mounting system, UAVs design ( based on the area and application), Challenge in air borne systems like Errors in image orientation, payload problem, mosaicing and geo referencing and registering of different images to applying DEM. The paper shows the potential of using our method for accurate and efficient modeling of geological structures, capture particularly from remote, of inaccessible and hazardous sites.

Keywords: digital elevation model, mapping, photogrammetric data analysis, geological structures

Procedia PDF Downloads 686
3569 Training Volume and Myoelectric Responses of Lower Body Muscles with Differing Foam Rolling Periods

Authors: Humberto Miranda, Haroldo G. Santana, Gabriel A. Paz, Vicente P. Lima, Jeffrey M. Willardson

Abstract:

Foam rolling is a practice that has increased in popularity before and after strength training. The purpose of this study was to compare the acute effects of different foam rolling periods for the lower body muscles on subsequent performance (total repetitions and training volume), myoelectric activity and rating of perceived exertion in trained men. Fourteen trained men (26.2 ± 3.2 years, 178 ± 0.04 cm height, 82.2 ± 10 kg weight and body mass index 25.9 ± 3.3kg/m2) volunteered for this study. Four repetition maximum (4-RM) loads were determined for hexagonal bar deadlift and 45º angled leg press during test and retest sessions over two nonconsecutive days. Five experimental protocols were applied in a randomized design, which included: a traditional protocol (control)—a resistance training session without prior foam rolling; or resistance training sessions performed following one (P1), two (P2), three (P3), or four (P4) sets of 30 sec. foam rolling for the lower extremity musculature. Subjects were asked to roll over the medial and lateral aspects of each muscle group with as much pressure as possible. All foam rolling was completed at a cadence of 50 bpm. These procedures were performed on both sides unilaterally as described below. Quadriceps: between the apex of the patella and the ASIS; Hamstring: between the gluteal fold and popliteal fossa; Triceps surae: between popliteal fossa and calcaneus tendon. The resistance training consisted of five sets with 4-RM loads and two-minute rest intervals between sets, and a four-minute rest interval between the hexagonal bar deadlift and the 45º angled leg press. The number of repetitions completed, the myoelectric activity of vastus lateralis (VL), vastus medialis oblique (VMO), semitendinosus (SM) and medial gastrocnemius (GM) were recorded, as well as the rating of perceived exertion for each protocol. There were no differences between the protocols in the total repetitions for the hexagonal bar deadlift (Control - 16.2 ± 5.9; P1 - 16.9 ± 5.5; P2 - 19.2 ± 5.7; P3 - 19.4 ± 5.2; P4 - 17.2 ± 8.2) (p > 0.05) and 45º angled leg press (Control - 23.3 ± 9.7; P1 - 25.9 ± 9.5; P2 - 29.1 ± 13.8; P3 - 28.0 ± 11.7; P4 - 30.2 ± 11.2) exercises. Similar results between protocols were also noted for myoelectric activity (p > 0.05) and rating of perceived exertion (p > 0.05). Therefore, the results of the present study indicated no deleterious effects on performance, myoelectric activity and rating of perceived exertion responses during lower body resistance training.

Keywords: self myofascial release, foam rolling, electromyography, resistance training

Procedia PDF Downloads 226
3568 Mammographic Multi-View Cancer Identification Using Siamese Neural Networks

Authors: Alisher Ibragimov, Sofya Senotrusova, Aleksandra Beliaeva, Egor Ushakov, Yuri Markin

Abstract:

Mammography plays a critical role in screening for breast cancer in women, and artificial intelligence has enabled the automatic detection of diseases in medical images. Many of the current techniques used for mammogram analysis focus on a single view (mediolateral or craniocaudal view), while in clinical practice, radiologists consider multiple views of mammograms from both breasts to make a correct decision. Consequently, computer-aided diagnosis (CAD) systems could benefit from incorporating information gathered from multiple views. In this study, the introduce a method based on a Siamese neural network (SNN) model that simultaneously analyzes mammographic images from tri-view: bilateral and ipsilateral. In this way, when a decision is made on a single image of one breast, attention is also paid to two other images – a view of the same breast in a different projection and an image of the other breast as well. Consequently, the algorithm closely mimics the radiologist's practice of paying attention to the entire examination of a patient rather than to a single image. Additionally, to the best of our knowledge, this research represents the first experiments conducted using the recently released Vietnamese dataset of digital mammography (VinDr-Mammo). On an independent test set of images from this dataset, the best model achieved an AUC of 0.87 per image. Therefore, this suggests that there is a valuable automated second opinion in the interpretation of mammograms and breast cancer diagnosis, which in the future may help to alleviate the burden on radiologists and serve as an additional layer of verification.

Keywords: breast cancer, computer-aided diagnosis, deep learning, multi-view mammogram, siamese neural network

Procedia PDF Downloads 138
3567 The Residual Effects of Special Merchandising Sections on Consumers' Shopping Behavior

Authors: Shih-Ching Wang, Mark Lang

Abstract:

This paper examines the secondary effects and consequences of special displays on subsequent shopping behavior. Special displays are studied as a prominent form of in-store or shopper marketing activity. Two experiments are performed using special value and special quality-oriented displays in an online simulated store environment. The impact of exposure to special displays on mindsets and resulting product choices are tested in a shopping task. Impact on store image is also tested. The experiments find that special displays do trigger shopping mindsets that affect product choices and shopping basket composition and value. There are intended and unintended positive and negative effects found. Special value displays improve store price image but trigger a price sensitive shopping mindset that causes more lower-priced items to be purchased, lowering total basket dollar value. Special natural food displays improve store quality image and trigger a quality-oriented mindset that causes fewer lower-priced items to be purchased, increasing total basket dollar value. These findings extend the theories of product categorization, mind-sets, and price sensitivity found in communication research into the retail store environment. Findings also warn retailers to consider the total effects and consequences of special displays when designing and executing in-store or shopper marketing activity.

Keywords: special displays, mindset, shopping behavior, price consciousness, product categorization, store image

Procedia PDF Downloads 283
3566 School-Based Oral Assessment in Malaysian Schools

Authors: Sedigheh Abbasnasab Sardareh

Abstract:

The current study investigates ESL teachers' voices in order to formulate further research on the effectiveness of the SBOA practices. It is an attempt to find out (1) what are ESL experienced teachers’ perceptions, experiences, attitudes, and beliefs of SBOA; (2) what teaching and learning aspects of SBOA needs focus to enhance its effectiveness; (3) external issues related to the implementation of SBOA; (4) internal issues related to the implementation of SBOA; and also (5) perceived recommendations on SBOA. The study utilized focus group discussion sessions. 9 experienced ESL (5 females and 4 males) teachers were selected based on the consent letters sent to them. These teachers had over 20 years experience in both traditional and SBOA-type assessment and the train-the-trainer experts recommended by the Ministry of Education. Respondents were guided with open-ended questions to extracts their perceived experiences implementing SBOA guided structurally by the author as the moderator. Data were first discussed with the respondents for further clarifications and then only analyzed and re-confirmed with some recommendations before the final presentation of this preliminary results were presented here. The focus group discussions yielded some important perceived views on the SBOA implementation. Some of the themes were discussed and some recommendations were proposed for further in-depth study by the Ministry of Education. Some of the future directions based on the results were also put forward. Some external and internal variables were important in order for successful implementation of SBOA. Mere implementing a policy should be taken into consideration because this might impede some of the teaching and learning processes both by the classroom stakeholders such as teachers and student. More research methods such as the use of questionnaires could be utilized to further investigate to large populations of teacher educators in Malaysia.

Keywords: school based oral assessment, Malaysia, ESL, focus group discussion

Procedia PDF Downloads 325
3565 Assessing Bus Service Quality in Dhaka City from the Perspective of Female Passengers

Authors: S. K. Subah, R. Tasnim, M. I. Jahan, M. R. Islam

Abstract:

While talking about how comfortable and convenient Dhaka's bus service is, the minimum emphasis is placed on the female commuters of the Dhaka city. Recognizing the contemporary situation, the supreme focus is to develop experimental model based on statistical methods. SEM has been adopted to quantify passenger satisfaction, which is affected by the perceived service quality. The study deals with 16 observed variables and three latent variables, which were correlated to identify their significance on the regulation of perceived SQ (Service Quality). To calibrate the model, a dataset of 250 responses from female users of local buses has been utilized through survey. A questionnaire structured with SQ variables was prepared in consultation with prevailing literature, practitioners, academicians, and users. The result concludes that the attributes of safe and secured environment have the most significant impact on the overall bus service quality according to the insight of female respondents. The study outcome might be a great help for the policymakers, women's organizations, and NGOs to formulate transport policy that will ensure a women-friendly public bus service.

Keywords: bus service quality, female perception, structural equation modelling, safety-security, women friendly bus

Procedia PDF Downloads 157
3564 Crater Detection Using PCA from Captured CMOS Camera Data

Authors: Tatsuya Takino, Izuru Nomura, Yuji Kageyama, Shin Nagata, Hiroyuki Kamata

Abstract:

We propose a method of detecting the craters from the image of the lunar surface. This proposal assumes that it is applied to SLIM (Smart Lander for Investigating Moon) working group aiming at the pinpoint landing on the lunar surface and investigating scientific research. It is difficult to equip and use high-performance computers for the small space probe. So, it is necessary to use a small computer with an exclusive hardware such as FPGA. We have studied the crater detection using principal component analysis (PCA), In this paper, We implement detection algorithm into the FPGA, and the detection is performed on the data that was captured from the CMOS camera.

Keywords: crater detection, PCA, FPGA, image processing

Procedia PDF Downloads 550
3563 Changing Body Ideals of Ethnically Diverse Gay and Heterosexual Men and the Proliferation of Social and Entertainment Media

Authors: Cristina Azocar, Ivana Markova

Abstract:

A survey of 565 male undergraduates examined the effects of exposure to social networking sites and entertainment media on young men’s body image. Exposure to social and to entertainment media was found to have negative effects on men’s body satisfaction, social comparison, and thin ideal internalization. Findings indicated significant differences in those men who were more exposed to social and to entertainment media than those who were not as exposed. Consistent with past studies, gay men were found to be more dissatisfied with their bodies than straight men. Gay men compared themselves to other better-looking individuals and internalized ideal body types seen in media significantly more than their straight counterparts. Surprisingly, straight men seem to care as much about their physical attractiveness/appearance as gay men do, but only in public settings such as at the beach, at athletic events (including gyms) and social events. Although on average ethnic groups were more similar than different, small but significant differences occurred with Asian men indicating significantly higher body dissatisfaction than White/European men and Middle Eastern/Arab men their counterparts. The study increases our knowledge about SNS and entertainment use and its associated body image, and body satisfaction affects among low-income ethnic minority men.

Keywords: body dissatisfaction, body image, entertainment media, gay men, race and ethnicity, social economic status, social comparison, social media

Procedia PDF Downloads 133
3562 An Interactive User-Oriented Approach to Optimizing Public Space Lighting

Authors: Tamar Trop, Boris Portnov

Abstract:

Public Space Lighting (PSL) of outdoor urban areas promotes comfort, defines spaces and neighborhood identities, enhances perceived safety and security, and contributes to residential satisfaction and wellbeing. However, if excessive or misdirected, PSL leads to unnecessary energy waste and increased greenhouse gas emissions, poses a non-negligible threat to the nocturnal environment, and may become a potential health hazard. At present, PSL is designed according to international, regional, and national standards, which consolidate best practice. Yet, knowledge regarding the optimal light characteristics needed for creating a perception of personal comfort and safety in densely populated residential areas, and the factors associated with this perception, is still scarce. The presented study suggests a paradigm shift in designing PSL towards a user-centered approach, which incorporates pedestrians' perspectives into the process. The study is an ongoing joint research project between China and Israel Ministries of Science and Technology. Its main objectives are to reveal inhabitants' perceptions of and preferences for PSL in different densely populated neighborhoods in China and Israel, and to develop a model that links instrumentally measured parameters of PSL (e.g., intensity, spectra and glare) with its perceived comfort and quality, while controlling for three groups of attributes: locational, temporal, and individual. To investigate measured and perceived PSL, the study employed various research methods and data collection tools, developed a location-based mobile application, and used multiple data sources, such as satellite multi-spectral night-time light imagery, census statistics, and detailed planning schemes. One of the study’s preliminary findings is that higher sense of safety in the investigated neighborhoods is not associated with higher levels of light intensity. This implies potential for energy saving in brightly illuminated residential areas. Study findings might contribute to the design of a smart and adaptive PSL strategy that enhances pedestrians’ perceived safety and comfort while reducing light pollution and energy consumption.

Keywords: energy efficiency, light pollution, public space lighting, PSL, safety perceptions

Procedia PDF Downloads 133
3561 DeepNIC a Method to Transform Each Tabular Variable into an Independant Image Analyzable by Basic CNNs

Authors: Nguyen J. M., Lucas G., Ruan S., Digonnet H., Antonioli D.

Abstract:

Introduction: Deep Learning (DL) is a very powerful tool for analyzing image data. But for tabular data, it cannot compete with machine learning methods like XGBoost. The research question becomes: can tabular data be transformed into images that can be analyzed by simple CNNs (Convolutional Neuron Networks)? Will DL be the absolute tool for data classification? All current solutions consist in repositioning the variables in a 2x2 matrix using their correlation proximity. In doing so, it obtains an image whose pixels are the variables. We implement a technology, DeepNIC, that offers the possibility of obtaining an image for each variable, which can be analyzed by simple CNNs. Material and method: The 'ROP' (Regression OPtimized) model is a binary and atypical decision tree whose nodes are managed by a new artificial neuron, the Neurop. By positioning an artificial neuron in each node of the decision trees, it is possible to make an adjustment on a theoretically infinite number of variables at each node. From this new decision tree whose nodes are artificial neurons, we created the concept of a 'Random Forest of Perfect Trees' (RFPT), which disobeys Breiman's concepts by assembling very large numbers of small trees with no classification errors. From the results of the RFPT, we developed a family of 10 statistical information criteria, Nguyen Information Criterion (NICs), which evaluates in 3 dimensions the predictive quality of a variable: Performance, Complexity and Multiplicity of solution. A NIC is a probability that can be transformed into a grey level. The value of a NIC depends essentially on 2 super parameters used in Neurops. By varying these 2 super parameters, we obtain a 2x2 matrix of probabilities for each NIC. We can combine these 10 NICs with the functions AND, OR, and XOR. The total number of combinations is greater than 100,000. In total, we obtain for each variable an image of at least 1166x1167 pixels. The intensity of the pixels is proportional to the probability of the associated NIC. The color depends on the associated NIC. This image actually contains considerable information about the ability of the variable to make the prediction of Y, depending on the presence or absence of other variables. A basic CNNs model was trained for supervised classification. Results: The first results are impressive. Using the GSE22513 public data (Omic data set of markers of Taxane Sensitivity in Breast Cancer), DEEPNic outperformed other statistical methods, including XGBoost. We still need to generalize the comparison on several databases. Conclusion: The ability to transform any tabular variable into an image offers the possibility of merging image and tabular information in the same format. This opens up great perspectives in the analysis of metadata.

Keywords: tabular data, CNNs, NICs, DeepNICs, random forest of perfect trees, classification

Procedia PDF Downloads 125
3560 Promoting Environmental Sustainability in the Workplace: The Be-Green Project

Authors: Elena Carbone, Chiara Meneghetti, Ivan Innocenti, Monica Musicanti, Paola Volpe, Francesca Pazzaglia

Abstract:

Promoting environmental sustainability is becoming a priority for organizations. Little is known, however, on the extent to which green workplace behaviors are linked, alongside organizational determinants, and also to various employees’ individual characteristics. The BE-GREEN research project, in collaboration with Eni S.p.A., aimed at investigating the relationship between the adoption of green workplace behaviors and various employees’ job-related and broader individual characteristics as well as organizational determinants. A sample of 513 Eni employees was administered a survey assessing the adoption of green workplace behaviors and the management of events (e.g., near-miss, unsafe conditions, weak signals) that could anticipate the occurrence of incidents with a harmful environmental impact. The survey also assessed employees’ job-related (e.g., proneness toward behaving pro-environmentally at work) and general (e.g., soft skills, connectedness to nature and environmental awareness) characteristics and perceived organizational support (e.g., environmental culture, leadership). Results showed that the adoption of green workplace behaviors was associated with employees’ proneness toward behaving pro-environmentally at work, and these factors were, in turn, influenced by broader individual characteristics related to soft skills as well as a connectedness to nature and environmental awareness, along with perceived organizational support. The management of events potentially anticipating the occurrence of incidents with a harmful environmental impact was mainly associated with perceived organizational support. These findings highlight how, alongside organizational determinants, different employees’ individual characteristics influence their adoption of green workplace behaviors, with important implications for the development of interventions tailored to promote environmental sustainability in organizations.

Keywords: green workplace behaviors, soft skills, connectedness to nature, environmental awareness.

Procedia PDF Downloads 63