Search results for: minimum miscibility pressure
4923 Numerical Study of Homogeneous Nanodroplet Growth
Authors: S. B. Q. Tran
Abstract:
Drop condensation is the phenomenon that the tiny drops form when the oversaturated vapour present in the environment condenses on a substrate and makes the droplet growth. Recently, this subject has received much attention due to its applications in many fields such as thin film growth, heat transfer, recovery of atmospheric water and polymer templating. In literature, many papers investigated theoretically and experimentally in macro droplet growth with the size of millimeter scale of radius. However few papers about nanodroplet condensation are found in the literature especially theoretical work. In order to understand the droplet growth in nanoscale, we perform the numerical simulation work to study nanodroplet growth. We investigate and discuss the role of the droplet shape and monomer diffusion on drop growth and their effect on growth law. The effect of droplet shape is studied by doing parametric studies of contact angle and disjoining pressure magnitude. Besides, the effect of pinning and de-pinning behaviours is also studied. We investigate the axisymmetric homogeneous growth of 10–100 nm single water nanodroplet on a substrate surface. The main mechanism of droplet growth is attributed to the accumulation of laterally diffusing water monomers, formed by the absorption of water vapour in the environment onto the substrate. Under assumptions of quasi-steady thermodynamic equilibrium, the nanodroplet evolves according to the augmented Young–Laplace equation. Using continuum theory, we model the dynamics of nanodroplet growth including the coupled effects of disjoining pressure, contact angle and monomer diffusion with the assumption of constant flux of water monomers at the far field. The simulation result is validated by comparing with the published experimental result. For the case of nanodroplet growth with constant contact angle, our numerical results show that the initial droplet growth is transient by monomer diffusion. When the flux at the far field is small, at the beginning, the droplet grows by the diffusion of initially available water monomers on the substrate and after that by the flux at the far field. In the steady late growth rate of droplet radius and droplet height follow a power law of 1/3, which is unaffected by the substrate disjoining pressure and contact angle. However, it is found that the droplet grows faster in radial direction than high direction when disjoining pressure and contact angle increase. The simulation also shows the information of computational domain effect in the transient growth period. When the computational domain size is larger, the mass coming in the free substrate domain is higher. So the mass coming in the droplet is also higher. The droplet grows and reaches the steady state faster. For the case of pinning and de-pinning droplet growth, the simulation shows that the disjoining pressure does not affect the droplet radius growth law 1/3 in steady state. However the disjoining pressure modifies the growth rate of the droplet height, which then follows a power law of 1/4. We demonstrate how spatial depletion of monomers could lead to a growth arrest of the nanodroplet, as observed experimentally.Keywords: augmented young-laplace equation, contact angle, disjoining pressure, nanodroplet growth
Procedia PDF Downloads 2724922 Respiratory Indices and Sports Performance: A Comparision between Different Levels Basketballers
Authors: Ranjan Chakravarty, Satpal Yadav, Biswajit Basumatary, Arvind S. Sajwan
Abstract:
The purpose of this study is to compare the basketball players of different level on selected respiratory indices. Ninety male basketball players from different universities those who participated in intercollegiate and inter- varsity championship. Selected respiratory indices were resting pulse rate, resting blood pressure, vital capacity and resting respiratory rate. Mean and standard deviation of selected respiratory indices were calculated and three different levels i.e. beginners, intermediate and advanced were compared by using analysis of variance. In order to test the hypothesis, level of significance was set at 0.05. It was concluded that variability does not exist among the basketball players of different groups with respect to their selected respiratory indices i.e. resting pulse rate, resting blood pressure, vital capacity and resting respiratory rate.Keywords: respiratory indices, sports performance, basketball players, intervarsity level
Procedia PDF Downloads 3384921 The Importance of Zakat in Struggle against Circle of Poverty and Income Redistribution
Authors: Hasan Bulent Kantarci
Abstract:
This paper examine how Zakat provide a fair income redistribution and struggle with poverty. To provide a fair income redistribution and struggle with poverty take place among the fundamental tasks of all countries. Each country seeks a solution for this problem according to their political, economical and administrative styles through applying various economic and financial policies. The same situation gets handled via zakat association in the Islam. Nowadays, we observe different versions of zakat in developed countries. The applications such as negative income tax denote merely a difference from the zakat being applied almost the same way under changed names. But the minimum values to donate the zakat (e.g. 85 gr. gold and 40 animals) get altered and various amounts are put into practice. It might be named as negative income tax instead of zakat, nonetheless, these applications are based on the Holy Koran and the hadith released 1400 years ago. Besides, considering the savage and slavery in the world at those times, we might easily recognize the true value of the zakat applied the first time then in Islamic system. Through zakat is enabled an income transfer by the government so that the poor could reach the minimum level of life standard. To whom the zakat would be donated was not left to people’s heart and encouraged to determine according to objective criteria. Since the zakat is obligatory, the transfer do not get forward by hand but via the government and get distributed, which requires a vast government organization. Through applying the zakat as it must be would achieve to reduce the poverty mostly and ensuring the fair income redistribution.Keywords: Islamic finance, zakat, income redistribution, circle of poverty, negatif income tax
Procedia PDF Downloads 3464920 The Effect of Pulling and Rotation Speed on the Jet Grout Columns
Authors: İbrahim Hakkı Erkan, Özcan Tan
Abstract:
The performance of jet grout columns was affected by many controlled and uncontrolled parameters. The leading parameters for the controlled ones can be listed as injection pressure, rod pulling speed, rod rotation speed, number of nozzles, nozzle diameter and Water/Cement ratio. And the uncontrolled parameters are soil type, soil structure, soil layering condition, underground water level, the changes in strength parameters and the rheologic properties of cement in time. In this study, the performance of jet grout columns and the effects of pulling speed and rotation speed were investigated experimentally. For this purpose, a laboratory type jet grouting system was designed for the experiments. Through this system, jet grout columns were produced in three different conditions. The results of the study showed that the grout pressure and the lifting speed significantly affect the performance of the jet grouting columns.Keywords: jet grout, sandy soils, soil improvement, soilcreate
Procedia PDF Downloads 2514919 Task Kicking Performance with Biomechanical Instrumentation
Authors: T. Hirata, M. G. Silva, L. M. Rosa
Abstract:
The balance ability during task kick in soccer is a determining factor in the execution of functional movements that require a high-performance motor coordination. The current experiment explored it during an instep soccer kick and functional task kicking. Their kicking performance was measured in terms of the sway characteristics using lateral and antero-posterior balance of the center of pressure (COP) for the supporting leg and the kinematic data, the supporting leg’s knee angle. The motion was realized with one-legged stance of five male indoor soccer players and using the trigger device ball controller. The results showed large balance in antero-posterior direction than in lateral direction. However, each player adopts a different way to kick the ball, and the media-lateral displacement of the COP showed no correlation with the balance skill.Keywords: kicking performance, center of pressure, one-legged stance, balance ability
Procedia PDF Downloads 6164918 Efficacy of Hemi-Facetectomy in Treatment of Lumbar Foraminal Stenosis
Authors: Manoj Deepak, N. Mathivanan, K. Venkatachalam
Abstract:
Nerve root stenosis is one of the main cause for back pain. There are many methods both conservative and surgical to treat this disease. It is pertinent to decompress the spine to a proper extent so as to avoid the recurrence of symptoms. But too much of an aggressive approach also has its disadvantages. We present one of the methods to effectively decompress the nerve with better results. Our study was carried out in 52 patients with foramina stenosis between 2008 to 2011.We carried out the surgical procedure of shaving off the medial part of the facet joint so as to decompress the root. We selected those patients who had symptoms of claudication for more than 2 years. They had no signs of instability and they underwent conservative treatment for a period of 2 months before the procedure. Oswersty scoring was used to record the functional level of the patient before and after the procedure. All patients were followed up for a period of minimum 2.5 years. After evaluation for a minimum of 2.5 years, 34 patients had no evidence of recurrence of symptoms with improvement in the functional level.7 patients complained of minimal pain but their functional quality had improved postop. Six patients had symptoms of lumbar canal disease which reduced with conservative treatment. 5 patients required spinal fusion surgeries in the later period. Conclusion: Thus, we can effectively conclude that our procedure is safe and effective in reducing the symptoms in those patients with neurogenic claudication.Keywords: facetectoemy, stenosis, decompression, Lumbar Foraminal Stenosis, hemi-facetectomy
Procedia PDF Downloads 3504917 A Comparative Study of Mechanisms across Different Online Social Learning Types
Authors: Xinyu Wang
Abstract:
In the context of the rapid development of Internet technology and the increasing prevalence of online social media, this study investigates the impact of digital communication on social learning. Through three behavioral experiments, we explore both affective and cognitive social learning in online environments. Experiment 1 manipulates the content of experimental materials and two forms of feedback, emotional valence, sociability, and repetition, to verify whether individuals can achieve online emotional social learning through reinforcement using two social learning strategies. Results reveal that both social learning strategies can assist individuals in affective, social learning through reinforcement, with feedback-based learning strategies outperforming frequency-dependent strategies. Experiment 2 similarly manipulates the content of experimental materials and two forms of feedback to verify whether individuals can achieve online knowledge social learning through reinforcement using two social learning strategies. Results show that similar to online affective social learning, individuals adopt both social learning strategies to achieve cognitive social learning through reinforcement, with feedback-based learning strategies outperforming frequency-dependent strategies. Experiment 3 simultaneously observes online affective and cognitive social learning by manipulating the content of experimental materials and feedback at different levels of social pressure. Results indicate that online affective social learning exhibits different learning effects under different levels of social pressure, whereas online cognitive social learning remains unaffected by social pressure, demonstrating more stable learning effects. Additionally, to explore the sustained effects of online social learning and differences in duration among different types of online social learning, all three experiments incorporate two test time points. Results reveal significant differences in pre-post-test scores for online social learning in Experiments 2 and 3, whereas differences are less apparent in Experiment 1. To accurately measure the sustained effects of online social learning, the researchers conducted a mini-meta-analysis of all effect sizes of online social learning duration. Results indicate that although the overall effect size is small, the effect of online social learning weakens over time.Keywords: online social learning, affective social learning, cognitive social learning, social learning strategies, social reinforcement, social pressure, duration
Procedia PDF Downloads 464916 Evaluation of Turbulence Modelling of Gas-Liquid Two-Phase Flow in a Venturi
Authors: Mengke Zhan, Cheng-Gang Xie, Jian-Jun Shu
Abstract:
A venturi flowmeter is a common device used in multiphase flow rate measurement in the upstream oil and gas industry. Having a robust computational model for multiphase flow in a venturi is desirable for understanding the gas-liquid and fluid-pipe interactions and predicting pressure and phase distributions under various flow conditions. A steady Eulerian-Eulerian framework is used to simulate upward gas-liquid flow in a vertical venturi. The simulation results are compared with experimental measurements of venturi differential pressure and chord-averaged gas holdup in the venturi throat section. The choice of turbulence model is nontrivial in the multiphase flow modelling in a venturi. The performance cross-comparison of the k-ϵ model, Reynolds stress model (RSM) and shear-stress transport (SST) k-ω turbulence model is made in the study. In terms of accuracy and computational cost, the SST k-ω turbulence model is observed to be the most efficient.Keywords: computational fluid dynamics (CFD), gas-liquid flow, turbulence modelling, venturi
Procedia PDF Downloads 1734915 Performance Evaluation of Iar Multi Crop Thresher
Authors: Idris Idris Sunusi, U.S. Muhammed, N.A. Sale, I.B. Dalha, N.A. Adam
Abstract:
Threshing efficiency and mechanical grain damages are among the important parameters used in rating the performance of agricultural threshers. To be acceptable to farmers, threshers should have high threshing efficiency and low grain. The objective of the research is to evaluate the performances of the thresher using sorghum and millet, the performances parameters considered are; threshing efficiency and mechanical grain damage. For millet, four drum speed levels; 700, 800, 900 and 1000 rpm were considered while for sorghum; 600, 700, 800 and 900 rpm were considered. The feed rate levels were 3, 4, 5 and 6 kg/min for both sorghum and millet; the levels of moisture content were 8.93 and 10.38% for sorghum and 9.21 and 10.81% for millet. For millet the test result showed a maximum of 98.37 threshing efficiencies and a minimum of 0.24% mechanical grain damage while for sorghum the test result indicated a maximum of 99.38 threshing efficiencies, and a minimum of 0.75% mechanical grain damage. In comparison to the previous thresher, the threshing efficiency and mechanical grain damage of the modified machine has improved by 2.01% and 330.56% for millet and 5.31%, 287.64% for sorghum. Also analysis of variance (ANOVA) showed that, the effect of drum speed, feed rate and moisture content were significant on the performance parameters.Keywords: Threshing Efficiency, Mechanical Grain Damages, Sorghum and Millet, Multi Crop Thresher
Procedia PDF Downloads 3504914 A Comparison of Design and Off-Design Performances of a Centrifugal Compressor
Authors: Zeynep Aytaç, Nuri Yücel
Abstract:
Today, as the need for high efficiency and fuel-efficient engines have increased, centrifugal compressor designs are expected to be high-efficient and have high-pressure ratios than ever. The present study represents a design methodology of centrifugal compressor placed in a mini jet engine for the design and off-design points with the utilization of computational fluid dynamics (CFD) and compares the performance characteristics at the mentioned two points. Although the compressor is expected to provide the required specifications at the design point, it is known that it is important for the design to deliver the required parameters at the off-design point also as it will not operate at the design point always. It was observed that the obtained mass flow rate, pressure ratio, and efficiency values are within the limits of the design specifications for the design and off-design points. Despite having different design inputs for the mentioned two points, they reveal similar flow characteristics in the general frame.Keywords: centrifugal compressor, computational fluid dynamics, design point, off-design point
Procedia PDF Downloads 1444913 Design of a Small Mobile PV Driven RO Water Desalination Plant to be Deployed at the North West Coast of Egypt
Authors: Hosam A. Shawky, Amr A. Abdel Fatah, Moustafa M. S. Abo ElFad, Abdel Hameed M. El-Aassar
Abstract:
Water desalination projects based on reverse osmosis technology are being introduced in Egypt to combat drinking water shortage in remote areas. Reverse osmosis (RO) desalination is a pressure driven process. This paper focuses on the design of an integrated brackish water and seawater RO desalination and solar Photovoltaic (PV) technology. A small Mobile PV driven RO desalination plant prototype without batteries is designed and tested. Solar-driven reverse osmosis desalination can potentially break the dependence of conventional desalination on fossil fuels, reduce operational costs, and improve environmental sustainability. Moreover, the innovative features incorporated in the newly designed PV-RO plant prototype are focusing on improving the cost effectiveness of producing drinkable water in remote areas. This is achieved by maximizing energy yield through an integrated automatic single axis PV tracking system with programmed tilting angle adjustment. An autonomous cleaning system for PV modules is adopted for maximizing energy generation efficiency. RO plant components are selected so as to produce 4-5 m3/day of potable water. A basic criterion in the design of this PV-RO prototype is to produce a minimum amount of fresh water by running the plant during peak sun hours. Mobility of the system will provide potable water to isolated villages and population as well as ability to provide good drinking water to different number of people from any source that is not drinkable.Keywords: design, reverse osmosis, photovoltaic, energy, desalination, Egypt
Procedia PDF Downloads 5734912 Excitation Experiments of a Cone Loudspeaker and Vibration-Acoustic Analysis Using FEM
Authors: Y. Hu, X. Zhao, T. Yamaguchi, M. Sasajima, Y. Koike
Abstract:
To focus on the vibration mode of a cone loudspeaker, which acts as an electroacoustic transducer, excitation experiments were performed using two types of loudspeaker units: one employing an impulse hammer and the other a sweep signal. The on-axis sound pressure frequency properties of the loudspeaker were evaluated, and the characteristic properties of the loudspeakers were successfully determined in both excitation experiments. Moreover, under conditions identical to the experiment conditions, a coupled analysis of the vibration-acoustics of the cone loudspeaker was performed using an acoustic analysis software program that considers the impact of damping caused by air viscosity. The result of sound pressure frequency properties with the numerical analysis are the most closely match that measured in the excitation experiments over a wide range of frequency bands.Keywords: anechoic room, finite element method, impulse hammer, loudspeaker, reverberation room, sweep signal
Procedia PDF Downloads 4364911 Risk Factors for Post-Induction Hypotension Among Elderly Patients Undergoing Elective Non-Cardiac Surgery Under General Anesthesia
Authors: Karuna Sutthibenjakul, Sunisa Chatmongkolchart
Abstract:
Background: Postinduction hypotension is common and occurs more often in elderly patients. We aimed to determine risk factors for hypotension after induction among elderly patients (aged 65 years and older) who underwent elective non-cardiac surgery under general anesthesia. Methods: This cohort study analyzed from 580 data between December 2017 and July 2018 at a tertiary university hospital in south of Thailand. Hypotension is defined as more than 30% decrease mean arterial pressure from baseline after induction within 20 minutes or the use of vasopressive agent to treat low blood pressure. Intraoperative parameters were blood pressure and heart rate at T0, TEI, T5, T10, T15 and T20 (immediately after arrival at operating room, time after intubation, 5, 10, 15 and 20 minutes after intubation) respectively. Results: The median age was 72.5 (68, 78) years. A prevalence of post-induction hypotension was 64.8%. The highest prevalence (39.7%) was at 15 minutes after intubation. The association of post-induction hypotension is rising with diuretic drug as preoperative medication (P-value=0.016), hematocrit level (P-value=0.031) and the degree of hypertension immediately after arrival at operating room (P-value<0.001). Increasing fentanyl dosage during induction was associated with hypotension at intubation time (P-value<0.01) and 5 minutes after intubation (P-value<0.001). There was no statistically significant difference in the increasing propofol dosage. Conclusion: The degree of hypertension immediately after arrival at operating room and increasing fentanyl dosage were a significant risk factors for postinduction hypotension in elderly patients.Keywords: risk factors, post-induction, hypotension, elderly
Procedia PDF Downloads 1314910 The Healing 'Touch' of Music: A Neuro-Acoustics Approach to Understand Its Therapeutic Effect
Authors: Jagmeet S. Kanwal, Julia F. Langley
Abstract:
Music can heal the body, but a mechanistic understanding of this phenomenon is lacking. This study explores the effects of music presentation on neurologic and physiologic responses leading to metabolic changes in the human body. The mind and body co-exist in a corporeal entity and within this framework, sickness ensues when the mind-body balance goes awry. It is further hypothesized that music has the capacity to directly reset this balance. Two lines of inquiry taken together can provide a mechanistic understanding of this phenomenon 1) Empirical evidence for a sound-sensitive pressure sensor system in the body, and 2) The notion of a “healing center” within the brain that is activated by specific patterns of sounds. From an acoustics perspective, music is spatially distributed as pressure waves ranging from a few cm to several meters in wavelength. These waves interact and propagate in three-dimensions in unique ways, depending on the wavelength. Furthermore, music creates dynamically changing wave-fronts. Frequencies between 200 Hz and 1 kHz generate wavelengths that range from 5'6" to 1 foot. These dimensions are in the range of the body size of most people making it plausible that these pressure waves can geometrically interact with the body surface and create distinct patterns of pressure stimulation across the skin surface. For humans, short wavelength, high frequency (> 200 Hz) sounds are best received via cochlear receptors. For low frequency (< 200 Hz), long wavelength sound vibrations, however, the whole body may act as an ideal receiver. A vast array of highly sensitive pressure receptors (Pacinian corpuscles) is present just beneath the skin surface, as well as in the tendons, bones, several organs in the abdomen, and the sexual organs. Per the available empirical evidence, these receptors contribute to music perception by allowing the whole body to function as a sound receiver, and knowledge of how they function is essential to fully understanding the therapeutic effect of music. Neuroscientific studies have established that music stimulates the limbic system that can trigger states of anxiety, arousal, fear, and other emotions. These emotional states of brain activity play a crucial role in filtering top-down feedback from thoughts and bottom-up sensory inputs to the autonomic system, which automatically regulates bodily functions. Music likely exerts its pleasurable and healing effects by enhancing functional and effective connectivity and feedback mechanisms between brain regions that mediate reward, autonomic, and cognitive processing. Stimulation of pressure receptors under the skin by low-frequency music-induced sensations can activate multiple centers in the brain, including the amygdala, the cingulate cortex, and nucleus accumbens. Melodies in music in the low (< 600 Hz) frequency range may augment auditory inputs after convergence of the pressure-sensitive inputs from the vagus nerve onto emotive processing regions within the limbic system. The integration of music-generated auditory and somato-visceral inputs may lead to a synergistic input to the brain that promotes healing. Thus, music can literally heal humans through “touch” as it energizes the brain’s autonomic system for restoring homeostasis.Keywords: acoustics, brain, music healing, pressure receptors
Procedia PDF Downloads 1664909 Interpretation and Prediction of Geotechnical Soil Parameters Using Ensemble Machine Learning
Authors: Goudjil kamel, Boukhatem Ghania, Jlailia Djihene
Abstract:
This paper delves into the development of a sophisticated desktop application designed to calculate soil bearing capacity and predict limit pressure. Drawing from an extensive review of existing methodologies, the study meticulously examines various approaches employed in soil bearing capacity calculations, elucidating their theoretical foundations and practical applications. Furthermore, the study explores the burgeoning intersection of artificial intelligence (AI) and geotechnical engineering, underscoring the transformative potential of AI- driven solutions in enhancing predictive accuracy and efficiency.Central to the research is the utilization of cutting-edge machine learning techniques, including Artificial Neural Networks (ANN), XGBoost, and Random Forest, for predictive modeling. Through comprehensive experimentation and rigorous analysis, the efficacy and performance of each method are rigorously evaluated, with XGBoost emerging as the preeminent algorithm, showcasing superior predictive capabilities compared to its counterparts. The study culminates in a nuanced understanding of the intricate dynamics at play in geotechnical analysis, offering valuable insights into optimizing soil bearing capacity calculations and limit pressure predictions. By harnessing the power of advanced computational techniques and AI-driven algorithms, the paper presents a paradigm shift in the realm of geotechnical engineering, promising enhanced precision and reliability in civil engineering projects.Keywords: limit pressure of soil, xgboost, random forest, bearing capacity
Procedia PDF Downloads 224908 Anti-Methicillin-Resistant Staphylococcus aureus (MRSA) Compounds from Bauhinia kockiana Korth and Their Mechanism of Antibacterial Activity
Authors: Yik Ling Chew, Adlina Maisarah Mahadi, Joo Kheng Goh
Abstract:
Bauhinia kockiana originates from Peninsular Malaysia, and it is grown as a garden ornamental plant. However, it is used as medicinal plant by Malaysia ‘Kelabit’ ethic group in treating various diseases and illnesses. This study focused on the assessment of the antibacterial activity of B. kockiana towards MRSA, to purify and identify the antibacterial compounds, and to determine the mechanism of antibacterial activity. Antibacterial activity of B. kockiana flower is evaluated qualitatively and quantitatively using disc diffusion assay and microbroth dilution method to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of extracts. Phytochemical analysis is performed to determine the classes of phytochemicals in the extracts. Bioactivity-guided isolation is performed to purify the antibacterial agents and identified the chemical structures via various spectroscopy methods. Scanning electron microscopy (SEM) technique is adopted to evaluate the antibacterial mechanism of extract and compounds isolated. B. kockiana flower is found to exhibit fairly strong antibacterial activity towards both strains of MRSA bacteria. Gallic acid and its ester derivatives are purified from ethyl acetate extract and the antibacterial activity is evaluated. SEM has revealed the mechanism of the extracts and compounds isolated.Keywords: alkyl gallates, Bauhinia kockiana, MRSA, scanning electron microscopy
Procedia PDF Downloads 3694907 Bench Tests of Two-Stroke Opposed Piston Aircraft Diesel Engine under Propeller Characteristics Conditions
Authors: A. Majczak, G. Baranski, K. Pietrykowski
Abstract:
Due to the growing popularity of light aircraft, it has become necessary to develop aircraft engines for this type of construction. One of engine system, designed to increase efficiency and reduce weight, is the engine with opposed pistons. In such an engine, the combustion chamber is formed by two pistons moving in one cylinder. Therefore, this type of engines run in a two-stroke cycle, so they have many advantages such as high power and torque, high efficiency, or a favorable power-to-weight ratio. Tests of one of the available aircraft engines with opposing piston system fueled with diesel oil were carried out on an engine dynamometer equipped with an eddy current brake and the necessary measuring and testing equipment. In order to get to know the basic parameters of the engine, the tests were carried out under partial load conditions for the following torque values: 40, 60, 80, 100 Nm. The rotational speed was changed from 1600 to 2500 rpm. Measurements were also taken for designated points of propeller characteristics. During the tests, the engine torque, engine power, fuel consumption, intake manifold pressure, and oil pressure were recorded. On the basis of the measurements carried out for particular loads, the power curve, hourly and specific fuel consumption curves were determined. Characteristics of charge pressure as a function of rotational speed as well as power, torque, hourly and specific fuel consumption curves for propeller characteristics were also prepared. The obtained characteristics make it possible to select the optimal points of engine operation.Keywords: aircraft, diesel, engine testing, opposed piston
Procedia PDF Downloads 1534906 Hydraulic Characteristics of Mine Tailings by Metaheuristics Approach
Authors: Akhila Vasudev, Himanshu Kaushik, Tadikonda Venkata Bharat
Abstract:
A large number of mine tailings are produced every year as part of the extraction process of phosphates, gold, copper, and other materials. Mine tailings are high in water content and have very slow dewatering behavior. The efficient design of tailings dam and economical disposal of these slurries requires the knowledge of tailings consolidation behavior. The large-strain consolidation theory closely predicts the self-weight consolidation of these slurries as the theory considers the conservation of mass and momentum conservation and considers the hydraulic conductivity as a function of void ratio. Classical laboratory techniques, such as settling column test, seepage consolidation test, etc., are expensive and time-consuming for the estimation of hydraulic conductivity variation with void ratio. Inverse estimation of the constitutive relationships from the measured settlement versus time curves is explored. In this work, inverse analysis based on metaheuristics techniques will be explored for predicting the hydraulic conductivity parameters for mine tailings from the base excess pore water pressure dissipation curve and the initial conditions of the mine tailings. The proposed inverse model uses particle swarm optimization (PSO) algorithm, which is based on the social behavior of animals searching for food sources. The finite-difference numerical solution of the forward analytical model is integrated with the PSO algorithm to solve the inverse problem. The method is tested on synthetic data of base excess pore pressure dissipation curves generated using the finite difference method. The effectiveness of the method is verified using base excess pore pressure dissipation curve obtained from a settling column experiment and further ensured through comparison with available predicted hydraulic conductivity parameters.Keywords: base excess pore pressure, hydraulic conductivity, large strain consolidation, mine tailings
Procedia PDF Downloads 1344905 Effects of Different Mechanical Treatments on the Physical and Chemical Properties of Turmeric
Authors: Serpa A. M., Gómez Hoyos C., Velásquez-Cock J. A., Ruiz L. F., Vélez Acosta L. M., Gañan P., Zuluaga R.
Abstract:
Turmeric (Curcuma Longa L) is an Indian rhizome known for its biological properties, derived from its active compounds such as curcuminoids. Curcumin, the main polyphenol in turmeric, only represents around 3.5% of the dehydrated rhizome and extraction yields between 41 and 90% have been reported. Therefore, for every 1000 tons of turmeric powder used for the extraction of curcumin, around 970 tons of residues are generated. The present study evaluates the effect of different mechanical treatments (waring blender, grinder and high-pressure homogenization) on the physical and chemical properties of turmeric, as an alternative for the transformation of the entire rhizome. Suspensions of turmeric (10, 20 y 30%) were processed by waring blender during 3 min at 12000 rpm, while the samples treated by grinder were processed evaluating two different Gaps (-1 and -1,5). Finally, the process by high-pressure homogenization, was carried out at 500 bar. According to the results, the luminosity of the samples increases with the severity of the mechanical treatment, due to the stabilization of the color associated with the inactivation of the oxidative enzymes. Additionally, according to the microstructure of the samples, the process by grinder (Gap -1,5) and by high-pressure homogenization allowed the largest size reduction, reaching sizes up to 3 m (measured by optical microscopy). This processes disrupts the cells and breaks their fragments into small suspended particles. The infrared spectra obtained from the samples using an attenuated total reflectance accessory indicates changes in the 800-1200 cm⁻¹ region, related mainly to changes in the starch structure. Finally, the thermogravimetric analysis shows the presence of starch, curcumin and some minerals in the suspensions.Keywords: characterization, mechanical treatments, suspensions, turmeric rhizome
Procedia PDF Downloads 1634904 Study of Morning-Glory Spillway Structure in Hydraulic Characteristics by CFD Model
Authors: Mostafa Zandi, Ramin Mansouri
Abstract:
Spillways are one of the most important hydraulic structures of dams that provide the stability of the dam and downstream areas at the time of flood. Morning-Glory spillway is one of the common spillways for discharging the overflow water behind dams, these kinds of spillways are constructed in dams with small reservoirs. In this research, the hydraulic flow characteristics of a morning-glory spillways are investigated with CFD model. Two dimensional unsteady RANS equations were solved numerically using Finite Volume Method. The PISO scheme was applied for the velocity-pressure coupling. The mostly used two-equation turbulence models, k- and k-, were chosen to model Reynolds shear stress term. The power law scheme was used for discretization of momentum, k , and equations. The VOF method (geometrically reconstruction algorithm) was adopted for interface simulation. The results show that the fine computational grid, the input speed condition for the flow input boundary, and the output pressure for the boundaries that are in contact with the air provide the best possible results. Also, the standard wall function is chosen for the effect of the wall function, and the turbulent model k -ε (Standard) has the most consistent results with experimental results. When the jet is getting closer to end of basin, the computational results increase with the numerical results of their differences. The lower profile of the water jet has less sensitivity to the hydraulic jet profile than the hydraulic jet profile. In the pressure test, it was also found that the results show that the numerical values of the pressure in the lower landing number differ greatly in experimental results. The characteristics of the complex flows over a Morning-Glory spillway were studied numerically using a RANS solver. Grid study showed that numerical results of a 57512-node grid had the best agreement with the experimental values. The desired downstream channel length was preferred to be 1.5 meter, and the standard k-ε turbulence model produced the best results in Morning-Glory spillway. The numerical free-surface profiles followed the theoretical equations very well.Keywords: morning-glory spillway, CFD model, hydraulic characteristics, wall function
Procedia PDF Downloads 774903 Comparative Analysis of High Lift Airfoils for Motorsports Applications
Authors: M. Fozan Ur Rab, Mahrukh, M. Alam, N. Sheikh
Abstract:
The purpose of this study is to analyze various high lift low Reynolds number airfoils using two-dimensional Computational Fluid Dynamics (CFD) code in the isolated flow field and select optimum airfoil to suit the motorsports application. The airfoil is selected after comparing the stall behavior, transition location, pressure recovery, pressure distribution and boundary layer characteristics of various airfoils. The prime consideration while selecting airfoil is highest Cl while achieving the sustainable performance over a range of Reynolds numbers encountered on the race track. The increase in Cl is always accompanied by the increase in Cd but this must be compromised since the main goal is to increase an aerodynamic grip. It is always desirable to increase the down-force in Formula One (F1)/Formula Student (FS) to gain reduction in lap time. This paper establishes the criteria for selection of high lift low Reynolds number airfoil while considering various parameters which affect the performance of airfoils.Keywords: aerodynamics, airfoil, downforce, formula student, lap time
Procedia PDF Downloads 2874902 Liquid Phase Catalytic Dehydrogenation of Secondary Alcohols to Ketone
Authors: Anıl Dinçer, Dilek Duranoğlu
Abstract:
Ketones, which are widely used as solvent and chemical intermediates in chemical process industry, are commercially produced by using catalytic dehydrogenation of secondary alcohols at higher temperature (300-500ºC), and pressure (1-5 bar). Although it is possible to obtain high conversion values (60-87%) via gas phase catalytic dehydrogenation, working high temperature and pressure can result in side reactions and shorten the catalyst life. In order to overcome these challenges, catalytic dehydrogenation in the presence of an appropriate liquid solvent has been started to use. Hence, secondary alcohols can be converted to respective ketones at relatively low temperature (150-200ºC) under atmospheric pressure. In this study, methyl ethyl ketone and acetone was produced via catalytic dehydrogenation of appropriate secondary alcohols (isopropyl alcohol and sec-butyl alcohol) in the presence of liquid solvent at 160-190ºC. Obtained methyl ethyl ketone and acetone were analyzed by using FTIR and GC spectrometer. Effects of temperature, amount of catalyst and solvent on conversion and reaction rate were investigated. Optimum process conditions, which gave high conversion and reaction rate, were determined. According to GC results, 70% of secondary butyl alcohol and 42% of isopropyl alcohol was converted to related ketone (methyl ethyl ketone and acetone, respectively) at optimum process conditions. After distillation, 99.13% methyl ethyl ketone and 99.20% acetone was obtained. Consequently, liquid phase dehydrogenation process, which can compete with commercial gas phase process, was developed.Keywords: dehydrogenation, liquid phase, methyl ethyl ketone, secondary alcohol
Procedia PDF Downloads 2964901 Failure Analysis of Fuel Pressure Supply from an Aircraft Engine
Authors: M. Pilar Valles-gonzalez, Alejandro Gonzalez Meije, Ana Pastor Muro, Maria Garcia-Martinez, Beatriz Gonzalez Caballero
Abstract:
This paper studies a failure case of a fuel pressure supply tube from an aircraft engine. Multiple fracture cases of the fuel pressure control tube from aircraft engines have been reported. The studied set was composed of the mentioned tube, a welded connecting pipe, where the fracture has been produced, and a union nut. The fracture has been produced in one most critical zones of the tube, in a region next to the supporting body of the union nut to the connector. The tube material was X6CrNiTi18-10, an austenitic stainless steel. Chemical composition was determined using an X-Ray fluorescence spectrometer (XRF) and combustion equipment. Furthermore, the material has been mechanical, by hardness test, and microstructural characterized using a stereomicroscope and an optical microscope. The results confirmed that it is within specifications. To determine the macrofractographic features, a visual examination and a stereo microscope of the tube fracture surface have been carried out. The results revealed a tube plastic macrodeformation, surface damaged, and signs of a possible corrosion process. Fracture surface was also inspected by scanning electron microscopy (FE-SEM), equipped with a microanalysis system by X-ray dispersive energy (EDX), to determine the microfractographic features in order to find out the failure mechanism involved in the fracture. Fatigue striations, which are typical from a progressive fracture by a fatigue mechanism, have been observed. The origin of the fracture has been placed in defects located on the outer wall of the tube, leading to a final overload fracture.Keywords: aircraft engine, fatigue, FE-SEM, fractography, fracture, fuel tube, microstructure, stainless steel
Procedia PDF Downloads 1534900 Mechanistic Studies of Compacted and Sintered Rock Salt
Authors: Claudia H. Swanson, Jens Günster
Abstract:
This research addresses the densification via compaction and sintering of naturally occurring rock salt which was motivated by the fact that in a saline environment rock salt is thermodynamically stable and does show a mechanical behavior compatible to the surrounding host material. The sintering of rock salt powder compacts was systematically investigated using temperature and pressure as variables for the sinter process. The behavior of rock salt showed segregations of anhydrite, CaSO4 - the major impurity found in rock salt, to the grain boundaries between individual sodium chloride crystals. Powder compacts treated with lower pressures lost those anhydrite segregates over time while high pressure treated compacts remained with anhydrite segregates. The density reached in this study is 2.008 g cm-3 corresponding to a density of 92.5 % of the theoretical value. This high density is making the sintering a promising technique for rock salt as applications in underground appropriate environment.Keywords: rock salt, sinter, anhydrite, nuclear safety
Procedia PDF Downloads 4894899 Microbial Deterioration of Some Different Archaeological Objects Made from Cellulose by Bacillus Group
Authors: Mohammad Abdel Fattah Mohammad Kewisha
Abstract:
Microbial deterioration of ancient materials became one of the biggest problems facing the workers in the field of cultural heritage protection because the microbial deterioration of artifacts causes detrimental effects on the aesthetic value of the monuments due to colonization, whether they are made of inorganic materials such as stone or organic like wood, textiles, wall paintings, and paper. So, the early identification of the bacterial strains that caused deterioration is the most important point for the protection of monument objects. The present study focuses on the Bacillus spp. group, which was isolated from some biodeterioration monuments from different areas of Egypt. The investigated objects in this study were made from organic materials (cellulose), paper, textile, and wood. Isolated strains were identified up to the species level biochemically. Eleven bacterial isolates were obtained from collected samples. They were taken from different archaeological objects, four microbicides, cetrimonium bromide, sodium azide, tetraethyl ammonium bromide, and dichloroxylenol, at various concentrations ranging from 25 ppm to 500 ppm. They were screened for their antibacterial activity against the Bacillus spp. isolates, and detection of Minimum inhibitory concentration (MIC). It was also necessary to indicate the ideal Minimum inhibitory concentration for each strain for the purpose of biotreatment of the infected monuments with less damaging effect on monument materials.Keywords: microbial deterioration, ancient materials, heritage protection, protection of monuments, biodeteriorative monuments
Procedia PDF Downloads 604898 Investigation of the Working Processes in Thermocompressor Operating on Cryogenic Working Fluid
Authors: Evgeny V. Blagin, Aleksandr I. Dovgjallo, Dmitry A. Uglanov
Abstract:
This article deals with research of the working process in the thermocompressor which operates on cryogenic working fluid. Thermocompressor is device suited for the conversation of heat energy directly to the potential energy of pressure. Suggested thermocompressor is suited for operation during liquid natural gas (LNG) re-gasification and is placed after evaporator. Such application of thermocompressor allows using of the LNG cold energy for rising of working fluid pressure, which then can be used for electricity generation or another purpose. Thermocompressor consists of two chambers divided by the regenerative heat exchanger. Calculation algorithm for unsteady calculation of thermocompressor working process was suggested. The results of this investigation are to change of thermocompressor’s chambers temperature and pressure during the working cycle. These distributions help to find out the parameters, which significantly influence thermocompressor efficiency. These parameters include regenerative heat exchanger coefficient of the performance (COP) dead volume of the chambers, working frequency of the thermocompressor etc. Exergy analysis was performed to estimate thermocompressor efficiency. Cryogenic thermocompressor operated on nitrogen working fluid was chosen as a prototype. Calculation of the temperature and pressure change was performed with taking into account heat fluxes through regenerator and thermocompressor walls. Temperature of the cold chamber significantly differs from the results of steady calculation, which is caused by friction of the working fluid in regenerator and heat fluxes from the hot chamber. The rise of the cold chamber temperature leads to decreasing of thermocompressor delivery volume. Temperature of hot chamber differs negligibly because losses due to heat fluxes to a cold chamber are compensated by the friction of the working fluid in the regenerator. Optimal working frequency was selected. Main results of the investigation: -theoretical confirmation of thermocompressor operation capability on the cryogenic working fluid; -optimal working frequency was found; -value of the cold chamber temperature differs from the starting value much more than the temperature of the hot chamber; -main parameters which influence thermocompressor performance are regenerative heat exchanger COP and heat fluxes through regenerator and thermocompressor walls.Keywords: cold energy, liquid natural gas, thermocompressor, regenerative heat exchanger
Procedia PDF Downloads 5824897 Identification of Key Parameters for Benchmarking of Combined Cycle Power Plants Retrofit
Authors: S. Sabzchi Asl, N. Tahouni, M. H. Panjeshahi
Abstract:
Benchmarking of a process with respect to energy consumption, without accomplishing a full retrofit study, can save both engineering time and money. In order to achieve this goal, the first step is to develop a conceptual-mathematical model that can easily be applied to a group of similar processes. In this research, we have aimed to identify a set of key parameters for the model which is supposed to be used for benchmarking of combined cycle power plants. For this purpose, three similar combined cycle power plants were studied. The results showed that ambient temperature, pressure and relative humidity, number of HRSG evaporator pressure levels and relative power in part load operation are the main key parameters. Also, the relationships between these parameters and produced power (by gas/ steam turbine), gas turbine and plant efficiency, temperature and mass flow rate of the stack flue gas were investigated.Keywords: combined cycle power plant, energy benchmarking, modelling, retrofit
Procedia PDF Downloads 3054896 Numerical Study on Vortex-Driven Pressure Oscillation and Roll Torque Characteristics in a SRM with Two Inhibitors
Authors: Ji-Seok Hong, Hee-Jang Moon, Hong-Gye Sung
Abstract:
The details of flow structures and the coupling mechanism between vortex shedding and acoustic excitation in a solid rocket motor with two inhibitors have been investigated using 3D Large Eddy Simulation (LES) and Proper Orthogonal Decomposition (POD) analysis. The oscillation frequencies and vortex shedding periods from two inhibitors compare reasonably well with the experimental data and numerical result. A total of four different locations of the rear inhibitor has been numerically tested to characterize the coupling relation of vortex shedding frequency and acoustic mode. The major source of triggering pressure oscillation in the combustor is the resonance with the acoustic longitudinal half mode. It was observed that the counter-rotating vortices in the nozzle flow produce roll torque.Keywords: large eddy simulation, proper orthogonal decomposition, SRM instability, flow-acoustic coupling
Procedia PDF Downloads 5654895 Nonlinear Vibration of FGM Plates Subjected to Acoustic Load in Thermal Environment Using Finite Element Modal Reduction Method
Authors: Hassan Parandvar, Mehrdad Farid
Abstract:
In this paper, a finite element modeling is presented for large amplitude vibration of functionally graded material (FGM) plates subjected to combined random pressure and thermal load. The material properties of the plates are assumed to vary continuously in the thickness direction by a simple power law distribution in terms of the volume fractions of the constituents. The material properties depend on the temperature whose distribution along the thickness can be expressed explicitly. The von Karman large deflection strain displacement and extended Hamilton's principle are used to obtain the governing system of equations of motion in structural node degrees of freedom (DOF) using finite element method. Three-node triangular Mindlin plate element with shear correction factor is used. The nonlinear equations of motion in structural degrees of freedom are reduced by using modal reduction method. The reduced equations of motion are solved numerically by 4th order Runge-Kutta scheme. In this study, the random pressure is generated using Monte Carlo method. The modeling is verified and the nonlinear dynamic response of FGM plates is studied for various values of volume fraction and sound pressure level under different thermal loads. Snap-through type behavior of FGM plates is studied too.Keywords: nonlinear vibration, finite element method, functionally graded material (FGM) plates, snap-through, random vibration, thermal effect
Procedia PDF Downloads 2624894 Design Optimization of Doubly Fed Induction Generator Performance by Differential Evolution
Authors: Mamidi Ramakrishna Rao
Abstract:
Doubly-fed induction generators (DFIG) due to their advantages like speed variation and four-quadrant operation, find its application in wind turbines. DFIG besides supplying power to the grid has to support reactive power (kvar) under grid voltage variations, should contribute minimum fault current during faults, have high efficiency, minimum weight, adequate rotor protection during crow-bar-operation from +20% to -20% of rated speed. To achieve the optimum performance, a good electromagnetic design of DFIG is required. In this paper, a simple and heuristic global optimization – Differential Evolution has been used. Variables considered are lamination details such as slot dimensions, stack diameters, air gap length, and generator stator and rotor stack length. Two operating conditions have been considered - voltage and speed variations. Constraints included were reactive power supplied to the grid and limiting fault current and torque. The optimization has been executed separately for three objective functions - maximum efficiency, weight reduction, and grid fault stator currents. Subsequent calculations led to the conclusion that designs determined through differential evolution help in determining an optimum electrical design for each objective function.Keywords: design optimization, performance, DFIG, differential evolution
Procedia PDF Downloads 149