Search results for: non-matching interface
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1391

Search results for: non-matching interface

401 Detection of Fuel Theft and Vehicle Position Using Third Party Monitoring Software

Authors: P. Senthilraja, C. Rukumani Khandhan, M. Palaniappan, S. L. Rama, P. Sai Sushimitha, R. Madhan, J. Vinumathi, N. Vijayarangan

Abstract:

Nowadays, the logistics achieve a vast improvement in efficient delivery of goods. The technology improvement also helps to improve its development, but still the owners of transport vehicles face problems, i.e., fuel theft in vehicles by the drivers or by an unknown person. There is no proper solution to overcome the problems. This scheme is to determine the amount of fuel that has been stolen and also to determine the position of the vehicle at a particular time using the technologies like GPS, GSM, ultrasonic fuel level sensor and numeric lock system. The ultrasonic sensor uses the ultrasonic waves to calculate the height of the tank up to which the fuel is available. Based on height it is possible to calculate the amount of fuel. The Global Positioning System (GPS) is a satellite-based navigation system. The scientific community uses GPS for its precision timing capability and position information. The GSM provides the periodic information about the fuel level. A numeric lock system has been provided for fuel tank opening lever. A password is provided to access the fuel tank lever and this is authenticated only by the driver and the owner. Once the fuel tank is opened an alert is sent to owner through a SMS including the timing details. Third party monitoring software is a user interface that updates the information automatically into the database which helps to retrieve the data as and when required. Third party monitoring software provides vehicle’s information to the owner and also shows the status of the vehicle. The techniques that are to be proposed will provide an efficient output. This project helps to overcome the theft and hence to put forth fuel economy.

Keywords: fuel theft, third party monitoring software, bioinformatics, biomedicine

Procedia PDF Downloads 369
400 Computational Fluid Dynamics Simulations and Analysis of Air Bubble Rising in a Column of Liquid

Authors: Baha-Aldeen S. Algmati, Ahmed R. Ballil

Abstract:

Multiphase flows occur widely in many engineering and industrial processes as well as in the environment we live in. In particular, bubbly flows are considered to be crucial phenomena in fluid flow applications and can be studied and analyzed experimentally, analytically, and computationally. In the present paper, the dynamic motion of an air bubble rising within a column of liquid is numerically simulated using an open-source CFD modeling tool 'OpenFOAM'. An interface tracking numerical algorithm called MULES algorithm, which is built-in OpenFOAM, is chosen to solve an appropriate mathematical model based on the volume of fluid (VOF) numerical method. The bubbles initially have a spherical shape and starting from rest in the stagnant column of liquid. The algorithm is initially verified against numerical results and is also validated against available experimental data. The comparison revealed that this algorithm provides results that are in a very good agreement with the 2D numerical data of other CFD codes. Also, the results of the bubble shape and terminal velocity obtained from the 3D numerical simulation showed a very good qualitative and quantitative agreement with the experimental data. The simulated rising bubbles yield a very small percentage of error in the bubble terminal velocity compared with the experimental data. The obtained results prove the capability of OpenFOAM as a powerful tool to predict the behavior of rising characteristics of the spherical bubbles in the stagnant column of liquid. This will pave the way for a deeper understanding of the phenomenon of the rise of bubbles in liquids.

Keywords: CFD simulations, multiphase flows, OpenFOAM, rise of bubble, volume of fluid method, VOF

Procedia PDF Downloads 99
399 Future Sustainable Mobility for Colorado

Authors: Paolo Grazioli

Abstract:

In this paper, we present the main results achieved during an eight-week international design project on Colorado Future Sustainable Mobilitycarried out at Metropolitan State University of Denver. The project was born with the intention to seize the opportunity created by the Colorado government’s plan to promote e-bikes mobility by creating a large network of dedicated tracks. The project was supported by local entrepreneurs who offered financial and professional support. The main goal of the project was to engage design students with the skills to design a user-centered, original vehicle that would satisfy the unarticulated practical and emotional needs of “Gen Z” users by creating a fun, useful, and reliablelife companion that would helps users carry out their everyday tasks in a practical and enjoyable way. The project was carried out with the intention of proving the importance of the combination of creative methods with practical design methodologies towards the creation of an innovative yet immediately manufacturable product for a more sustainable future. The final results demonstrate the students' capability to create innovative and yet manufacturable products and, especially, their ability to create a new design paradigm for future sustainable mobility products. The design solutions explored n the project include collaborative learning and human-interaction design for future mobility. The findings of the research led students to the fabrication of two working prototypes that will be tested in Colorado and developed for manufacturing in the year 2024. The project showed that collaborative design and project-based teaching improve the quality of the outcome and can lead to the creation of real life, innovative products directly from the classroom to the market.

Keywords: sustainable transportation design, interface design, collaborative design, user -centered design research, design prototyping

Procedia PDF Downloads 70
398 Finite Element Modeling of the Effects of Loss of Rigid Pavements Slab Support Due to Built-In Curling

Authors: Ali Ashtiani, Cesar Carrasco

Abstract:

Accurate determination of thermo-mechanical responses of jointed concrete pavement slabs is essential to implement an effective mechanistic design. Temperature-induced curling of concrete slabs can produce premature top-down cracking in rigid pavements. Curling of concrete slabs can result from daily temperature variation through the slab thickness. The slab curling can also result from temperature gradients due hot weather construction, drying shrinkage and creep that are permanently built into the slabs. The existence of permanent curling implies that concrete slabs are not flat at zero temperature gradient. In this case, slabs may not be in full contact with the underlying base layer when subjecting to traffic. Built-in curling can be a major factor producing loss of slab support. The magnitude of stresses induced in slabs is influenced by the stiffness of the underlying foundation layers and the contact condition along the slab-foundation interface. An approach for finite element modeling of the effect of loss of slab support due to built-in curling is presented in this paper. A series of parametric studies is carried out for a pavement system loaded with a combination of traffic and thermal loads, considering different built-in curling and different foundation rigidities. The results explain the effect of loss of support in the magnitude of stresses produced in concrete slabs. The results of parametric study can also be used to evaluate whether the governing equations that are used to idealize the behavior of jointed concrete pavements and the effect of loss of support have been accurately selected and implemented in the finite element model.

Keywords: built-in curling, finite element modeling, loss of slab support, rigid pavement

Procedia PDF Downloads 128
397 Microvoid Growth in the Interfaces during Aging

Authors: Jae-Yong Park, Gwancheol Seo, Young-Ho Kim

Abstract:

Microvoids, sometimes called Kikendall voids, generally form in the interfaces between Sn-based solders and Cu and degrade the mechanical and electrical properties of the solder joints. The microvoid formation is known as the rapid interdiffusion between Sn and Cu and impurity content in the Cu. Cu electroplating from the acid solutions has been widely used by microelectronic packaging industry for both printed circuit board (PCB) and integrated circuit (IC) applications. The quality of electroplated Cu that can be optimized by the electroplating conditions is critical for the solder joint reliability. In this paper, the influence of electroplating conditions on the microvoid growth in the interfaces between Sn-3.0Ag-0.5Cu (SAC) solder and Cu layer was investigated during isothermal aging. The Cu layers were electroplated by controlling the additive of electroplating bath and current density to induce various microvoid densities. The electroplating bath consisted of sulfate, sulfuric acid, and additives and the current density of 5-15 mA/cm2 for each bath was used. After aging at 180 °C for up to 250 h, typical bi-layer of Cu6Sn5 and Cu3Sn intermetallic compounds (IMCs) was gradually growth at the SAC/Cu interface and microvoid density in the Cu3Sn showed disparities in the electroplating conditions. As the current density increased, the microvoid formation was accelerated in all electroplating baths. The higher current density induced, the higher impurity content in the electroplated Cu. When the polyethylene glycol (PEG) and Cl- ion were mixed in an electroplating bath, the microvoid formation was the highest compared to other electroplating baths. On the other hand, the overall IMC thickness was similar in all samples irrespective of the electroplating conditions. Impurity content in electroplated Cu influenced the microvoid growth, but the IMC growth was not affected by the impurity content. In conclusion, the electroplated conditions are properly optimized to avoid the excessive microvoid formation that results in brittle fracture of solder joint under high strain rate loading.

Keywords: electroplating, additive, microvoid, intermetallic compound

Procedia PDF Downloads 231
396 Looking beyond Lynch's Image of a City

Authors: Sandhya Rao

Abstract:

Kevin Lynch’s Theory on Imeageability, let on explore a city in terms of five elements, Nodes, Paths, Edges, landmarks and Districts. What happens when we try to record the same data in an Indian context? What happens when we apply the same theory of Imageability to a complex shifting urban pattern of the Indian cities and how can we as Urban Designers demonstrate our role in the image building ordeal of these cities? The organizational patterns formed through mental images, of an Indian city is often diverse and intangible. It is also multi layered and temporary in terms of the spirit of the place. The pattern of images formed is loaded with associative meaning and intrinsically linked with the history and socio-cultural dominance of the place. The embedded memory of a place in one’s mind often plays an even more important role while formulating these images. Thus while deriving an image of a city one is often confused or finds the result chaotic. The images formed due to its complexity are further difficult to represent using a single medium. Under such a scenario it’s difficult to derive an output of an image constructed as well as make design interventions to enhance the legibility of a place. However, there can be a combination of tools and methods that allows one to record the key elements of a place through time, space and one’s user interface with the place. There has to be a clear understanding of the participant groups of a place and their time and period of engagement with the place as well. How we can translate the result obtained into a design intervention at the end, is the main of the research. Could a multi-faceted cognitive mapping be an answer to this or could it be a very transient mapping method which can change over time, place and person. How does the context influence the process of image building in one’s mind? These are the key questions that this research will aim to answer.

Keywords: imageability, organizational patterns, legibility, cognitive mapping

Procedia PDF Downloads 288
395 Multiscale Hub: An Open-Source Framework for Practical Atomistic-To-Continuum Coupling

Authors: Masoud Safdari, Jacob Fish

Abstract:

Despite vast amount of existing theoretical knowledge, the implementation of a universal multiscale modeling, analysis, and simulation software framework remains challenging. Existing multiscale software and solutions are often domain-specific, closed-source and mandate a high-level of experience and skills in both multiscale analysis and programming. Furthermore, tools currently existing for Atomistic-to-Continuum (AtC) multiscaling are developed with the assumptions such as accessibility of high-performance computing facilities to the users. These issues mentioned plus many other challenges have reduced the adoption of multiscale in academia and especially industry. In the current work, we introduce Multiscale Hub (MsHub), an effort towards making AtC more accessible through cloud services. As a joint effort between academia and industry, MsHub provides a universal web-enabled framework for practical multiscaling. Developed on top of universally acclaimed scientific programming language Python, the package currently provides an open-source, comprehensive, easy-to-use framework for AtC coupling. MsHub offers an easy to use interface to prominent molecular dynamics and multiphysics continuum mechanics packages such as LAMMPS and MFEM (a free, lightweight, scalable C++ library for finite element methods). In this work, we first report on the design philosophy of MsHub, challenges identified and issues faced regarding its implementation. MsHub takes the advantage of a comprehensive set of tools and algorithms developed for AtC that can be used for a variety of governing physics. We then briefly report key AtC algorithms implemented in MsHub. Finally, we conclude with a few examples illustrating the capabilities of the package and its future directions.

Keywords: atomistic, continuum, coupling, multiscale

Procedia PDF Downloads 156
394 Optical Breather in Phosphorene Monolayer

Authors: Guram Adamashvili

Abstract:

Surface plasmon polariton is a surface optical wave which undergoes a strong enhancement and spatial confinement of its wave amplitude near an interface of two-dimensional layered structures. Phosphorene (single-layer black phosphorus) and other two-dimensional anisotropic phosphorene-like materials are recognized as promising materials for potential future applications of surface plasmon polariton. A theory of an optical breather of self-induced transparency for surface plasmon polariton propagating in monolayer or few-layer phosphorene is developed. A theory of an optical soliton of self-induced transparency for surface plasmon polariton propagating in monolayer or few-layer phosphorene have been investigated earlier Starting from the optical nonlinear wave equation for surface TM-modes interacting with a two-dimensional layer of atomic systems or semiconductor quantum dots and a phosphorene monolayer (or other two-dimensional anisotropic material), we have obtained the evolution equations for the electric field of the breather. In this case, one finds that the evolution of these pulses become described by the damped Bloch-Maxwell equations. For surface plasmon polariton fields, breathers are found to occur. Explicit relations of the dependence of breathers on the local media, phosphorene anisotropic conductivity, transition layer properties and transverse structures of the SPP, are obtained and will be given. It is shown that the phosphorene conductivity reduces exponentially the amplitude of the surface breather of SIT in the process of propagation. The direction of propagation corresponding to the maximum and minimum damping of the amplitude are assigned along the armchair and zigzag directions of black phosphorus nano-film, respectively. The most rapid damping of the intensity occurs when the polarization of breather is along the armchair direction.

Keywords: breathers, nonlinear waves, solitons, surface plasmon polaritons

Procedia PDF Downloads 121
393 Plasma-Assisted Nitrogen Fixation for the Elevation of Seed Germination and Plant Growth

Authors: Pradeep Lamichhane

Abstract:

Plasma-assisted nitrogen fixation is a process by which atomic nitrogen generated by plasma is converted into ammonia (NH₃) or related nitrogenous compounds. Nitrogen fixation is essential to plant because fixed inorganic nitrogen compounds are required to them for the biosynthesis of all nitrogen-containing organic compounds, such as amino acids and proteins, nucleoside triphosphates and nucleic acid. Most of our atmosphere is composed of nitrogen; however, the plant cannot absorb it directly from the air ambient. As a portion of the nitrogen cycle, nitrogen fixation fundamental for agriculture and the manufacture of fertilizer. In this study, plasma-assisted nitrogen fixation was performed by exposing a non-thermal atmospheric pressure nitrogen plasma generated a sinusoidal power supply (with an applied voltage of 10 kV and frequency of 33 kHz) on a water surface. Besides this, UV excitation of water molecules at the water interface was also done in order to disassociate water. Hydrogen and hydroxyl radical obtained from this UV photolysis electrochemically combine with nitrogen atom obtained from plasma. As a result of this, nitrogen fixation on plasma-activated water (PAW) significantly enhanced. The amount of nitrogen-based products like NOₓ and ammonia (NH₃) synthesized by this combined process of UV and plasma are 1.4 and 2.8 times higher than those obtained by plasma alone. In every 48 hours, 20 ml of plasma-activated water (pH≈3.15) for 10 minutes with moderate concentrations of NOₓ, NH₃ and hydrogen peroxide (H₂O₂) was irrigated on each corn plant (Zea Mays). It was found that the PAW has shown a significant impact on seeds germination rate and improved seedling growth. The result obtained from this experiment suggested that crop yield could increase in a short duration. In the future, this experiment could open boundless opportunities in plasma agriculture to mobilize nitrogen because nitrite, nitrate, and ammonia are more suitable for plant uptake.

Keywords: plasma-assisted nitrogen fixation, nitrogen plasma, UV excitation of water, ammonia synthesis

Procedia PDF Downloads 108
392 Charge Trapping on a Single-wall Carbon Nanotube Thin-film Transistor with Several Electrode Metals for Memory Function Mimicking

Authors: Ameni Mahmoudi, Manel Troudi, Paolo Bondavalli, Nabil Sghaier

Abstract:

In this study, the charge storage on thin-film SWCNT transistors was investigated, and C-V hysteresis tests showed that interface charge trapping effects predominate the memory window. Two electrode materials were utilized to demonstrate that selecting the appropriate metal electrode clearly improves the conductivity and, consequently, the SWCNT thin-film’s memory effect. Because their work function is similar to that of thin-film carbon nanotubes, Ti contacts produce higher charge confinement and show greater charge storage than Pd contacts. For Pd-contact CNTFETs and CNTFETs with Ti electrodes, a sizable clockwise hysteresis window was seen in the dual sweep circle with a threshold voltage shift of V11.52V and V9.7V, respectively. The SWCNT thin-film based transistor is expected to have significant trapping and detrapping charges because of the large C-V hysteresis. We have found that the predicted stored charge density for CNTFETs with Ti contacts is approximately 4.01×10-2C.m-2, which is nearly twice as high as the charge density of the device with Pd contacts. We have shown that the amount of trapped charges can be changed by sweeping the range or Vgs rate. We also looked into the variation in the flat band voltage (V FB) vs. time in order to determine the carrier retention period in CNTFETs with Ti and Pd electrodes. The outcome shows that memorizing trapped charges is about 300 seconds, which is a crucial finding for memory function mimicking.

Keywords: charge storage, thin-film SWCNT based transistors, C-V hysteresis, memory effect, trapping and detrapping charges, stored charge density, the carrier retention time

Procedia PDF Downloads 57
391 Adhesion of Biofilm to Surfaces Employed in Pipelines for Transporting Crude Oil

Authors: Hadjer Didouh, Izzaddine Sameut Bouhaik, Mohammed Hadj Meliani

Abstract:

This research delves into the intricate dynamics of biofilm adhesion on surfaces, particularly focusing on the widely employed X52 surface in oil and gas industry pipelines. Biofilms, characterized by microorganisms within a self-produced matrix, pose significant challenges due to their detrimental impact on surfaces. Our study integrates advanced molecular techniques and cutting-edge microscopy, such as scanning electron microscopy (SEM), to identify microbial communities and visually assess biofilm adhesion. Simultaneously, we concentrate on the X52 surface, utilizing impedance spectroscopy and potentiodynamic polarization to gather electrochemical responses under various conditions. In conjunction with the broader investigation, we propose a novel approach to mitigate biofilm-induced corrosion challenges. This involves environmentally friendly inhibitors derived from plants, offering a sustainable alternative to conventional chemical treatments. Our inquiry screens and selects inhibitors based on their efficacy in hindering biofilm formation and reducing corrosion rates on the X52 surface. This study contributes valuable insights into the interplay between electrochemical processes and biofilm attachment on the X52 surface. Furthermore, the outcomes of this research have broader implications for the oil and gas industry, where biofilm-related corrosion is a persistent concern. The exploration of eco-friendly inhibitors not only holds promise for corrosion control but also aligns with environmental considerations and sustainability goals. The comprehensive nature of this research aims to enhance our understanding of biofilm dynamics, provide effective strategies for corrosion mitigation, and contribute to sustainable practices in pipeline management within the oil and gas sector.

Keywords: bio-corrosion, biofilm, attachment, X52, metal/bacteria interface

Procedia PDF Downloads 27
390 Human Vibrotactile Discrimination Thresholds for Simultaneous and Sequential Stimuli

Authors: Joanna Maj

Abstract:

Body machine interfaces (BMIs) afford users a non-invasive way coordinate movement. Vibrotactile stimulation has been incorporated into BMIs to allow feedback in real-time and guide movement control to benefit patients with cognitive deficits, such as stroke survivors. To advance research in this area, we examined vibrational discrimination thresholds at four body locations to determine suitable application sites for future multi-channel BMIs using vibration cues to guide movement planning and control. Twelve healthy adults had a pair of small vibrators (tactors) affixed to the skin at each location: forearm, shoulders, torso, and knee. A "standard" stimulus (186 Hz; 750 ms) and "probe" stimuli (11 levels ranging from 100 Hz to 235 Hz; 750 ms) were delivered. Probe and test stimulus pairs could occur sequentially or simultaneously (timing). Participants verbally indicated which stimulus felt more intense. Stimulus order was counterbalanced across tactors and body locations. Probabilities that probe stimuli felt more intense than the standard stimulus were computed and fit with a cumulative Gaussian function; the discrimination threshold was defined as one standard deviation of the underlying distribution. Threshold magnitudes depended on stimulus timing and location. Discrimination thresholds were better for stimuli applied sequentially vs. simultaneously at the torso as well as the knee. Thresholds were small (better) and relatively insensitive to timing differences for vibrations applied at the shoulder. BMI applications requiring multiple channels of simultaneous vibrotactile stimulation should therefore consider the shoulder as a deployment site for a vibrotactile BMI interface.

Keywords: electromyography, electromyogram, neuromuscular disorders, biomedical instrumentation, controls engineering

Procedia PDF Downloads 39
389 Structural Characterization of TIR Domains Interaction

Authors: Sara Przetocka, Krzysztof Żak, Grzegorz Dubin, Tadeusz Holak

Abstract:

Toll-like receptors (TLRs) play central role in the innate immune response and inflammation by recognizing pathogen-associated molecular patterns (PAMPs). A fundamental basis of TLR signalling is dependent upon the recruitment and association of adaptor molecules that contain the structurally conserved Toll/interleukin-1 receptor (TIR) domain. MyD88 (myeloid differentiation primary response gene 88) is the universal adaptor for TLRs and cooperates with Mal (MyD88 adapter-like protein, also known as TIRAP) in TLR4 response which is predominantly used in inflammation, host defence and carcinogenesis. Up to date two possible models of MyD88, Mal and TLR4 interactions have been proposed. The aim of our studies is to confirm or abolish presented models and accomplish the full structural characterisation of TIR domains interaction. Using molecular cloning methods we obtained several construct of MyD88 and Mal TIR domain with GST or 6xHis tag. Gel filtration method as well as pull-down analysis confirmed that recombinant TIR domains from MyD88 and Mal are binding in complexes. To examine whether obtained complexes are homo- or heterodimers we carried out cross-linking reaction of TIR domains with BS3 compound combined with mass spectrometry. To investigate which amino acid residues are involved in this interaction the NMR titration experiments were performed. 15N MyD88-TIR solution was complemented with non-labelled Mal-TIR. The results undoubtedly indicate that MyD88-TIR interact with Mal-TIR. Moreover 2D spectra demonstrated that simultaneously Mal-TIR self-dimerization occurs which is necessary to create proper scaffold for Mal-TIR and MyD88-TIR interaction. Final step of this study will be crystallization of MyD88 and Mal TIR domains complex. This crystal structure and characterisation of its interface will have an impact in understanding the TLR signalling pathway and possibly will be used in development of new anti-cancer treatment.

Keywords: cancer, MyD88, TIR domains, Toll-like receptors

Procedia PDF Downloads 262
388 Finite Element Model to Investigate the Dynamic Behavior of Ring-Stiffened Conical Shell Fully and Partially Filled with Fluid

Authors: Mohammadamin Esmaeilzadehazimi, Morteza Shayan Arani, Mohammad Toorani, Aouni Lakis

Abstract:

This study uses a hybrid finite element method to predict the dynamic behavior of both fully and partially-filled truncated conical shells stiffened with ring stiffeners. The method combines classical shell theory and the finite element method, and employs displacement functions derived from exact solutions of Sanders' shell equilibrium equations for conical shells. The shell-fluid interface is analyzed by utilizing the velocity potential, Bernoulli's equation, and impermeability conditions to determine an explicit expression for fluid pressure. The equations of motion presented in this study apply to both conical and cylindrical shells. This study presents the first comparison of the method applied to ring-stiffened shells with other numerical and experimental findings. Vibration frequencies for conical shells with various boundary conditions and geometries in a vacuum and filled with water are compared with experimental and numerical investigations, achieving good agreement. The study thoroughly investigates the influence of geometric parameters, stiffener quantity, semi-vertex cone angle, level of water filled in the cone, and applied boundary conditions on the natural frequency of fluid-loaded ring-stiffened conical shells, and draws some useful conclusions. The primary advantage of the current method is its use of a minimal number of finite elements while achieving highly accurate results.

Keywords: finite element method, fluid–structure interaction, conical shell, natural frequency, ring-stiffener

Procedia PDF Downloads 47
387 On the Monitoring of Structures and Soils by Tromograph

Authors: Magarò Floriana, Zinno Raffaele

Abstract:

Since 2009, with the coming into force of the January 14, 2008 Ministerial Decree "New technical standards for construction", and the explanatory ministerial circular N°.617 of February 2, 2009, the question of seismic hazard and the design of seismic-resistant structures in Italy has acquired increasing importance. One of the most discussed aspects in recent Italian and international scientific literature concerns the dynamic interaction between land and structure, and the effects which dynamic coupling may have on individual buildings. In effect, from systems dynamics, it is well known that resonance can have catastrophic effects on a stimulated system, leading to a response that is not compatible with the previsions in the design phase. The method used in this study to estimate the frequency of oscillation of the structure is as follows: the analysis of HVSR (Horizontal to Vertical Spectral Ratio) relations. This allows for evaluation of very simple oscillation frequencies for land and structures. The tool used for data acquisition is an experimental digital tromograph. This is an engineered development of the experimental Languamply RE 4500 tromograph, equipped with an engineered amplification circuit and improved electronically using extremely small electronic components (size of each individual amplifier 16 x 26 mm). This tromograph is a modular system, completely "free" and "open", designed to interface Windows, Linux, OSX and Android with the outside world. It an amplifier designed to carry out microtremor measurements, yet which will also be useful for seismological and seismic measurements in general. The development of single amplifiers of small dimension allows for a very clean signal since being able to position it a few centimetres from the geophone eliminates cable “antenna” phenomena, which is a necessary characteristic in seeking to have signals which are clean at the very low voltages to be measured.

Keywords: microtremor, HVSR, tromograph, structural engineering

Procedia PDF Downloads 384
386 Competing Interactions, and Magnetization Dynamics in Doped Rare-Earth Manganites Nanostructural System

Authors: Wiqar Hussain Shah

Abstract:

The Structural, magnetic and transport behavior of La1-xCaxMnO3+ (x=0.48, 0.50, 0.52 and 0.55 and =0.015) compositions close to charge ordering, was studied through XRD, resistivity, DC magnetization and AC susceptibility measurements. With time and thermal cycling (T<300 K) there is an irreversible transformation of the low-temperature phase from a partially ferromagnetic and metallic to one that is less ferromagnetic and highly resistive. For instance, an increase of resistivity can be observed by thermal cycling, where no effect is obtained for lower Ca concentration. The time changes in the magnetization are logarithmic in general and activation energies are consistent with those expected for electron transfer between Mn ions. The data suggest that oxygen non-stoichiometry results in mechanical strains in this two-phase system, leading to the development of irreversible metastable states, which relax towards the more stable charge-ordered and antiferromagnetic microdomains at the nano-meter size. This behavior is interpreted in terms of strains induced charge localization at the interface between FM/AFM domains in the antiferromagnetic matrix. Charge, orbital ordering and phase separation play a prominent role in the appearance of such properties, since they can be modified in a spectacular manner by external factor, making the different physical properties metastable. Here we describe two factors that deeply modify those properties, viz. the doping concentration and the thermal cycling. The metastable state is recovered by the high temperature annealing. We also measure the magnetic relaxation in the metastable state and also the revival of the metastable state (in a relaxed sample) due to high temperature (800 ) thermal treatment.

Keywords: Rare-earth maganites, nano-structural materials, doping effects on electrical, magnetic properties, competing interactions

Procedia PDF Downloads 99
385 Finite Element Analysis of Resonance Frequency Shift of Laminated Composite Beam

Authors: Cheng Yang Kwa, Yoke Rung Wong

Abstract:

Laminated composite materials are widely employed in automotive, aerospace, and other industries. These materials provide distinct benefits due to their high specific strength, high specific modulus, and ability to be customized for a specific function. However, delamination of laminated composite materials is one of the main defects which can occur during manufacturing, regular operations, or maintenance. Delamination can bring about considerable internal damage, unobservable by visual check, that causes significant loss in strength and stability, leading to composite structure catastrophic failure. Structural health monitoring (SHM) is known to be the automated method for monitoring and evaluating the condition of a monitored object. There are several ways to conduct SHM in aerospace. One of the effective methods is to monitor the natural frequency shift of structure due to the presence of defect. This study investigated the mechanical resonance frequency shift of a multi-layer composite cantilever beam due to interlaminar delamination. ANSYS Workbench® was used to create a 4-plies laminated composite cantilever finite element model with [90/0]s fiber setting. Epoxy Carbon UD (230GPA) Prepreg was chosen, and the thickness was 2.5mm for each ply. The natural frequencies of the finite element model with various degree of delamination were simulated based on modal analysis and then validated by using literature. It was shown that the model without delamination had natural frequency of 40.412 Hz, which was 1.55% different from the calculated result (41.050 Hz). Thereafter, the various degree of delamination was mimicked by changing the frictional conditions at the middle ply-to-ply interface. The results suggested that delamination in the laminated composite cantilever induced a change in its stiffness which alters its mechanical resonance frequency.

Keywords: structural health monitoring, NDT, cantilever, laminate

Procedia PDF Downloads 81
384 A QoS Aware Cluster Based Routing Algorithm for Wireless Mesh Network Using LZW Lossless Compression

Authors: J. S. Saini, P. P. K. Sandhu

Abstract:

The multi-hop nature of Wireless Mesh Networks and the hasty progression of throughput demands results in multi- channels and multi-radios structures in mesh networks, but the main problem of co-channels interference reduces the total throughput, specifically in multi-hop networks. Quality of Service mentions a vast collection of networking technologies and techniques that guarantee the ability of a network to make available desired services with predictable results. Quality of Service (QoS) can be directed at a network interface, towards a specific server or router's performance, or in specific applications. Due to interference among various transmissions, the QoS routing in multi-hop wireless networks is formidable task. In case of multi-channel wireless network, since two transmissions using the same channel may interfere with each other. This paper has considered the Destination Sequenced Distance Vector (DSDV) routing protocol to locate the secure and optimised path. The proposed technique also utilizes the Lempel–Ziv–Welch (LZW) based lossless data compression and intra cluster data aggregation to enhance the communication between the source and the destination. The use of clustering has the ability to aggregate the multiple packets and locates a single route using the clusters to improve the intra cluster data aggregation. The use of the LZW based lossless data compression has ability to reduce the data packet size and hence it will consume less energy, thus increasing the network QoS. The MATLAB tool has been used to evaluate the effectiveness of the projected technique. The comparative analysis has shown that the proposed technique outperforms over the existing techniques.

Keywords: WMNS, QOS, flooding, collision avoidance, LZW, congestion control

Procedia PDF Downloads 310
383 Non-Invasive Data Extraction from Machine Display Units Using Video Analytics

Authors: Ravneet Kaur, Joydeep Acharya, Sudhanshu Gaur

Abstract:

Artificial Intelligence (AI) has the potential to transform manufacturing by improving shop floor processes such as production, maintenance and quality. However, industrial datasets are notoriously difficult to extract in a real-time, streaming fashion thus, negating potential AI benefits. The main example is some specialized industrial controllers that are operated by custom software which complicates the process of connecting them to an Information Technology (IT) based data acquisition network. Security concerns may also limit direct physical access to these controllers for data acquisition. To connect the Operational Technology (OT) data stored in these controllers to an AI application in a secure, reliable and available way, we propose a novel Industrial IoT (IIoT) solution in this paper. In this solution, we demonstrate how video cameras can be installed in a factory shop floor to continuously obtain images of the controller HMIs. We propose image pre-processing to segment the HMI into regions of streaming data and regions of fixed meta-data. We then evaluate the performance of multiple Optical Character Recognition (OCR) technologies such as Tesseract and Google vision to recognize the streaming data and test it for typical factory HMIs and realistic lighting conditions. Finally, we use the meta-data to match the OCR output with the temporal, domain-dependent context of the data to improve the accuracy of the output. Our IIoT solution enables reliable and efficient data extraction which will improve the performance of subsequent AI applications.

Keywords: human machine interface, industrial internet of things, internet of things, optical character recognition, video analytics

Procedia PDF Downloads 86
382 Thermal Image Segmentation Method for Stratification of Freezing Temperatures

Authors: Azam Fazelpour, Saeed R. Dehghani, Vlastimil Masek, Yuri S. Muzychka

Abstract:

The study uses an image analysis technique employing thermal imaging to measure the percentage of areas with various temperatures on a freezing surface. An image segmentation method using threshold values is applied to a sequence of image recording the freezing process. The phenomenon is transient and temperatures vary fast to reach the freezing point and complete the freezing process. Freezing salt water is subjected to the salt rejection that makes the freezing point dynamic and dependent on the salinity at the phase interface. For a specific area of freezing, nucleation starts from one side and end to another side, which causes a dynamic and transient temperature in that area. Thermal cameras are able to reveal a difference in temperature due to their sensitivity to infrared radiance. Using Experimental setup, a video is recorded by a thermal camera to monitor radiance and temperatures during the freezing process. Image processing techniques are applied to all frames to detect and classify temperatures on the surface. Image processing segmentation method is used to find contours with same temperatures on the icing surface. Each segment is obtained using the temperature range appeared in the image and correspond pixel values in the image. Using the contours extracted from image and camera parameters, stratified areas with different temperatures are calculated. To observe temperature contours on the icing surface using the thermal camera, the salt water sample is dropped on a cold surface with the temperature of -20°C. A thermal video is recorded for 2 minutes to observe the temperature field. Examining the results obtained by the method and the experimental observations verifies the accuracy and applicability of the method.

Keywords: ice contour boundary, image processing, image segmentation, salt ice, thermal image

Procedia PDF Downloads 293
381 Performance Evaluation of Solid Lubricant Characteristics at Different Sliding Conditions

Authors: Suresh Kumar Reddy Narala, Rakesh Kumar Gunda

Abstract:

In modern industry, mechanical parts are subjected to friction and wear, leading to heat generation, which affects the reliability, life and power consumption of machinery. To overcome the tribological losses due to friction and wear, a significant portion of lubricant with high viscous properties allows very smooth relative motion between two sliding surfaces. Advancement in modern tribology has facilitated the use of applying solid lubricants in various industrial applications. Solid lubricant additives with high viscous thin film formation between the sliding surfaces can adequately wet and adhere to a work surface. In the present investigation, an attempt has been made to investigate and evaluate the tribological studies of various solid lubricants like MoS¬2, graphite, and boric acid at different sliding conditions. The base oil used in this study was SAE 40 oil with a viscosity of 220 cSt at 400C. The tribological properties were measured on pin-on-disc tribometer. An experimental set-up has been developed for effective supply of solid lubricants to the pin-disc interface zone. The results obtained from the experiments show that the friction coefficient increases with increase in applied load for all the considered environments. The tribological properties with MoS2 solid lubricant exhibit larger load carrying capacity than that of graphite and boric acid. The present research work also contributes to the understanding of the behavior of film thickness distribution of solid lubricant using potential contact technique under different sliding conditions. The results presented in this research work are expected to form a scientific basis for selecting the best solid lubricant in various industrial applications for possible minimization of friction and wear.

Keywords: friction, wear, temperature, solid lubricant

Procedia PDF Downloads 324
380 Design and Creation of a BCI Videogame for Training and Measure of Sustained Attention in Children with ADHD

Authors: John E. Muñoz, Jose F. Lopez, David S. Lopez

Abstract:

Attention Deficit Hyperactivity Disorder (ADHD) is a disorder that affects 1 out of 5 Colombian children, converting into a real public health problem in the country. Conventional treatments such as medication and neuropsychological therapy have been proved to be insufficient in order to decrease high incidence levels of ADHD in the principal Colombian cities. This work demonstrates a design and development of a videogame that uses a brain computer interface not only to serve as an input device but also as a tool to monitor neurophysiologic signal. The video game named “The Harvest Challenge” puts a cultural scene of a Colombian coffee grower in its context, where a player can use his/her avatar in three mini games created in order to reinforce four fundamental aspects: i) waiting ability, ii) planning ability, iii) ability to follow instructions and iv) ability to achieve objectives. The details of this collaborative designing process of the multimedia tool according to the exact clinic necessities and the description of interaction proposals are presented through the mental stages of attention and relaxation. The final videogame is presented as a tool for sustained attention training in children with ADHD using as an action mechanism the neuromodulation of Beta and Theta waves through an electrode located in the central part of the front lobe of the brain. The processing of an electroencephalographic signal is produced automatically inside the videogame allowing to generate a report of the theta/beta ratio evolution - a biological marker, which has been demonstrated to be a sufficient measure to discriminate of children with deficit and without.

Keywords: BCI, neuromodulation, ADHD, videogame, neurofeedback, theta/beta ratio

Procedia PDF Downloads 343
379 Experimental Investigation on Geosynthetic-Reinforced Soil Sections via California Bearing Ratio Test

Authors: S. Abdi Goudazri, R. Ziaie Moayed, A. Nazeri

Abstract:

Loose soils normally are of weak bearing capacity due to their structural nature. Being exposed to heavy traffic loads, they would fail in most cases. To tackle the aforementioned issue, geotechnical engineers have come up with different approaches; one of which is making use of geosynthetic-reinforced soil-aggregate systems. As these polymeric reinforcements have highlighted economic and environmentally-friendly features, they have become widespread in practice during the last decades. The present research investigates the efficiency of four different types of these reinforcements in increasing the bearing capacity of two-layered soil sections using a series California Bearing Ratio (CBR) test. The studied sections are comprised of a 10 cm-thick layer of no. 161 Firouzkooh sand (weak subgrade) and a 10 cm-thick layer of compacted aggregate materials (base course) classified as SP and GW according to the United Soil Classification System (USCS), respectively. The aggregate layer was compacted to the relative density (Dr) of 95% at the optimum water content (Wopt) of 6.5%. The applied reinforcements were including two kinds of geocomposites (type A and B), a geotextile, and a geogrid that were embedded at the interface of the lower and the upper layers of the soil-aggregate system. As the standard CBR mold was not appropriate in height for this study, the mold used for soaked CBR tests were utilized. To make a comparison between the results of stress-settlement behavior in the studied specimens, CBR values pertinent to the penetrations of 2.5 mm and 5 mm were considered. The obtained results demonstrated 21% and 24.5% increments in the amount of CBR value in the presence of geocomposite type A and geogrid, respectively. On the other hand, the effect of both geotextile and geocomposite type B on CBR values was generally insignificant in this research.

Keywords: geosynthetics, geogrid, geotextile, CBR test, increasing bearing capacity

Procedia PDF Downloads 87
378 Strained Channel Aluminum Nitride/Gallium Nitride Heterostructures Homoepitaxially Grown on Aluminum Nitride-On-Sapphire Template by Plasma-Assisted Molecular Beam Epitaxy

Authors: Jiajia Yao, GuanLin Wu, Fang liu, JunShuai Xue, JinCheng Zhang, Yue Hao

Abstract:

Due to its outstanding material properties like high thermal conductivity and ultra-wide bandgap, Aluminum nitride (AlN) has the promising potential to provide high breakdown voltage and high output power among III-nitrides for various applications in electronics and optoelectronics. This work presents material growth and characterization of strained channel Aluminum nitride/Gallium nitride (AlN/GaN) heterostructures grown by plasma-assisted molecular beam epitaxy (PA-MBE) on AlN-on-sapphire templates. To improve the crystal quality and manifest the ability of the PA-MBE approach, a thick AlN buffer with a thickness of 180 nm is first grown on AlN template, which acts as a back-barrier to enhance the breakdown characteristic and isolates the leakage path existing in the interface between AlN epilayer and AlN template, as well as improve the heat dissipation. The grown AlN buffer features a root-mean-square roughness of 0.2 nm over a scanned area of 2×2 µm2 measured by atomic force microscopy (AFM), and exhibits full-width at half-maximum of 95 and 407 arcsec for the (002) and (102) plane the X-ray rocking curve, respectively, tested by high resolution x-ray diffraction (HR-XRD). With a thin and strained GaN channel, the electron mobility of 294 cm2 /Vs. with a carrier concentration of 2.82×1013 cm-2 at room temperature is achieved in AlN/GaN double-channel heterostructures, and the depletion capacitance is as low as 14 pF resolved by the capacitance-voltage, which indicates the promising opportunities for future applications in next-generation high temperature, high-frequency and high-power electronics with a further increased electron mobility by optimization of heterointerface quality.

Keywords: AlN/GaN, HEMT, MBE, homoepitaxy

Procedia PDF Downloads 72
377 A Mega-Analysis of the Predictive Power of Initial Contact within Minimal Social Network

Authors: Cathal Ffrench, Ryan Barrett, Mike Quayle

Abstract:

It is accepted in social psychology that categorization leads to ingroup favoritism, without further thought given to the processes that may co-occur or even precede categorization. These categorizations move away from the conceptualization of the self as a unique social being toward an increasingly collective identity. Subsequently, many individuals derive much of their self-evaluations from these collective identities. The seminal literature on this topic argues that it is primarily categorization that evokes instances of ingroup favoritism. Apropos to these theories, we argue that categorization acts to enhance and further intergroup processes rather than defining them. More accurately, we propose categorization aids initial ingroup contact and this first contact is predictive of subsequent favoritism on individual and collective levels. This analysis focuses on Virtual Interaction APPLication (VIAPPL) based studies, a software interface that builds on the flaws of the original minimal group studies. The VIAPPL allows the exchange of tokens in an intra and inter-group manner. This token exchange is how we classified the first contact. The study involves binary longitudinal analysis to better understand the subsequent exchanges of individuals based on who they first interacted with. Studies were selected on the criteria of evidence of explicit first interactions and two-group designs. Our findings paint a compelling picture in support of a motivated contact hypothesis, which suggests that an individual’s first motivated contact toward another has strong predictive capabilities for future behavior. This contact can lead to habit formation and specific favoritism towards individuals where contact has been established. This has important implications for understanding how group conflict occurs, and how intra-group individual bias can develop.

Keywords: categorization, group dynamics, initial contact, minimal social networks, momentary contact

Procedia PDF Downloads 124
376 Comparative Analysis of Data Gathering Protocols with Multiple Mobile Elements for Wireless Sensor Network

Authors: Bhat Geetalaxmi Jairam, D. V. Ashoka

Abstract:

Wireless Sensor Networks are used in many applications to collect sensed data from different sources. Sensed data has to be delivered through sensors wireless interface using multi-hop communication towards the sink. The data collection in wireless sensor networks consumes energy. Energy consumption is the major constraints in WSN .Reducing the energy consumption while increasing the amount of generated data is a great challenge. In this paper, we have implemented two data gathering protocols with multiple mobile sinks/elements to collect data from sensor nodes. First, is Energy-Efficient Data Gathering with Tour Length-Constrained Mobile Elements in Wireless Sensor Networks (EEDG), in which mobile sinks uses vehicle routing protocol to collect data. Second is An Intelligent Agent-based Routing Structure for Mobile Sinks in WSNs (IAR), in which mobile sinks uses prim’s algorithm to collect data. Authors have implemented concepts which are common to both protocols like deployment of mobile sinks, generating visiting schedule, collecting data from the cluster member. Authors have compared the performance of both protocols by taking statistics based on performance parameters like Delay, Packet Drop, Packet Delivery Ratio, Energy Available, Control Overhead. Authors have concluded this paper by proving EEDG is more efficient than IAR protocol but with few limitations which include unaddressed issues likes Redundancy removal, Idle listening, Mobile Sink’s pause/wait state at the node. In future work, we plan to concentrate more on these limitations to avail a new energy efficient protocol which will help in improving the life time of the WSN.

Keywords: aggregation, consumption, data gathering, efficiency

Procedia PDF Downloads 471
375 Synthesis of Electrospun Polydimethylsiloxane (PDMS)/Polyvinylidene Fluoriure (PVDF) Nanofibrous Membranes for CO₂ Capture

Authors: Wen-Wen Wang, Qian Ye, Yi-Feng Lin

Abstract:

Carbon dioxide emissions are expected to increase continuously, resulting in climate change and global warming. As a result, CO₂ capture has attracted a large amount of research attention. Among the various CO₂ capture methods, membrane technology has proven to be highly efficient in capturing CO₂, because it can be scaled up, low energy consumptions and small area requirements for use by the gas separation. Various nanofibrous membranes were successfully prepared by a simple electrospinning process. The membrane contactor combined with chemical absorption and membrane process in the post-combustion CO₂ capture is used in this study. In a membrane contactor system, the highly porous and water-repellent nanofibrous membranes were used as a gas-liquid interface in a membrane contactor system for CO₂ absorption. In this work, we successfully prepared the polyvinylidene fluoride (PVDF) porous membranes with an electrospinning process. Afterwards, the as-prepared water-repellent PVDF porous membranes were used for the CO₂ capture application. However, the pristine PVDF nanofibrous membranes were wetted by the amine absorbents, resulting in the decrease in the CO₂ absorption flux, the hydrophobic polydimethylsiloxane (PDMS) materials were added into the PVDF nanofibrous membranes to improve the solvent resistance of the membranes. To increase the hydrophobic properties and CO₂ absorption flux, more hydrophobic surfaces of the PDMS/PVDF nanofibrous membranes are obtained by the grafting of fluoroalkylsilane (FAS) on the membranes surface. Furthermore, the highest CO₂ absorption flux of the PDMS/PVDF nanofibrous membranes is reached after the FAS modification with four times. The PDMS/PVDF nanofibrous membranes with 60 wt% PDMS addition can be a long and continuous operation of the CO₂ absorption and regeneration experiments. It demonstrates the as-prepared PDMS/PVDF nanofibrous membranes could potentially be used for large-scale CO₂ absorption during the post-combustion process in power plants.

Keywords: CO₂ capture, electrospinning process, membrane contactor, nanofibrous membranes, PDMS/PVDF

Procedia PDF Downloads 254
374 Synthesis of Fullerene Nanorods for Detection of Ethylparaben an Endocrine Disruptor in Cosmetics

Authors: Jahangir Ahmad Rather, Emad A. Khudaish, Ahsanulhaq Qurashi, Palanisamy Kannan

Abstract:

Chemical modification and assembling of fullerenes are fundamentally important for the application of fullerenes as functional molecules and in molecular devices and organic electronic devices. We have synthesized fullerene nanorods C60NRs conjugate via liquid-liquid interface and the synthesized C60NRs was characterized by FTIR spectroscopy, field emission electron microscopy (FESEM) and X-ray diffraction techniques. The C60NRs were immobilized on glassy carbon electrode via surface bound diazonium salts as an impact strategy. This method involves electrografting of p–nitrophenyl to give GCE–Ph–NO2 and then the terminal nitro-group was chemically reduced to GCE–Ph–NH2 in a presence of sodium borohydride/gold–polyaniline nanocomposite (NaBH4/Au–PANI). The Au–PANI composite was synthesized and characterized by FTIR, UV-vis, SEM and EDX techniques. The C60NRs were immobilized on GCE–Ph–NH2 via amination reaction which involves N-H addition across a π-bond on [60] fullerene. The immobilized C60NRs/GCE was subjected to electrochemical reduction in 1.0 M KOH to yield ERC60NRs/GCE sensor. The developed sensor shows high electrocatalytic activity for the detection of ethylparaben (EP) over a concentration range from 0.01 to 0.52 µM with a detection limit (LOD) 3.8 nM. The amount of EP present in the nourishing repair cream (OlAY®) was determined by standard addition method at the developed ERC60NRs/GCE sensor. The total concentration of EP was found to be 0.011 µM (0.1%) and is within the permissible limit of 0.19 % EP in cosmetics according to the European scientific committee (SCCS) on consumer safety on 22 March 2011 (SCCS/1348/11).

Keywords: diazonium salt reduction, ethylparaben (EP), endocrine disruptor, fullerene nanorods (C60NRs), gold–polyaniline nanocomposite (Au–PANI)

Procedia PDF Downloads 210
373 Double Gaussian Distribution of Nonhomogeneous Barrier Height in Metal/n-type GaN Schottky Contacts

Authors: M. Mamor

Abstract:

GaN-based compounds have attracted much interest in the fabrication of high-power, high speed and high-frequency electronic devices. Other examples of GaN-based applications are blue and ultraviolet (UV) light-emitting diodes (LEDs). All these devices require high-quality ohmic and Schottky contacts. Gaining an understanding of the electrical characteristics of metal/GaN contacts is of fundamental and technological importance for developing GaN-based devices. In this work, the barrier characteristics of Pt and Pd Schottky contacts on n-type GaN were studied using temperature-dependent forward current-voltage (I-V) measurements over a wide temperature range 80–400 K. Our results show that the barrier height and ideality factor, extracted from the forward I-V characteristics based on thermionic emission (TE) model, exhibit an abnormal dependence with temperature; i.e., by increasing temperature, the barrier height increases whereas the ideality factor decreases. This abnormal behavior has been explained based on the TE model by considering the presence of double Gaussian distribution (GD) of nonhomogeneous barrier height at the metal/GaN interface. However, in the high-temperature range (160-400 K), the extracted value for the effective Richardson constant A* based on the barrier inhomogeneity (BHi) model is found in fair agreement with the theoretically predicted value of about 26.9 A.cm-2 K-2 for n-type GaN. This result indicates that in this temperature range, the conduction current transport is dominated by the thermionic emission mode. On the other hand, in the lower temperature range (80-160 K), the corresponding effective Richardson constant value according to the BHi model is lower than the theoretical value, suggesting the presence of other current transport, such as tunneling-assisted mode at lower temperatures.

Keywords: Schottky diodes, inhomogeneous barrier height, GaN semiconductors, Schottky barrier heights

Procedia PDF Downloads 26
372 Use of Waste Tire Rubber Alkali-Activated-Based Mortars in Repair of Concrete Structures

Authors: Mohammad Ebrahim Kianifar, Ehsan Ahmadi

Abstract:

Reinforced concrete structures experience local defects such as cracks over their lifetime under various environmental loadings. Consequently, they are repaired by mortars to avoid detrimental effects such as corrosion of reinforcement, which in long-term may lead to strength loss of a member or collapse of structures. However, repaired structures may need multiple repairs due to changes in load distribution, and thus, lack of compatibility between mortar and substrate concrete. On the other hand, waste tire rubber alkali-activated (WTRAA)-based materials have very high potential to be used as repair mortars because of their ductility and flexibility, which may delay the failure of repair mortar and thus, provide sufficient compatibility. Hence, this work presents a pioneering study on suitability of WTRAA-based materials as mortars for the repair of concrete structures through an experimental program. To this end, WTRAA mortars with 15% aggregate replacement, alkali-activated (AA) mortars, and ordinary mortars are made to repair a number of concrete beams. The WTRAA mortars are composed of slag as base material, sodium hydroxide as an alkaline activator, and different gradations of waste tire rubber (fine and coarse gradations). Flexural tests are conducted on the concrete beams repaired by the ordinary, AA, and WTRAA mortars. It is found that, despite having lower compressive strength and modulus of elasticity, the WTRAA and AA mortars increase the flexural strength of the repaired beams, give compatible failures, and provide sufficient mortar-concrete interface bondings. The ordinary mortars, however, show incompatible failure modes. This study demonstrates the promising application of WTRAA mortars in the practical repairs of concrete structures.

Keywords: alkali-activated mortars, concrete repair, mortar compatibility, flexural strength, waste tire rubber

Procedia PDF Downloads 115