Search results for: incubation temperature
6278 Durability Study of Pultruded CFRP Plates under Sustained Bending in Distilled Water and Seawater Immersions: Effects on the Visco-Elastic Properties
Authors: Innocent Kafodya, Guijun Xian
Abstract:
This paper presents effects of distilled water, seawater and sustained bending strains of 30% and 50% ultimate strain at room temperature, on the durability of unidirectional pultruded carbon fiber reinforced polymer (CFRP) plates. In this study, dynamic mechanical analyzer (DMA) was used to investigate the synergic effects of the immersions and bending strains on the visco-elastic properties of (CFRP) such as storage modulus, tan delta and glass transition temperature. The study reveals that the storage modulus and glass transition temperature increase while tan delta peak decreases in the initial stage of both immersions due to the progression of curing. The storage modulus and Tg subsequently decrease and tan delta increases due to the matrix plasticization. The blister induced damages in the unstrained seawater samples enhance water uptake and cause more serious degradation of Tg and storage modulus than in water immersion. Increasing sustained bending decreases Tg and storage modulus in a long run for both immersions due to resin matrix cracking and debonding. The combined effects of immersions and strains are not clearly reflected due to the statistical effects of DMA sample sizes and competing processes of molecular reorientation and postcuring.Keywords: pultruded CFRP plate, bending strain, glass transition temperature, storage modulus, tan delta
Procedia PDF Downloads 2696277 Development of a Combustible Gas Detector with Two Sensor Modules to Enable Measuring Range of Low Concentration
Authors: Young Gyu Kim, Sangguk Ahn, Gyoutae Park, Hiesik Kim
Abstract:
In the gas industrial fields, there are many problems to detect extremely small amounts of combustible gas (CH₄) if a conventional semiconductor is used. Those reasons are that measuring is difficult at the low concentration level, the stabilization time is long, and an initial response time is slow. In this study, we propose a method to solve these issues using two specific sensors to overcome the circumstances of temperature and humidity. This idea is to combine a catalytic and a semiconductor type sensor and to utilize every advantage from every sensor’s characteristic. In order to achieve the goal, we reduced fluctuations of a gas sensor for temperature and humidity by applying designed circuits for sensing temperature and humidity. And we induced the best calibration line of gas sensors through adjusting a weight value corresponding to changeable patterns of temperature and humidity after their data are previously acquired and stored. We proposed and developed the gas leak detector using two sensor modules, which is first operated by a semiconductor sensor for measuring small gas quantities and second a catalytic type sensor is detected if measuring range of the first sensor is beyond. We conclusively verified characteristics of sharp sensitivity and fast response time against even at lower gas concentration level through experiments other than a conventional gas sensor. We think that our proposed idea is very useful if another gas leak is developed to enable measuring extremely small quantities of toxic and flammable gases.Keywords: gas sensor, leak detector, lower concentration, and calibration
Procedia PDF Downloads 2406276 Investigation of Specific Wear Rate of Austenitic and Duplex Stainless Steel Alloys in High Temperatures
Authors: Dler Abdullah Ahmed, Zozan Ahmed Mohammed
Abstract:
Wear as an unavoidable phenomenon in stainless steel contact sliding parts is investigated In this work. Two grades of austenitic AISI 304, and S31254, as well as duplexes of S32205, and AISI 2507, were chosen to compare their wear behavior in temperatures ranging from room temperature to 550°C. The experimental results show that AISI 304 austenitic and AISI 2205 duplex stainless steel had lower wear resistance compared with S31254 and AISI 2507 in various temperatures. When the temperature rose to 140°C, and the wear rate of all grades increased, AISI 304 had the highest at 7.028x10-4 mm3/Nm, and AISI 2507 had the lowest at 4.9033 x 10-4 mm3/Nm. At 300°C, the oxides began to form on the worn surfaces, causing the wear rate to slow. As a result, when temperatures exceeded 300°C, the specific wear rate decreased significantly in all specimens. According to the XRD patterns, the main types of oxides formed on worn surfaces were magnetite, hematite, and chromite.Keywords: wear, stainless steel, temperature, groove, oxide
Procedia PDF Downloads 756275 Investigation of Specific Wear Rate of Austenitic and Duplex Stainless Steel Alloys in High Temperatures
Authors: Dler Abdullah Ahmed, Zozan Ahmed Mohammed
Abstract:
Wear as an unavoidable phenomenon in stainless steel contact sliding parts is investigated In this work. Two grades of austenitic AISI 304, and S31254, as well as duplexes of S32205, and AISI 2507, were chosen to compare their wear behavior in temperatures ranging from room temperature to 550°C. The experimental results show that AISI 304 austenitic and AISI 2205 duplex stainless steel had lower wear resistance compared with S31254 and AISI 2507 in various temperatures. When the temperature rose to 140°C, and the wear rate of all grades increased, AISI 304 had the highest at 7.028x10-4 mm3/Nm, and AISI 2507 had the lowest at 4.9033 x 10-4 mm3/Nm. At 300°C, the oxides began to form on the worn surfaces, causing the wear rate to slow. As a result, when temperatures exceeded 300°C, the specific wear rate decreased significantly in all specimens. According to the XRD patterns, the main types of oxides formed on worn surfaces were magnetite, hematite, and chromite.Keywords: wear, stainless steel, temperature, groove, oxide
Procedia PDF Downloads 716274 Impact of Microwave Heating Temperatures on the Pharmaceutical Powder Characteristics
Authors: Maha Al-Ali, Selvakannan Periasamy, Rajarathinam Parthasarathy
Abstract:
Drying temperature is an important factor impacting the physicochemical properties of the dried materials, particularly the pharmaceutical powders. Drying of pharmaceuticals by using microwave radiation is very limited, and the available information about the interaction between the electromagnetic radiations and the pharmaceutical material is still scarce. Therefore, microwave drying process is employed in this work to dry the wet (moisturised) granules of the formulated naproxen-sodium drug. This study aims to investigate the influences of the microwave radiation temperatures on the moisture removal, the crystalline structure, the size and morphology of the dried naproxen-sodium particles, and identify any potential changes in the chemical groups of the drug. In this work, newly formulated naproxen-sodium is prepared and moisturized by wet granulation process and hence dried by using microwave radiation at different temperatures. Moisture analyzer, Fourier-transform infrared spectroscopy, powder X-ray diffraction, and scanning electron microscope are used to characterise the non-moisturised powder (reference powder), the moisturised granules, and the dried particles. The results show that microwave drying of naproxen-sodium at high drying temperature is more efficient than that at low temperatures in terms of the moisture removal. Although there is no significant change in the chemical structure of the dried particles, the particle size, crystallinity and morphology are relatively changed with changing of heating temperature.Keywords: heating temperature, microwave drying, naproxen-sodium, particle size
Procedia PDF Downloads 1616273 Promoting Incubation Support to Youth Led Enterprises: A Case Study from Bangladesh to Eradicate Hazardous Child Labour through Microfinance
Authors: Md Maruf Hossain Koli
Abstract:
The issue of child labor is enormous and cannot be ignored in Bangladesh. The problem of child exploitation is a socio-economic reality of Bangladesh. This paper will indicate the causes, consequences, and possibilities of using microfinance as remedies of hazardous child labor in Bangladesh. Poverty is one of the main reasons for children to become child laborers. It is an indication of economic vulnerability, inadequate law, and enforcement system and cultural and social inequities along with the inaccessible and low-quality educational system. An attempt will be made in this paper to explore and analyze child labor scenario in Bangladesh and will explain holistic intervention of BRAC, the largest nongovernmental organization in the world to address child labor through promoting incubation support to youth-led enterprises. A combination of research methods were used to write this paper. These include non-reactive observation in the form of literature review, desk studies as well as reactive observation like site visits and, semi-structured interviews. Hazardous Child labor is a multi-dimensional and complex issue. This paper was guided by the answer following research questions to better understand the current context of hazardous child labor in Bangladesh, especially in Dhaka city. The author attempted to figure out why child labor should be considered as a development issue? Further, it also encountered why child labor in Bangladesh is not being reduced at an expected pace? And finally what could be a sustainable solution to eradicate this situation. One of the most challenging characteristics of child labor is that it interrupts a child’s education and cognitive development hence limiting the building of human capital and fostering intergenerational reproduction of poverty and social exclusion. Children who are working full-time and do not attend school, cannot develop the necessary skills. This leads them and their future generation to remain in poor socio-economic condition as they do not get a better paying job. The vicious cycle of poverty will be reproduced and will slow down sustainable development. The outcome of the research suggests that most of the parents send their children to work to help them to increase family income. In addition, most of the youth engaged in hazardous work want to get training, mentoring and easy access to finance to start their own business. The intervention of BRAC that includes classroom and on the job training, tailored mentoring, health support, access to microfinance and insurance help them to establish startup. This intervention is working in developing business and management capacity through public-private partnerships and technical consulting. Supporting entrepreneurs, improving working conditions with micro, small and medium enterprises and strengthening value chains focusing on youth and children engaged with hazardous child labor.Keywords: child labour, enterprise development, microfinance, youth entrepreneurship
Procedia PDF Downloads 1286272 A Numerical Study on the Effects of N2 Dilution on the Flame Structure and Temperature Distribution of Swirl Diffusion Flames
Authors: Yasaman Tohidi, Shidvash Vakilipour, Saeed Ebadi Tavallaee, Shahin Vakilipoor Takaloo, Hossein Amiri
Abstract:
The numerical modeling is performed to study the effects of N2 addition to the fuel stream on the flame structure and temperature distribution of methane-air swirl diffusion flames with different swirl intensities. The Open source Field Operation and Manipulation (OpenFOAM) has been utilized as the computational tool. Flamelet approach along with modified k-ε model is employed to model the flame characteristics. The results indicate that the presence of N2 in the fuel stream leads to the flame temperature reduction. By increasing of swirl intensity, the flame structure changes significantly. The flame has a conical shape in low swirl intensity; however, it has an hour glass-shape with a shorter length in high swirl intensity. The effects of N2 dilution decrease the flame length in all swirl intensities; however, the rate of reduction is more noticeable in low swirl intensity.Keywords: swirl diffusion flame, N2 dilution, OpenFOAM, swirl intensity
Procedia PDF Downloads 1696271 Effect of Baking Temperature on the Mechanical Properties of Reinforced Clayey Soil
Authors: Gul Muhammad, Amanullah Marri, Asif Abbas
Abstract:
Thermal treatment changes the physical and mechanical properties of clayey soils. Thermally treated soils have been used since ancient times for making trails for access and bricks for residence. In this study, it has been focused to observe and analyze the effect of baking (burning) temperature on the mechanical properties of clayey soils usually used for the construction of adobe houses in the rural areas of many of the developing countries. In the first stage of experimental work, a series of tests on clayey soil moulds (100 mm height and 50 mm diameter in size) added different percentages of lime and wheat straw (typically 2%, 4%, 6%, 8%, and 10%) were conducted. In the second stage; samples were made of clayey soils and were subjected to six level of temperatures i.e., 25, 100, 200, 300, 400, and 500⁰C. In the third stage, the moulds of clayey soil were submerged in water prior to testing in order to investigate the flood resilience of the moulds prepared with and without the addition of lime and wheat straw. The experimental results suggest that samples with 6% of lime content and on 2% of wheat straw contents have shown the maximum value of compressive strength. The effect of baking temperature on the clayey soils has shown that maximum UCS is obtained at 200⁰C. The results also suggest reinforcement with 2% wheat straw, give 70.8% increase in the compressive strength compared to soil only, whereas the flooding resilience can be better resist by adding 6% lime and 2% wheat straw.Keywords: baked temperature, submersion, lime, uniaxial, wheat straw
Procedia PDF Downloads 2776270 Termite Brick Temperature and Relative Humidity by Continuous Monitoring Technique
Authors: Khalid Abdullah Alshuhail, Syrif Junidi, Ideisan Abu-Abdoum, Abdulsalam Aldawoud
Abstract:
For the intention of reducing energy consumption, a proposed construction brick was made of imitation termite mound soil referred here as termite brick (TB). To calculate the thermal performance, a real case model was constructed by using this biomimetic brick for testing purposes. This paper aims at investigating the thermal performance of this brick during different climatic months. Its thermal behaviour was thoroughly studied over the course of four months by using continuous method (CMm). The main parameters were focused on temperature and relative humidity. It was found that the TB does not perform similarly in all four months and/or in all orientations. Each four-month model study was deeply analyzed. By using the CMm method, the model was also examined. The measuring period shows generally that internal temperature and internal humidity are higher in the roof within 2 degrees and lowest at north wall orientation. The relative humidity was also investigated systematically. The paper reveals more interesting findings.Keywords: building material, continious monitoring, orientation, wall, temprature
Procedia PDF Downloads 1246269 Numerical Investigation of the Effect of Number of Waves on Heat Transfer in a Wavy Wall Enclosure
Authors: Ali Reza Tahavvor, Saeed Hosseini, Afshin Karimzadeh Fard
Abstract:
In this paper the effect of wall waviness of side walls in a two-dimensional wavy enclosure is numerically investigated. Two vertical wavy walls and straight top wall are kept isothermal and the bottom wall temperature is higher and spatially varying with cosinusoidal temperature distribution. A computational code based on Finite-volume approach is used to solve governing equations and SIMPLE method is used for pressure velocity coupling. Test is performed for several different numbers of undulations. The Prandtl number was kept constant and the Ra number denotes that the flow is laminar. Temperature and velocity fields are determined. Therefore, according to the obtained results a correlation is proposed for average Nusselt number as a function of number of side wall waves. The results indicate that the Nusselt number is highly affected by number of waves and increasing it decreases the wavy walls Nusselt number; although the Nusselt number is not highly affected by surface waviness when the number of undulations is below one.Keywords: cavity, natural convection, Nusselt number, wavy wall
Procedia PDF Downloads 4706268 The Effect of Wet Cooling Pad Thickness and Geometric Configuration to Enhance Evaporative Cooler Saturation Efficiency: A Review
Authors: Biruk Abate
Abstract:
Evaporative cooling occurs when air with high temperature and reduced humidity passes over a wet porous surface and a higher degree of cooling process is achieved for storage of fruits and vegetables due to greater rate of evaporation. The main objective of this reviewed study is to understand the effect of evaporative surface pad thickness and geometric configuration on the saturation efficiency of evaporative cooler and to state some related factors affecting the performance of the system. From this overview, selection of pad thickness and geometrical shape with suitable characteristics of heat and mass transfer and water holding capacity of the pads was reviewed as these parameters are important for saturation efficiency of evaporative cooling. Increasing the cooling pad thickness through increasing the face velocity increases the effectiveness of wet-bulb saturation. Increasing ambient temperature, inlet air speed and ambient air humidity decreases the wet bulb effectiveness and it increases with increasing length of the pad. Increasing the ambient temperature and inlet air velocity decreases the humidity ratio, but increases with increasing ambient air humidity and lengths of the pad. Increasing the temperature-humidity index is possible with increasing ambient temperature, inlet air velocity, ambient air humidity and pad length. Generally, all materials having a higher wetted surface area per unit volume give higher efficiency. Materials with higher thickness increase the wetted surface area for better mix-up of air and water to give higher efficiency for the same shape and this in turn helps to store fruits and vegetables.Keywords: Degree of cooling, heat and mass transfer, evaporative cooling, porous surface
Procedia PDF Downloads 1306267 Theoretical and Experimental Study on the NO Reduction by H₂ over Char Decorated with Ni at low Temperatures
Authors: Kaixuan Feng, Ruixiang Lin, Yuyan Hu, Yuheng Feng, Dezhen Chen, Tongcheng Cao
Abstract:
In this study, we propose a reaction system for the low-temperature reduction of NO by H₂ on carbon-based materials decorated with 5%wt. Ni. This cost-effective catalyst system efficiently utilizes pyrolysis carbon-based materials and waste hydrogen. Additionally, it yields environmentally friendly products without requiring extra heat sources in practical SCR devices. Density functional theory elucidates the mechanism of NO heterogeneous reduction by H₂ on Ni-decorated char surfaces. Two distinct reaction paths were identified, one involving the intermediate product N₂O and the other not. These pathways exhibit different rate-determination steps and activation energies. Kinetic analysis indicates that the N₂O byproduct pathway has a lower activation energy. Experimental results corroborate the theoretical findings. Thus, this research enhances our mechanistic understanding of the NO-H₂ reaction over char and offers insights for optimizing catalyst design in low-temperature NO reduction.Keywords: char-based catalysis, NO reduction, DFT study, heterogeneous reaction, low-temperature H₂-reduction
Procedia PDF Downloads 796266 Thermal Analysis and Computational Fluid Dynamics Simulation of Large-Scale Cryopump
Authors: Yue Shuai Zhao, Rong Ping Shao, Wei Sun, Guo Hua Ren, Yong Wang, Li Chen Sun
Abstract:
A large-scale cryopump (DN1250) used in large vacuum leak detecting system was designed and its performance experimentally investigated by Beijing Institute of Spacecraft Environment Engineering. The cryopump was cooled by four closed cycle helium refrigerators (two dual stage refrigerators and two single stage refrigerators). Detailed numerical analysis of the heat transfer in the first stage array and the second stage array were performed by using computational fluid dynamic method (CFD). Several design parameters were considered to find the effect on the temperature distribution and the cooldown time. The variation of thermal conductivity and heat capacity with temperature was taken into account. The thermal analysis method based on numerical techniques was introduced in this study, the heat transfer in the first stage array and the second stage cryopanel was carefully analyzed to determine important considerations in the thermal design of the cryopump. A performance test system according to the RNEUROP standards was built to test main performance of the cryopump. The experimental results showed that the structure of first stage array which was optimized by the method could meet the requirement of the cryopump well. The temperature of the cryopanel was down to 10K within 300 min, and the result of the experiment was accordant with theoretical analysis' conclusion. The test also showed that the pumping speed for N2 of the pump was up to 57,000 L/s, and the crossover was over than 300,000 Pa•L.Keywords: cryopump, temperature distribution, thermal analysis, CFD Simulation
Procedia PDF Downloads 3046265 Dual Thermoresponsive Polyzwitterionic Core-Shell Microgels and Study of Their Anti-Fouling Effect
Authors: P. Saha, R. Ganguly, N. K .Singha, A. Pich
Abstract:
Microgel, a smart class of material, has drawn attention in the past few years due to its response to external stimuli like temperature, pH, and ionic strength of the solution. Among them, one type of polymer becomes soluble, and the other becomes insoluble in water upon heating displaying upper critical solution temperature (UCST) (e.g., polysulfobetaine, PSB) and lower critical solution temperature (LCST) (e.g., poly(N-vinylcaprolactam, PVCL)) respectively. Polyzwitterions, electrically neutral polymers are biocompatible, biodegradable, and non-cytotoxic in nature, and presence of zwitterionic pendant group in the main backbone makes them stable against temperature and pH variations and strong hydration capability in salt solution promotes them to be used as interfacial bio-adhesion resistance material. Majority of zwitterionic microgels have been synthesized in mini- emulsion technique using free radical polymerization approach. Here, a new route to synthesize dual thermo-responsive PVCL microgels decorated with appreciable amount of zwitterionic PSB chains was developed by a purely water-based surfactant-free reversible addition–fragmentation chain transfer (RAFT) precipitation polymerization. PSB macro-RAFTs having different molecular weights were synthesized and utilized for surface-grafting with PVCL microgels varying the macro-RAFT concentration using N,N′-methylenebis(acrylamide) (BIS) as cross-linker. Increasing the PSB concentration in the PVCL microgels resulted in a linear increase in UCST but decrease in hydrodynamic radius due to strong intrachain coulombic attraction forces acting between the opposite charges present in the zwitterionic groups. Anti- fouling effect was observed on addition of BSA protein solution on the microgel-coated membrane surfaces as studied by fluorescence spectrophotoscopy.Keywords: microgels, polyzwitterions, upper critical solution temperature-lower critical solution temperature, UCST-LCST, ionic crosslinking
Procedia PDF Downloads 1166264 Effect of Austenitizing Temperature, Soaking Time and Grain Size on Charpy Impact Toughness of Quenched and Tempered Steel
Authors: S. Gupta, R. Sarkar, S. Pathak, D. H. Kela, A. Pramanick, P. Talukdar
Abstract:
Low alloy quenched and tempered steels are typically used in cast railway components such as knuckles, yokes, and couplers. Since these components experience extensive impact loading during their service life, adequate impact toughness of these grades need to be ensured to avoid catastrophic failure of parts in service. Because of the general availability of Charpy V Test equipment, Charpy test is the most common and economical means to evaluate the impact toughness of materials and is generally used in quality control applications. With this backdrop, an experiment was designed to evaluate the effect of austenitizing temperature, soaking time and resultant grain size on the Charpy impact toughness and the related fracture mechanisms in a quenched and tempered low alloy steel, with the aim of optimizing the heat treatment parameters (i.e. austenitizing temperature and soaking time) with respect to impact toughness. In the first phase, samples were austenitized at different temperatures viz. 760, 800, 840, 880, 920 and 960°C, followed by quenching and tempering at 600°C for 4 hours. In the next phase, samples were subjected to different soaking times (0, 2, 4 and 6 hours) at a fixed austenitizing temperature (980°C), followed by quenching and tempering at 600°C for 4 hours. The samples corresponding to different test conditions were then subjected to instrumented Charpy tests at -40°C and energy absorbed were recorded. Subsequently, microstructure and fracture surface of samples corresponding to different test conditions were observed under scanning electron microscope, and the corresponding grain sizes were measured. In the final stage, austenitizing temperature, soaking time and measured grain sizes were correlated with impact toughness and the fracture morphology and mechanism.Keywords: heat treatment, grain size, microstructure, retained austenite and impact toughness
Procedia PDF Downloads 3386263 Optimization the Freeze Drying Conditions of Olive Seeds
Authors: Alev Yüksel Aydar, Tuncay Yılmaz, Melisa Özçeli̇k, Tuba Aydın, Elif Karabaş
Abstract:
In this study, response surface methodology (RSM) was used to obtain the optimum conditions for the freeze-drying of Gemlik variety olive seeds of to achieve the desired quality characteristics. The Box Behnken Design (BBD) was applied with three-variable and three replications in the center point. The effects of the different drying parameters including initial temperature of olive seed, pressure and time for freezing on the DPPH activity, total phenolic contents, and oleuropein absorbance value of the samples were investigated. Temperature (50 – 82 °C), pressure (0.2-0.5 mbar), time (6-10 hours) were chosen as independent variables. The analysis revealed that, while the temperature of the product prior to lyophilization and the drying time had no statistically significant effect on DPPH activity (p>0.05), the pressure was more important than the other two variables , and the quadratic effect of pressure had a significant effect on DPPH activity (p<0.05). The R2 and Adj-R2 values of the DPPH activity model were calculated to be 0.8962 and 0.7045, respectively.Keywords: olive seed, gemlik variety, DPPH, phenolics, optimization
Procedia PDF Downloads 876262 The Dynamics of Microorganisms in Dried Yogurt Storages at Different Temperatures
Authors: Jaruwan Chutrtong
Abstract:
Yoghurt is a fermented milk product. The process of making yogurt involves fermenting milk with live and active bacterial cultures by adding bacteria directly to the dairy product. It is usually made with a culture of Lactobacillus sp. (L. acidophilus or L. bulgaricus) and Streptococcus thermophilus. Many people like to eat it plain or flavored and it's also use as ingredient in many dishes. Yogurt is rich in nutrients including the microorganism which have important role in balancing the digestion and absorption of the boy.Consumers will benefit from lactic acid bacteria more or less depending on the amount of bacteria that lives in yogurt while eating. When purchasing yogurt, consumers should always check the label for live cultures. Yoghurt must keep in refrigerator at 4°C for up to ten days. After this amount of time, the cultures often become weak. This research studied freezing dry yogurt storage by monitoring on the survival of microorganisms when stored at different temperatures. At 300°C, representative room temperature of country in equator zone, number of lactic acid bacteria reduced 4 log cycles in 10 week. At 400°C, representative temperature in summer of country in equator zone, number of lactic acid bacteria also dropped 4 log cycle in 10 week, similar as storage at 300°C. But drying yogurt storage at 400°C couldn’t reformed to be good character yogurt as good as storage at 400°C only 4 week storage too. After 1 month, it couldn’t bring back the yogurt form. So if it is inevitable to keep yogurt powder at a temperature of 40°C, yoghurt is maintained only up to 4 weeks.Keywords: dynamic, dry yoghurt, storage, temperature
Procedia PDF Downloads 3256261 Sensitivity Analysis of the Thermal Properties in Early Age Modeling of Mass Concrete
Authors: Farzad Danaei, Yilmaz Akkaya
Abstract:
In many civil engineering applications, especially in the construction of large concrete structures, the early age behavior of concrete has shown to be a crucial problem. The uneven rise in temperature within the concrete in these constructions is the fundamental issue for quality control. Therefore, developing accurate and fast temperature prediction models is essential. The thermal properties of concrete fluctuate over time as it hardens, but taking into account all of these fluctuations makes numerical models more complex. Experimental measurement of the thermal properties at the laboratory conditions also can not accurately predict the variance of these properties at site conditions. Therefore, specific heat capacity and the heat conductivity coefficient are two variables that are considered constant values in many of the models previously recommended. The proposed equations demonstrate that these two quantities are linearly decreasing as cement hydrates, and their value are related to the degree of hydration. The effects of changing the thermal conductivity and specific heat capacity values on the maximum temperature and the time it takes for concrete to reach that temperature are examined in this study using numerical sensibility analysis, and the results are compared to models that take a fixed value for these two thermal properties. The current study is conducted in 7 different mix designs of concrete with varying amounts of supplementary cementitious materials (fly ash and ground granulated blast furnace slag). It is concluded that the maximum temperature will not change as a result of the constant conductivity coefficient, but variable specific heat capacity must be taken into account, also about duration when a concrete's central node reaches its max value again variable specific heat capacity can have a considerable effect on the final result. Also, the usage of GGBFS has more influence compared to fly ash.Keywords: early-age concrete, mass concrete, specific heat capacity, thermal conductivity coefficient
Procedia PDF Downloads 776260 Energy Dynamics of Solar Thermionic Power Conversion with Emitter of Graphene
Authors: Olukunle C. Olawole, Dilip K. De, Moses Emetere, Omoje Maxwell
Abstract:
Graphene can stand very high temperature up to 4500 K in vacuum and has potential for application in thermionic energy converter. In this paper, we discuss the application of energy dynamics principles and the modified Richardson-Dushman Equation, to estimate the efficiency of solar power conversion to electrical power by a solar thermionic energy converter (STEC) containing emitter made of graphene. We present detailed simulation of power output for different solar insolation, diameter of parabolic concentrator, area of the graphene emitter (same as that of the collector), temperature of the collector, physical dimensions of the emitter-collector etc. After discussing possible methods of reduction or elimination of space charge problem using magnetic field and gate, we finally discuss relative advantages of using emitters made of graphene, carbon nanotube and metals respectively in a STEC.Keywords: graphene, high temperature, modified Richardson-Dushman equation, solar thermionic energy converter
Procedia PDF Downloads 3106259 Optimization of Processing Parameters of Acrylonitrile–Butadiene–Styrene Sheets Integrated by Taguchi Method
Authors: Fatemeh Sadat Miri, Morteza Ehsani, Seyed Farshid Hosseini
Abstract:
The present research is concerned with the optimization of extrusion parameters of ABS sheets by the Taguchi experimental design method. In this design method, three parameters of % recycling ABS, processing temperature and degassing time on mechanical properties, hardness, HDT, and color matching of ABS sheets were investigated. The variations of this research are the dosage of recycling ABS, processing temperature, and degassing time. According to experimental test data, the highest level of tensile strength and HDT belongs to the sample with 5% recycling ABS, processing temperature of 230°C, and degassing time of 3 hours. Additionally, the minimum level of MFI and color matching belongs to this sample, too. The present results are in good agreement with the Taguchi method. Based on the outcomes of the Taguchi design method, degassing time has the most effect on the mechanical properties of ABS sheets.Keywords: ABS, process optimization, Taguchi, mechanical properties
Procedia PDF Downloads 736258 Effect of Modified Atmosphere Packaging and Storage Temperatures on Quality of Shelled Raw Walnuts
Authors: M. Javanmard
Abstract:
This study was aimed at analyzing the effects of packaging (MAP) and preservation conditions on the packaged fresh walnut kernel quality. The central composite plan was used for evaluating the effect of oxygen (0–10%), carbon dioxide (0-10%), and temperature (4-26 °C) on qualitative characteristics of walnut kernels. Also, the response level technique was used to find the optimal conditions for interactive effects of factors, as well as estimating the best conditions of process using least amount of testing. Measured qualitative parameters were: peroxide index, color, decreased weight, mould and yeast counting test, and sensory evaluation. The results showed that the defined model for peroxide index, color, weight loss, and sensory evaluation is significant (p < 0.001), so that increase of temperature causes the peroxide value, color variation, and weight loss to increase and it reduces the overall acceptability of walnut kernels. An increase in oxygen percentage caused the color variation level and peroxide value to increase and resulted in lower overall acceptability of the walnuts. An increase in CO2 percentage caused the peroxide value to decrease, but did not significantly affect other indices (p ≥ 0.05). Mould and yeast were not found in any samples. Optimal packaging conditions to achieve maximum quality of walnuts include: 1.46% oxygen, 10% carbon dioxide, and temperature of 4 °C.Keywords: shelled walnut, MAP, quality, storage temperature
Procedia PDF Downloads 3896257 Analysis of Mechanical Properties for AP/HTPB Solid Propellant under Different Loading Conditions
Authors: Walid M. Adel, Liang Guo-Zhu
Abstract:
To investigate the characterization of the mechanical properties of composite solid propellant (CSP) based on hydroxyl-terminated polybutadiene (HTPB) at different temperatures and strain rates, uniaxial tensile tests were conducted over a range of temperatures -60 °C to +76 °C and strain rates 0.000164 to 0.328084 s-1 using a conventional universal testing machine. From the experimental data, it can be noted that the mechanical properties of AP/HTPB propellant are mainly dependent on the applied strain rate and the temperature condition. The stress-strain responses exhibited an initial yielding followed by the viscoelastic phase, which was strongly affected by the strain rate and temperature. It was found that the mechanical properties increased with both increasing strain rate and decreasing temperature. Based on the experimental tests, the master curves of the tensile properties are drawn using predetermined shift factor and the results were discussed. This work is a first step in preliminary investigation the nonlinear viscoelasticity behavior of CSP.Keywords: AP/HTPB composite solid propellant, mechanical behavior, nonlinear viscoelastic, tensile test, strain rate
Procedia PDF Downloads 2316256 An Experimental Study on the Temperature Reduction of Exhaust Gas at a Snorkeling of Submarine
Authors: Seok-Tae Yoon, Jae-Yeong Choi, Gyu-Mok Jeon, Yong-Jin Cho, Jong-Chun Park
Abstract:
Conventional submarines obtain propulsive force by using an electric propulsion system consisting of a diesel generator, battery, motor, and propeller. In the underwater, the submarine uses the electric power stored in the battery. After that, when a certain amount of electric power is consumed, the submarine floats near the sea water surface and recharges the electric power by using the diesel generator. The voyage carried out while charging the power is called a snorkel, and the high-temperature exhaust gas from the diesel generator forms a heat distribution on the sea water surface. The heat distribution is detected by weapon system equipped with thermo-detector and that is the main cause of reducing the survivability of the submarine. In this paper, an experimental study was carried out to establish optimal operating conditions of a submarine for reduction of infrared signature radiated from the sea water surface. For this, a hot gas generating system and a round acrylic water tank with adjustable water level were made. The control variables of the experiment were set as the mass flow rate, the temperature difference between the water and the hot gas in the water tank, and the water level difference between the air outlet and the water surface. The experimental instrumentation used a thermocouple of T-type to measure the released air temperature on the surface of the water, and a thermography system to measure the thermal energy distribution on the water surface. As a result of the experiment study, we analyzed the correlation between the final released temperature of the exhaust pipe exit in a submarine and the depth of the snorkel, and presented reasonable operating conditions for the infrared signature reduction of submarine.Keywords: experiment study, flow rate, infrared signature, snorkeling, thermography
Procedia PDF Downloads 3526255 Identifying the Influence of Vegetation Type on Multiple Green Roof Functions with a Field Experiment in Zurich
Authors: Lauren M. Cook, Tove A. Larsen
Abstract:
Due to their potential to provide numerous ecosystem services, green roofs have been proposed as a solution to mitigate a growing list of environmental challenges, like urban flooding and urban heat island effect. Because of their cooling effect, green roofs placed below rooftop photovoltaic (PV) panels also have the potential to increase PV panel efficiency. Sedums, a type of succulent plant, are commonly used on green roofs because they are drought and heat tolerant. However, other plant species, such as grasses or plants with reflective properties, have been shown to reduce more runoff and cool the rooftop more than succulent species due to high evapotranspiration (ET) and reflectivity, respectively. The goal of this study is to evaluate whether vegetation with high ET or reflectivity can influence multiple co-benefits of the green roof. Four small scale green roofs in Zurich are used as an experiment to evaluate differences in (1) the timing and amount of runoff discharged from the roof, (2) the air temperature above the green roof, and (3) the temperature and efficiency of solar panels placed above the green roof. One grass species, Silene vulgaris, and one silvery species, Stachys byzantia, are compared to a baseline of Sedum album and black roof. Initial results from August to November 2019 show that the grass species has retained more cumulative runoff and led to a lower canopy temperature than the other species. Although the results are not yet statistically significant, they may suggest that plants with higher ET will have a greater effect on canopy temperature than plants with high reflectivity. Future work will confirm this hypothesis and evaluate whether it holds true for solar panel temperature and efficiency.Keywords: co-benefit estimation, green cities, green roofs, solar panels
Procedia PDF Downloads 1026254 Microstructure and Oxidation Behaviors of Al, Y Modified Silicide Coatings Prepared on an Nb-Si Based Ultrahigh Temperature Alloy
Authors: Xiping Guo, Jing Li
Abstract:
The microstructure of an Si-Al-Y co-deposition coating prepared on an Nb-Si based ultra high temperature alloy by pack cementation process at 1250°C for eight hours was studied. The results showed that the coating was composed of a (Nb,X)Si₂ (X represents Ti, Cr and Hf elements) outer layer, a (Ti,Nb)₅Si₄ middle layer and an Al, Cr-rich inner layer. For comparison, the oxidation behaviors of the coating at 800, 1050 and 1350°C were investigated respectively. Linear oxidation kinetics was found with the parabolic rate constants of 5.29×10⁻², 9×10⁻²and 5.81 mg² cm⁻⁴ h⁻¹, respectively. Catastrophic pesting oxidation has not been found at 800°C even for 100 h. The surface of the scale was covered by compact glassy SiO₂ film. The coating was able to effectively protect the Nb-Si based alloy from oxidation at 1350°C for at least 100 h. The formation process of the scale was testified following an epitaxial growth mechanism. The mechanism responsible for the oxidation behavior of the Si-Al-Y co-deposition coating at 800, 1050 and 1350°C was proposed.Keywords: Nb-Si based ultra high temperature alloy, oxidation resistance, pack cementation, silicide coating, Al and Y modified
Procedia PDF Downloads 4046253 The Influence of Thomson Effect on the Performance of N-Type Skutterudite Thermoelement
Authors: Anbang Liu, Huaqing Xie, Zihua Wu, Xiaoxiao Yu, Yuanyuan Wang
Abstract:
Due to the temperature-dependence and mutual coupling of thermoelectric parameters, the Thomson effect always exists, which is derived from temperature gradients during thermoelectric conversion. The synergistic effect between the Thomson effect and non-equilibrium heat transport of charge carriers leads to local heat absorption or release in thermoelements, thereby affecting its power generation performance and conversion efficiency. This study verified and analyzed the influence and mechanism of the Thomson effect on N-type skutterudite thermoelement through quasi-steady state testing under approximate vacuum conditions. The results indicate the temperature rise/fall of N-type thermoelement at any position is affected by Thomson heat release/absorption. Correspondingly, the Thomson effect also contributes advantageously/disadvantageously to the output power of N-type skutterudite thermoelement when the Thomson coefficients are positive/negative. In this work, the output power can be promoted or decreased maximally by more than 27% due to the presence of Thomson heat when the absolute value of the Thomson coefficient is around 36 μV/℃.Keywords: Thomson effect, heat transport, thermoelectric conversion, numerical simulation
Procedia PDF Downloads 676252 The Effect of Global Solar Radiation on the Thermal and Thermohydraulic Performance of Double Flow Corrugated Absorber Solar Air Heater
Authors: Suresh Prasad Sharma, Som Nath Saha
Abstract:
This paper deals with the effect of Global Solar Radiation (GSR) on the performance of double flow solar air heater having corrugated plate as an absorber. An analytical model of a double flow solar air heater has been presented, and a computer program in C++ language has been developed to calculate the outlet air temperature, heat gain, pressure drop for estimating the thermal and thermohydraulic efficiencies. The performance of double flow corrugated absorber is compared with double flow flat plate and conventional solar air heaters. It is found that the double flow arrangement effectively increases the air temperature rise and efficiencies in comparison to a conventional collector. However, corrugated absorber is more superior to that of flat plate double flow solar air heater. The results indicate that increasing the solar radiation leads to achieve higher air temperature rise and efficiencies.Keywords: corrugated absorber, double flow, flat plate, solar air heater
Procedia PDF Downloads 2856251 Computational Modelling of Epoxy-Graphene Composite Adhesive towards the Development of Cryosorption Pump
Authors: Ravi Verma
Abstract:
Cryosorption pump is the best solution to achieve clean, vibration free ultra-high vacuum. Furthermore, the operation of cryosorption pump is free from the influence of electric and magnetic fields. Due to these attributes, this pump is used in the space simulation chamber to create the ultra-high vacuum. The cryosorption pump comprises of three parts (a) panel which is cooled with the help of cryogen or cryocooler, (b) an adsorbent which is used to adsorb the gas molecules, (c) an epoxy which holds the adsorbent and the panel together thereby aiding in heat transfer from adsorbent to the panel. The performance of cryosorption pump depends on the temperature of the adsorbent and hence, on the thermal conductivity of the epoxy. Therefore we have made an attempt to increase the thermal conductivity of epoxy adhesive by mixing nano-sized graphene filler particles. The thermal conductivity of epoxy-graphene composite adhesive is measured with the help of indigenously developed experimental setup in the temperature range from 4.5 K to 7 K, which is generally the operating temperature range of cryosorption pump for efficiently pumping of hydrogen and helium gas. In this article, we have presented the experimental results of epoxy-graphene composite adhesive in the temperature range from 4.5 K to 7 K. We have also proposed an analytical heat conduction model to find the thermal conductivity of the composite. In this case, the filler particles, such as graphene, are randomly distributed in a base matrix of epoxy. The developed model considers the complete spatial random distribution of filler particles and this distribution is explained by Binomial distribution. The results obtained by the model have been compared with the experimental results as well as with the other established models. The developed model is able to predict the thermal conductivity in both isotropic regions as well as in anisotropic region over the required temperature range from 4.5 K to 7 K. Due to the non-empirical nature of the proposed model, it will be useful for the prediction of other properties of composite materials involving the filler in a base matrix. The present studies will aid in the understanding of low temperature heat transfer which in turn will be useful towards the development of high performance cryosorption pump.Keywords: composite adhesive, computational modelling, cryosorption pump, thermal conductivity
Procedia PDF Downloads 896250 Development of Sustainable Farming Compartment with Treated Wastewater in Abu Dhabi
Authors: Jongwan Eun, Sam Helwany, Lakshyana K. C.
Abstract:
The United Arab Emirates (UAE) is significantly dependent on desalinated water and groundwater resource, which is expensive and highly energy intensive. Despite the scarce water resource, stagnates only 54% of the recycled water was reused in 2012, and due to the lack of infrastructure to reuse the recycled water, the portion is expected to decrease with growing water usage. In this study, an “Oasis” complex comprised of Sustainable Farming Compartments (SFC) was proposed for reusing treated wastewater. The wastewater is used to decrease the ambient temperature of the SFC via an evaporative cooler. The SFC prototype was designed, built, and tested in an environmentally controlled laboratory and field site to evaluate the feasibility and effectiveness of the SFC subjected to various climatic conditions in Abu Dhabi. Based on the experimental results, the temperature drop achieved in the SFC in the laboratory and field site were5 ̊C from 22 ̊C and 7- 15 ̊C (from 33-45 ̊C to average 28 ̊C at relative humidity < 50%), respectively. An energy simulation using TRNSYS was performed to extend and validate the results obtained from the experiment. The results from the energy simulation and experiments show statistically close agreement. The total power consumption of the SFC system was approximately three and a half times lower than that of an electrical air conditioner. Therefore, by using treated wastewater, the SFC has a promising prospect to solve Abu Dhabi’s ecological concern related to desertification and wind erosion.Keywords: ecological farming system, energy simulation, evaporative cooling system, temperature, treated waste water, temperature
Procedia PDF Downloads 2506249 The Analysis of Defects Prediction in Injection Molding
Authors: Mehdi Moayyedian, Kazem Abhary, Romeo Marian
Abstract:
This paper presents an evaluation of a plastic defect in injection molding before it occurs in the process; it is known as the short shot defect. The evaluation of different parameters which affect the possibility of short shot defect is the aim of this paper. The analysis of short shot possibility is conducted via SolidWorks Plastics and Taguchi method to determine the most significant parameters. Finite Element Method (FEM) is employed to analyze two circular flat polypropylene plates of 1 mm thickness. Filling time, part cooling time, pressure holding time, melt temperature and gate type are chosen as process and geometric parameters, respectively. A methodology is presented herein to predict the possibility of the short-shot occurrence. The analysis determined melt temperature is the most influential parameter affecting the possibility of short shot defect with a contribution of 74.25%, and filling time with a contribution of 22%, followed by gate type with a contribution of 3.69%. It was also determined the optimum level of each parameter leading to a reduction in the possibility of short shot are gate type at level 1, filling time at level 3 and melt temperature at level 3. Finally, the most significant parameters affecting the possibility of short shot were determined to be melt temperature, filling time, and gate type.Keywords: injection molding, plastic defects, short shot, Taguchi method
Procedia PDF Downloads 218