Search results for: control dynamics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12940

Search results for: control dynamics

11950 Effect of Fatiguing Hip Muscles on Dynamic Posture Control in Recurrent Ankle Sprain

Authors: Radwa El Shorbagy, Alaa El Din Balbaa, Khaled Ayad, Waleed Reda

Abstract:

Ankle sprain is a common lower limb injury that is complicated by high recurrence rate. The cause of recurrence is not clear; however, changes in motor control have been postulated.Objective: to determine the contribution of proximal hip strategy to dynamic posture control in patients with recurrent ankle sprain. Methods:Fifteen subjects with recurrent ankle sprain (Group A) and fifteen healthy control subjects (Group B) participated in this study. Abductor-adductor as well as flexor-extensor hip musculature control was abolished by fatigue using the Biodex Isokinatic System. Dynamic posture control was measured before and after fatigue by the Biodex Balance System. Results: Repeated measures MANOVA was used to compare within group differences. In group A fatiguing of hip muscles (flexors-extensors and abductors-adductors) lowered overall stability index (OASI), anteroposterior stability index (APSI) and mediolateral stability index (MLSI) significantly (p=0.00) whereas; in group B fatiguing of hip flexors-extensors lowered significantly OASI and APSI only (p= 0.017, 0.010; respectively) while fatiguing of hip abductors-adductors has no significant effect on these variables. Conclusion: fatiguing of hip muscles has a significant deleterious effect on dynamic posture control in patient with recurrent ankle sprain indicating their increased dependence on hip strategy.

Keywords: ankle sprain, fatigue hip muscles, dynamic balance, ankle sprain

Procedia PDF Downloads 347
11949 Mechanistic Modelling to De-risk Process Scale-up

Authors: Edwin Cartledge, Jack Clark, Mazaher Molaei-Chalchooghi

Abstract:

The mixing in the crystallization step of active pharmaceutical ingredient manufacturers was studied via advanced modeling tools to enable a successful scale-up. A virtual representation of the vessel was created, and computational fluid dynamics were used to simulate multiphase flow and, thus, the mixing environment within this vessel. The study identified a significant dead zone in the vessel underneath the impeller and found that increasing the impeller speed and power did not improve the mixing. A series of sensitivity analyses found that to improve mixing, the vessel had to be redesigned, and found that optimal mixing could be obtained by adding two extra cylindrical baffles. The same two baffles from the simulated environment were then constructed and added to the process vessel. By identifying these potential issues before starting the manufacture and modifying the vessel to ensure good mixing, this study mitigated a failed crystallization and potential batch disposal, which could have resulted in a significant loss of high-value material.

Keywords: active pharmaceutical ingredient, baffles, computational fluid dynamics, mixing, modelling

Procedia PDF Downloads 88
11948 Technical Aspects of Closing the Loop in Depth-of-Anesthesia Control

Authors: Gorazd Karer

Abstract:

When performing a diagnostic procedure or surgery in general anesthesia (GA), a proper introduction and dosing of anesthetic agents are one of the main tasks of the anesthesiologist. However, depth of anesthesia (DoA) also seems to be a suitable process for closed-loop control implementation. To implement such a system, one must be able to acquire the relevant signals online and in real-time, as well as stream the calculated control signal to the infusion pump. However, during a procedure, patient monitors and infusion pumps are purposely unable to connect to an external (possibly medically unapproved) device for safety reasons, thus preventing closed-loop control. The paper proposes a conceptual solution to the aforementioned problem. First, it presents some important aspects of contemporary clinical practice. Next, it introduces the closed-loop-control-system structure and the relevant information flow. Focusing on transferring the data from the patient to the computer, it presents a non-invasive image-based system for signal acquisition from a patient monitor for online depth-of-anesthesia assessment. Furthermore, it introduces a UDP-based communication method that can be used for transmitting the calculated anesthetic inflow to the infusion pump. The proposed system is independent of a medical device manufacturer and is implemented in Matlab-Simulink, which can be conveniently used for DoA control implementation. The proposed scheme has been tested in a simulated GA setting and is ready to be evaluated in an operating theatre. However, the proposed system is only a step towards a proper closed-loop control system for DoA, which could routinely be used in clinical practice.

Keywords: closed-loop control, depth of anesthesia (DoA), modeling, optical signal acquisition, patient state index (PSi), UDP communication protocol

Procedia PDF Downloads 207
11947 A Review on Control of a Grid Connected Permanent Magnet Synchronous Generator Based Variable Speed Wind Turbine

Authors: Eman M. Eissa, Hany M. Hasanin, Mahmoud Abd-Elhamid, S. M. Muyeen, T. Fernando, H. H. C. Iu

Abstract:

Among all available wind energy conversion systems (WECS), the direct driven permanent magnet synchronous generator integrated with power electronic interfaces is becoming popular due to its capability of extracting optimal energy capture, reduced mechanical stresses, no need to external excitation current, meaning less losses, and more compact size. Simple structure, low maintenance cost; and its decoupling control performance is much less sensitive to the parameter variations of the generator. This paper attempts to present a review of the control and optimization strategies of WECS based on permanent magnet synchronous generator (PMSG) and overview the most recent research trends in this field. The main aims of this review include; the generalized overall WECS starting from turbines, generators, and control strategies including converters, maximum power point tracking (MPPT), ending with DC-link control. The optimization methods of the controller parameters necessary to guarantee the operation of the system efficiently and safely, especially when connected to the power grid are also presented.

Keywords: control and optimization techniques, permanent magnet synchronous generator, variable speed wind turbines, wind energy conversion system

Procedia PDF Downloads 213
11946 Model Evaluation of Thermal Effects Created by Cell Membrane Electroporation

Authors: Jiahui Song

Abstract:

The use of very high electric fields (~ 100kV/cm or higher) with pulse durations in the nanosecond range has been a recent development. The electric pulses have been used as tools to generate electroporation which has many biomedical applications. Most of the studies of electroporation have ignored possible thermal effects because of the small duration of the applied voltage pulses. However, it has been predicted membrane temperature gradients ranging from 0.2×109 to 109 K/m. This research focuses on thermal gradients that drives for electroporative enhancements, even though the actual temperature values might not have changed appreciably from their equilibrium levels. The dynamics of pore formation with the application of an externally applied electric field is studied on the basis of molecular dynamics (MD) simulations using the GROMACS package. Different temperatures are assigned to various regions to simulate the appropriate temperature gradients. The GROMACS provides the force fields for the lipid membranes, which is taken to comprise of dipalmitoyl-phosphatidyl-choline (DPPC) molecules. The water model mimicks the aqueous environment surrounding the membrane. Velocities of water and membrane molecules are generated randomly at each simulation run according to a Maxwellian distribution. For statistical significance, a total of eight MD simulations are carried out with different starting molecular velocities for each simulation. MD simulation shows no pore is formed in a 10-ns snapshot for a DPPC membrane set at a uniform temperature of 295 K after a 0.4 V/nm electric field is applied. A nano-sized pore is clearly seen in a 10-ns snapshot on the same geometry but with the top and bottom membrane surfaces kept at temperatures of 300 and 295 K, respectively. For the same applied electric field, the formation of nanopores is clearly demonstrated, but only in the presence of a temperature gradient. MD simulation results show enhanced electroporative effects arising from thermal gradients. The study suggests the temperature gradient is a secondary driver, with the electric field being the primary cause for electroporation.

Keywords: nanosecond, electroporation, thermal effects, molecular dynamics

Procedia PDF Downloads 72
11945 Dynamics of a Reaction-Diffusion Problems Modeling Two Predators Competing for a Prey

Authors: Owolabi Kolade Matthew

Abstract:

In this work, we investigate both the analytical and numerical studies of the dynamical model comprising of three species system. We analyze the linear stability of stationary solutions in the one-dimensional multi-system modeling the interactions of two predators and one prey species. The stability analysis has a lot of implications for understanding the various spatiotemporal and chaotic behaviors of the species in the spatial domain. The analysis results presented have established the possibility of the three interacting species to coexist harmoniously, this feat is achieved by combining the local and global analyzes to determine the global dynamics of the system. In the presence of diffusion, a viable exponential time differencing method is applied to multi-species nonlinear time-dependent partial differential equation to address the points and queries that may naturally arise. The scheme is described in detail, and justified by a number of computational experiments.

Keywords: asymptotically stable, coexistence, exponential time differencing method, global and local stability, predator-prey model, nonlinear, reaction-diffusion system

Procedia PDF Downloads 401
11944 A Study on Computational Fluid Dynamics (CFD)-Based Design Optimization Techniques Using Multi-Objective Evolutionary Algorithms (MOEA)

Authors: Ahmed E. Hodaib, Mohamed A. Hashem

Abstract:

In engineering applications, a design has to be as fully perfect as possible in some defined case. The designer has to overcome many challenges in order to reach the optimal solution to a specific problem. This process is called optimization. Generally, there is always a function called “objective function” that is required to be maximized or minimized by choosing input parameters called “degrees of freedom” within an allowed domain called “search space” and computing the values of the objective function for these input values. It becomes more complex when we have more than one objective for our design. As an example for Multi-Objective Optimization Problem (MOP): A structural design that aims to minimize weight and maximize strength. In such case, the Pareto Optimal Frontier (POF) is used, which is a curve plotting two objective functions for the best cases. At this point, a designer should make a decision to choose the point on the curve. Engineers use algorithms or iterative methods for optimization. In this paper, we will discuss the Evolutionary Algorithms (EA) which are widely used with Multi-objective Optimization Problems due to their robustness, simplicity, suitability to be coupled and to be parallelized. Evolutionary algorithms are developed to guarantee the convergence to an optimal solution. An EA uses mechanisms inspired by Darwinian evolution principles. Technically, they belong to the family of trial and error problem solvers and can be considered global optimization methods with a stochastic optimization character. The optimization is initialized by picking random solutions from the search space and then the solution progresses towards the optimal point by using operators such as Selection, Combination, Cross-over and/or Mutation. These operators are applied to the old solutions “parents” so that new sets of design variables called “children” appear. The process is repeated until the optimal solution to the problem is reached. Reliable and robust computational fluid dynamics solvers are nowadays commonly utilized in the design and analyses of various engineering systems, such as aircraft, turbo-machinery, and auto-motives. Coupling of Computational Fluid Dynamics “CFD” and Multi-Objective Evolutionary Algorithms “MOEA” has become substantial in aerospace engineering applications, such as in aerodynamic shape optimization and advanced turbo-machinery design.

Keywords: mathematical optimization, multi-objective evolutionary algorithms "MOEA", computational fluid dynamics "CFD", aerodynamic shape optimization

Procedia PDF Downloads 247
11943 Stabilization Control of the Nonlinear AIDS Model Based on the Theory of Polynomial Fuzzy Control Systems

Authors: Shahrokh Barati

Abstract:

In this paper, we introduced AIDS disease at first, then proposed dynamic model illustrate its progress, after expression of a short history of nonlinear modeling by polynomial phasing systems, we considered the stability conditions of the systems, which contained a huge amount of researches in order to modeling and control of AIDS in dynamic nonlinear form, in this approach using a frame work of control any polynomial phasing modeling system which have been generalized by part of phasing model of T-S, in order to control the system in better way, the stability conditions were achieved based on polynomial functions, then we focused to design the appropriate controller, firstly we considered the equilibrium points of system and their conditions and in order to examine changes in the parameters, we presented polynomial phase model that was the generalized approach rather than previous Takagi Sugeno models, then with using case we evaluated the equations in both open loop and close loop and with helping the controlling feedback, the close loop equations of system were calculated, to simulate nonlinear model of AIDS disease, we used polynomial phasing controller output that was capable to make the parameters of a nonlinear system to follow a sustainable reference model properly.

Keywords: polynomial fuzzy, AIDS, nonlinear AIDS model, fuzzy control systems

Procedia PDF Downloads 457
11942 Fall Avoidance Control of Wheeled Inverted Pendulum Type Robotic Wheelchair While Climbing Stairs

Authors: Nan Ding, Motoki Shino, Nobuyasu Tomokuni, Genki Murata

Abstract:

The wheelchair is the major means of transport for physically disabled people. However, it cannot overcome architectural barriers such as curbs and stairs. In this paper, the authors proposed a method to avoid falling down of a wheeled inverted pendulum type robotic wheelchair for climbing stairs. The problem of this system is that the feedback gain of the wheels cannot be set high due to modeling errors and gear backlash, which results in the movement of wheels. Therefore, the wheels slide down the stairs or collide with the side of the stairs, and finally the wheelchair falls down. To avoid falling down, the authors proposed a slider control strategy based on skyhook model in order to decrease the movement of wheels, and a rotary link control strategy based on the staircase dimensions in order to avoid collision or slide down. The effectiveness of the proposed fall avoidance control strategy was validated by ODE simulations and the prototype wheelchair.

Keywords: EPW, fall avoidance control, skyhook, wheeled inverted pendulum

Procedia PDF Downloads 324
11941 Investigation and Monitoring Method of Vector Density in Kaohsiung City

Authors: Chiu-Wen Chang, I-Yun Chang, Wei-Ting Chen, Hui-Ping Ho, Chao-Ying Pan, Joh-Jong Huang

Abstract:

Dengue is a ‘community disease’ or ‘environmental disease’, as long as the environment exist suitable container (including natural and artificial) for mosquito breeding, once the virus invade will lead to the dengue epidemic. Surveillance of vector density is critical to effective infectious disease control and play an important role in monitoring the dynamics of mosquitoes in community, such as mosquito species, density, distribution area. The objective of this study was to examine the relationship in vector density survey (Breteau index, Adult index, House index, Container index, and Larvae index) form 2014 to 2016 in Kaohsiung City and evaluate the effects of introducing the Breeding Elimination and Appraisal Team (hereinafter referred to as BEAT) as an intervention measure on eliminating dengue vector breeding site started from May 2016. BEAT were performed on people who were suspected of contracting dengue fever, a surrounding area measuring 50 meters by 50 meters was demarcated as the emergency prevention and treatment zone. BEAT would perform weekly vector mosquito inspections and vector mosquito inspections in regions with a high Gravitrap index and assign a risk assessment index to each region. These indices as well as the prevention and treatment results were immediately reported to epidemic prevention-related units every week. The results indicated that, vector indices from 2014 to 2016 showed no statistically significant differences in the Breteau index, adult index, and house index (p > 0.05) but statistically significant differences in the container index and larvae index (p <0.05). After executing the integrated elimination work, container index and larvae index are statistically significant different from 2014 to 2016 in the (p < 0.05). A post hoc test indicated that the container index of 2014 (M = 12.793) was significantly higher than that of 2016 (M = 7.631), and that the larvae index of 2015 (M = 34.065) was significantly lower than that of 2014 (M = 66.867). The results revealed that effective vector density surveillance could highlight the focus breeding site and then implement the immediate control action (BEAT), which successfully decreased the vector density and the risk of dengue epidemic.

Keywords: Breteau index, dengue control, monitoring method, vector density

Procedia PDF Downloads 170
11940 Selection of Wind Farms to Add Virtual Inertia Control to Assist the Power System Frequency Regulation

Authors: W. Du, X. Wang, Jun Cao, H. F. Wang

Abstract:

Due to the randomness and uncertainty of wind energy, modern power systems integrating large-scale wind generation will be significantly impacted in terms of system performance and technical challenges. System inertia with high wind penetration is decreasing when conventional thermal generators are gradually replaced by wind turbines, which do not naturally contribute to inertia response. The power imbalance caused by wind power or demand fluctuations leads to the instability of system frequency. Accordingly, the need to attach the supplementary virtual inertia control to wind farms (WFs) strongly arises. When multi-wind farms are connected to the grid simultaneously, the selection of which critical WFs to install the virtual inertia control is greatly important to enhance the stability of system frequency. By building the small signal model of wind power systems considering frequency regulation, the installation locations are identified by the geometric measures of the mode observability of WFs. In addition, this paper takes the impacts of grid topology and selection of feedback control signals into consideration. Finally, simulations are conducted on a multi-wind farms power system and the results demonstrate that the designed virtual inertia control method can effectively assist the frequency regulation.

Keywords: frequency regulation, virtual inertia control, installation locations, observability, wind farms

Procedia PDF Downloads 389
11939 Experimental Study on the Effectiveness of Functional Training for Female College Students' Physical Fitness and Sport Skills

Authors: Yangming Zhu, Mingming Guo, Xiaozan Wang

Abstract:

Introduction: The purpose of this study is to integrate functional training into physical education to test the effectiveness of functional training in improving the physical fitness (PF) and sport skills (SS) of female college students. Methods: A total of 54 female college students from East China Normal University were selected for this study (27 in the experimental group and 27 in the control group), and 13 weeks of the experimental intervention was conducted during the semester. During the experimental period, the experimental group was functionally trained for 1 hour per week. The control group performed one-hour weekly sports (such as basketball, football, etc.) as usual. Before and after the experiment, the national students' physical fitness test was used to test the PF of the experimental group and the control group, and the SS of the experimental group and the control group were tested before and after the intervention. Then using SPSS and Excel to organize and analyze the data. Results: The independent sample T-test showed that there was no significant difference in the PF and SS between the experimental group and the control group before the experiment (T PF=71.86, p PF> 0.05, Tₛₛ=82.41,pₛₛ > 0.05); After the experiment, the PF of the experimental group was significantly higher than that of the control group (T Improve=71.86, p Improve < 0.05); after the experiment, the SS of the experimental group was significantly higher than that of the control group (Tₛₛ = 1.31, pₛₛ <0.01) Conclusions: Integrating functional training into physical education can improve the PF of female college students. At the same time, the integration of functional training into physical education can also effectively improve the SS of female college students. Therefore, it is suggested that functional training be integrated into the daily physical education of female college students so as to improve their PF and SS.

Keywords: functional training, physical fitness, sport skills, female college students

Procedia PDF Downloads 125
11938 Simulation and Control of the Flywheel System in the Rotor of a Wind Turbine Using Simulink and OpenFAST for Assessing the Effect on the Mechanical Loads

Authors: Chinazo Onyeka Eziuzo

Abstract:

This work presents the simulation and control of the flywheel system in the rotor of a wind turbine using Simulink and OpenFAST for assessing the effect on the mechanical loads. This concept allows the flywheel system to serve two main tasks: supporting the power system and mitigating the mechanical loads in the wind turbine. These tasks are grouped into four control scenarios; scenario 1 represents steadying the power infeed in the Flywheel, scenario 2 represents steadying power with FW and grid loss, scenario 3 represents mitigating excitations from gravity, and scenario 4 represents damping in-plane blade vibrations. The s-function of the OpenFAST model was used to substitute the given 1st Eigen mode model of the WT. After that, the simulations were run for the above-listed scenarios. Additionally, the effects of the control options on the mechanical loads were assessed, and it was established that the FW system assists in steadying infeed power and mechanical load mitigation.

Keywords: simulation, control, wind turbine, OpenFAST

Procedia PDF Downloads 109
11937 Numerical Investigation on the Interior Wind Noise of a Passenger Car

Authors: Liu Ying-jie, Lu Wen-bo, Peng Cheng-jian

Abstract:

With the development of the automotive technology and electric vehicle, the contribution of the wind noise on the interior noise becomes the main source of noise. The main transfer path which the exterior excitation is transmitted through is the greenhouse panels and side windows. Simulating the wind noise transmitted into the vehicle accurately in the early development stage can be very challenging. The basic methodologies of this study were based on the Lighthill analogy; the exterior flow field around a passenger car was computed using unsteady Computational Fluid Dynamics (CFD) firstly and then a Finite Element Method (FEM) was used to compute the interior acoustic response. The major findings of this study include: 1) The Sound Pressure Level (SPL) response at driver’s ear locations is mainly induced by the turbulence pressure fluctuation; 2) Peaks were found over the full frequency range. It is found that the methodology used in this study could predict the interior wind noise induced by the exterior aerodynamic excitation in industry.

Keywords: wind noise, computational fluid dynamics, finite element method, passenger car

Procedia PDF Downloads 158
11936 Experimental Validation of Computational Fluid Dynamics Used for Pharyngeal Flow Patterns during Obstructive Sleep Apnea

Authors: Pragathi Gurumurthy, Christina Hagen, Patricia Ulloa, Martin A. Koch, Thorsten M. Buzug

Abstract:

Obstructive sleep apnea (OSA) is a sleep disorder where the patient suffers a disturbed airflow during sleep due to partial or complete occlusion of the pharyngeal airway. Recently, numerical simulations have been used to better understand the mechanism of pharyngeal collapse. However, to gain confidence in the solutions so obtained, an experimental validation is required. Therefore, in this study an experimental validation of computational fluid dynamics (CFD) used for the study of human pharyngeal flow patterns during OSA is performed. A stationary incompressible Navier-Stokes equation solved using the finite element method was used to numerically study the flow patterns in a computed tomography-based human pharynx model. The inlet flow rate was set to 250 ml/s and such that a flat profile was maintained at the inlet. The outlet pressure was set to 0 Pa. The experimental technique used for the validation of CFD of fluid flow patterns is phase contrast-MRI (PC-MRI). Using the same computed tomography data of the human pharynx as in the simulations, a phantom for the experiment was 3 D printed. Glycerol (55.27% weight) in water was used as a test fluid at 25°C. Inflow conditions similar to the CFD study were simulated using an MRI compatible flow pump (CardioFlow-5000MR, Shelley Medical Imaging Technologies). The entire experiment was done on a 3 T MR system (Ingenia, Philips) with 108 channel body coil using an RF-spoiled, gradient echo sequence. A comparison of the axial velocity obtained in the pharynx from the numerical simulations and PC-MRI shows good agreement. The region of jet impingement and recirculation also coincide, therefore validating the numerical simulations. Hence, the experimental validation proves the reliability and correctness of the numerical simulations.

Keywords: computational fluid dynamics, experimental validation, phase contrast-MRI, obstructive sleep apnea

Procedia PDF Downloads 304
11935 Computational Fluid Dynamics Model of Various Types of Rocket Engine Nozzles

Authors: Konrad Pietrykowski, Michal Bialy, Pawel Karpinski, Radoslaw Maczka

Abstract:

The nozzle is an element of the rocket engine in which the conversion of the potential energy of gases generated during combustion into the kinetic energy of the gas stream takes place. The design parameters of the nozzle have a decisive influence on the ballistic characteristics of the engine. Designing a nozzle assembly is, therefore, one of the most responsible stages in developing a rocket engine design. The paper presents the results of the simulation of three types of rocket propulsion nozzles. Calculations were made using CFD (Computational Fluid Dynamics) in ANSYS Fluent software. The next types of nozzles differ in shape. The analysis was made of a conical nozzle, a bell type nozzle with a conical supersonic part and a bell type nozzle. Calculation results are presented in the form of pressure, velocity and kinetic energy distributions of turbulence in the longitudinal section. The courses of these values along the nozzles are also presented. The results show that the cone nozzle generates strong turbulence in the critical section. Which negatively affect the flow of the working medium. In the case of a bell nozzle, the transformation of the wall caused the elimination of flow disturbances in the critical section. This reduces the probability of waves forming before or after the trailing edge. The most sophisticated construction is the bell type nozzle. It allows you to maximize performance without adding extra weight. The bell type nozzle can be used as a starter and auxiliary engine nozzle due to its advantages. The project/research was financed in the framework of the project Lublin University of Technology-Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19).

Keywords: computational fluid dynamics, nozzle, rocket engine, supersonic flow

Procedia PDF Downloads 148
11934 A Model Predictive Control Based Virtual Active Power Filter Using V2G Technology

Authors: Mahdi Zolfaghari, Seyed Hossein Hosseinian, Hossein Askarian Abyaneh, Mehrdad Abedi

Abstract:

This paper presents a virtual active power filter (VAPF) using vehicle to grid (V2G) technology to maintain power quality requirements. The optimal discrete operation of the power converter of electric vehicle (EV) is based on recognizing desired switching states using the model predictive control (MPC) algorithm. A fast dynamic response, lower total harmonic distortion (THD) and good reference tracking performance are realized through the presented control strategy. The simulation results using MATLAB/Simulink validate the effectiveness of the scheme in improving power quality as well as good dynamic response in power transferring capability.

Keywords: electric vehicle, model predictive control, power quality, V2G technology, virtual active power filter

Procedia PDF Downloads 413
11933 The Effect of Postural Sway and Technical Parameters of 8 Weeks Technical Training Performed with Restrict of Visual Input on the 10-12 Ages Soccer Players

Authors: Nurtekin Erkmen, Turgut Kaplan, Halil Taskin, Ahmet Sanioglu, Gokhan Ipekoglu

Abstract:

The aim of this study was to determine the effects of an 8 week soccerspecific technical training with limited vision perception on postural control and technical parameters in 10-12 aged soccer players. Subjects in this study were 24 male young soccer players (age: 11.00 ± 0.56 years, height: 150.5 ± 4.23 cm, body weight: 41.49 ± 7.56 kg). Subjects were randomly divided as two groups: Training and control. Balance performance was measured by Biodex Balance System (BBS). Short pass, speed dribbling, 20 m speed with ball, ball control, juggling tests were used to measure soccer players’ technical performances with a ball. Subjects performed soccer training 3 times per week for 8 weeks. In each session, training group with limited vision perception and control group with normal vision perception committed soccer-specific technical drills for 20 min. Data analyzed with t-test for independent samples and Mann-Whitney U between groups and paired t-test and Wilcoxon test between pre-posttests. No significant difference was found balance scores and with eyes open and eyes closed and LOS test between training and control groups after training (p>0.05). After eight week of training there are no significant difference in balance score with eyes open for both training and control groups (p>0.05). Balance scores decreased in training and control groups after the training (p<0.05). The completion time of LOS test shortened in both training and control groups after training (p<0.05). The training developed speed dribbling performance of training group (p<0.05). On the other hand, soccer players’ performance in training and control groups increased in 20 m speed with a ball after eight week training (p<0.05). In conclusion; the results of this study indicate that soccer-specific training with limited vision perception may not improves balance performance in 10-12 aged soccer players, but it develops speed dribbling performance.

Keywords: Young soccer players, vision perception, postural control, technical

Procedia PDF Downloads 462
11932 Surviral: An Agent-Based Simulation Framework for Sars-Cov-2 Outcome Prediction

Authors: Sabrina Neururer, Marco Schweitzer, Werner Hackl, Bernhard Tilg, Patrick Raudaschl, Andreas Huber, Bernhard Pfeifer

Abstract:

History and the current outbreak of Covid-19 have shown the deadly potential of infectious diseases. However, infectious diseases also have a serious impact on areas other than health and healthcare, such as the economy or social life. These areas are strongly codependent. Therefore, disease control measures, such as social distancing, quarantines, curfews, or lockdowns, have to be adopted in a very considerate manner. Infectious disease modeling can support policy and decision-makers with adequate information regarding the dynamics of the pandemic and therefore assist in planning and enforcing appropriate measures that will prevent the healthcare system from collapsing. In this work, an agent-based simulation package named “survival” for simulating infectious diseases is presented. A special focus is put on SARS-Cov-2. The presented simulation package was used in Austria to model the SARS-Cov-2 outbreak from the beginning of 2020. Agent-based modeling is a relatively recent modeling approach. Since our world is getting more and more complex, the complexity of the underlying systems is also increasing. The development of tools and frameworks and increasing computational power advance the application of agent-based models. For parametrizing the presented model, different data sources, such as known infections, wastewater virus load, blood donor antibodies, circulating virus variants and the used capacity for hospitalization, as well as the availability of medical materials like ventilators, were integrated with a database system and used. The simulation result of the model was used for predicting the dynamics and the possible outcomes and was used by the health authorities to decide on the measures to be taken in order to control the pandemic situation. The survival package was implemented in the programming language Java and the analytics were performed with R Studio. During the first run in March 2020, the simulation showed that without measures other than individual personal behavior and appropriate medication, the death toll would have been about 27 million people worldwide within the first year. The model predicted the hospitalization rates (standard and intensive care) for Tyrol and South Tyrol with an accuracy of about 1.5% average error. They were calculated to provide 10-days forecasts. The state government and the hospitals were provided with the 10-days models to support their decision-making. This ensured that standard care was maintained for as long as possible without restrictions. Furthermore, various measures were estimated and thereafter enforced. Among other things, communities were quarantined based on the calculations while, in accordance with the calculations, the curfews for the entire population were reduced. With this framework, which is used in the national crisis team of the Austrian province of Tyrol, a very accurate model could be created on the federal state level as well as on the district and municipal level, which was able to provide decision-makers with a solid information basis. This framework can be transferred to various infectious diseases and thus can be used as a basis for future monitoring.

Keywords: modelling, simulation, agent-based, SARS-Cov-2, COVID-19

Procedia PDF Downloads 165
11931 MPPT Control with (P&O) and (FLC) Algorithms of Solar Electric Generator

Authors: Dib Djalel, Mordjaoui Mourad

Abstract:

The current trend towards the exploitation of various renewable energy resources has become indispensable, so it is important to improve the efficiency and reliability of the GPV photovoltaic systems. Maximum Power Point Tracking (MPPT) plays an important role in photovoltaic power systems because it maximize the power output from a PV system for a given set of conditions. This paper presents a new fuzzy logic control based MPPT algorithm for solar panel. The solar panel is modeled and analyzed in Matlab/Simulink. The Solar panel can produce maximum power at a particular operating point called Maximum Power Point(MPP). To produce maximum power and to get maximum efficiency, the entire photovoltaic panel must operate at this particular point. Maximum power point of PV panel keeps on changing with changing environmental conditions such as solar irradiance and cell temperature. Thus, to extract maximum available power from a PV module, MPPT algorithms are implemented and Perturb and Observe (P&O) MPPT and fuzzy logic control FLC, MPPT are developed and compared. Simulation results show the effectiveness of the fuzzy control technique to produce a more stable power.

Keywords: MPPT, photovoltaic panel, fuzzy logic control, modeling, solar power

Procedia PDF Downloads 472
11930 Computational Fluid Dynamics Simulation of Floating Body Motion Interacting with Focused Waves

Authors: Seul-Ki Park, Jong-Chun Park, Gyu-Mok Jeon, Dae-Kyung Ock, Seung-Gyu Jeong

Abstract:

Rogue waves cause frequent accidents of ships and offshore structures, which can result in severe damage to the structures. The Rogue waves, which are also known as big waves, freak waves, extreme waves, monster waves, focused waves, giant waves and abnormal waves, are unexpected and suddenly appearing, and can have a breaking force to destroy the structure even though modern structures are designed to tolerate a breaking wave. In the present study, a series of focused waves are numerically reproduced by concentrating nonlinear multi-directional waves into a target point using a commercial CFD software, Star-CCM+. A flow analysis for investigating the physical characteristics of the focused waves is performed using the Star-CCM+, while it has several difficulties to examine the inner properties of the waves in existing potential theory and experiments. Additionally, the 6-DOF (Degree of Freedom) motion of a floating body interacting with the focused waves are simulated, and the dynamic response of the body are discussed.

Keywords: multidirectional waves, focused waves, rogue waves, wave-structure interaction, numerical wave tank, computational fluid dynamics

Procedia PDF Downloads 245
11929 Replacement of Dietary Soybean Meal by Dried Grains with Solubles on Liver Histology of Rainbow Trout, Oncorhynchus mykiss

Authors: Baki Aydin, Erkan Gumus

Abstract:

The aim of the present study was to investigate the effects of replacing dietary soybean meal by dried grains with solubles (DDGS) on liver histology of rainbow trout, Oncorhynchus mykiss. Five isoproteic (∼45% crude protein) and isocaloric (∼3570 kcal/kg digestible energy) diets were formulated: Conrol-1 (Fish meal control), Control-2, DDGS33, DDGS66 and DDGS100 which included 0%, 0%, 10%, 20% and 30% DDGS, respectively. Triplicate groups of fish with an average weight of 20.46 g were fed three times a day until apparent satiation during 84 days. The obtained results showed that diameters of hepatocyte nuclei were not statistically different among the groups. The histological examination of liver sections from the fish fed the Control-1 diet showed normal histology, mild cytoplasm vacuoles and appears to be central to hepatocyte nuclei. Fish fed diets containing soybean meal and DDGS presented variable levels of cytoplasmic vacuolization and some with eccentric hepatocyte nuclei. But, fish fed diet soybean meal based control (Control-2) showed the highest hepatocyte nuclei displacement, and cytoplasm vacuoles compared the DDGS30 diet. DDGS20 and DDGS30 fish also showed more regular hepatocytes than in Control-2 fish. The results of this study demonstrated that fish fed diets containing increasing DDGS levels exhibited less histomorphological changes compared the Control-2 diet.

Keywords: DDGS, soybean meal, rainbow trout, hepatocyte

Procedia PDF Downloads 143
11928 Investigation of Adaptable Winglets for Improved UAV Control and Performance

Authors: E. Kaygan, A. Gatto

Abstract:

An investigation of adaptable winglets for morphing aircraft control and performance is described in this paper. The concepts investigated consist of various winglet configurations fundamentally centred on a baseline swept wing. The impetus for the work was to identify and optimize winglets to enhance controllability and the aerodynamic efficiency of a small unmanned aerial vehicle. All computations were performed with Athena Vortex Lattice modelling with varying degrees of twist, swept, and dihedral angle considered. The results from this work indicate that if adaptable winglets were employed on small scale UAV’s improvements in both aircraft control and performance could be achieved.

Keywords: aircraft, rolling, wing, winglet

Procedia PDF Downloads 453
11927 Three-Level Converters Back-To-Back DC Bus Control for Torque Ripple Reduction of Induction Motor

Authors: T. Abdelkrim, K. Benamrane, B. Bezza, Aeh Benkhelifa, A. Borni

Abstract:

This paper proposes a regulation method of back-to-back connected three-level converters in order to reduce the torque ripple in induction motor. First part is dedicated to the presentation of the feedback control of three-level PWM rectifier. In the second part, three-level NPC voltage source inverter balancing DC bus algorithm is presented. A theoretical analysis with a complete simulation of the system is presented to prove the excellent performance of the proposed technique.

Keywords: back-to-back connection, feedback control, neutral-point balance, three-level converter, torque ripple

Procedia PDF Downloads 485
11926 Studying Frame-Resistant Steel Structures under Near Field Ground Motion

Authors: S. A. Hashemi, A. Khoshraftar

Abstract:

This paper presents the influence of the vertical seismic component on the non-linear dynamics analysis of three different structures. The subject structures were analyzed and designed according to recent codes. This paper considers three types of buildings: 5-, 10-, and 15-story buildings. The non-linear dynamics analysis of the structures with assuming elastic-perfectly-plastic behavior was performed using Ram Perform-3D software; the horizontal component was taken into consideration with and without the incorporation of the corresponding vertical component. Dynamic responses obtained for the horizontal component acting alone were compared with those obtained from the simultaneous application of both seismic components. The results show that the effect of the vertical component of the ground motion may increase the axial load significantly in the interior columns and consequently, the stories. The plastic mechanisms would be changed. The P-Delta effect is expected to increase. The punching base plate shear of the columns should be considered. Moreover, the vertical component increases the input energy when the structures exhibit inelastic behavior and are taller.

Keywords: inelastic behavior, non-linear dynamic analysis, steel structure, vertical component

Procedia PDF Downloads 305
11925 The Optimal Indirect Vector Controller Design via an Adaptive Tabu Search Algorithm

Authors: P. Sawatnatee, S. Udomsuk, K-N. Areerak, K-L. Areerak, A. Srikaew

Abstract:

The paper presents how to design the indirect vector control of three-phase induction motor drive systems using the artificial intelligence technique called the adaptive tabu search. The results from the simulation and the experiment show that the drive system with the controller designed from the proposed method can provide the best output speed response compared with those of the conventional method. The controller design using the proposed technique can be used to create the software package for engineers to achieve the optimal controller design of the induction motor speed control based on the indirect vector concept.

Keywords: indirect vector control, induction motor, adaptive tabu search, control design, artificial intelligence

Procedia PDF Downloads 389
11924 Adult Health Outcomes of Childhood Self-Control and Social Disadvantage in the United Kingdom

Authors: Michael Daly

Abstract:

Background/Aims: The interplay of childhood self-control and early life social background in predicting adult health is currently unclear. We drew on rich data from two large nationally representative cohort studies to test whether individual differences in childhood self-control may: (i) buffer the health impact of social disadvantage, (ii) act as a mediating pathway underlying the emergence of health disparities, or (iii) compensate for the health consequences of socioeconomic disadvantage across the lifespan. Methods: We examined data from over 25,000 participants from the British Cohort Study (BCS) and the National Child Development Study (NCDS). Child self-control was teacher-rated at age 10 in the BCS and ages 7/11 in the NCDS. The Early life social disadvantage was indexed using measures of parental education, occupational prestige, and housing characteristics (i.e. housing tenure, home crowding). A range of health outcomes was examined: the presence of chronic conditions, whether illnesses were limiting, physiological dysregulation (gauged by clinical indicators), mortality, and perceptions of pain, psychological distress, and general health. Results: Childhood self-control and social disadvantage predicted each measure of adult health, with similar strength on average. An examination of mediating factors showed that adult smoking, obesity, and socioeconomic status explained the majority of these linkages. There was no systematic evidence that self-control moderated the health consequences of early social disadvantage and limited evidence that self-control acted as a key pathway from disadvantage to later health. Conclusions: Childhood self-control predicts adult health and may compensate for early life social disadvantage by shaping adult health behaviour and social status.

Keywords: personality and health, social disadvantage, health psychology, life-course development

Procedia PDF Downloads 213
11923 Stochastic Control of Decentralized Singularly Perturbed Systems

Authors: Walid S. Alfuhaid, Saud A. Alghamdi, John M. Watkins, M. Edwin Sawan

Abstract:

Designing a controller for stochastic decentralized interconnected large scale systems usually involves a high degree of complexity and computation ability. Noise, observability, and controllability of all system states, connectivity, and channel bandwidth are other constraints to design procedures for distributed large scale systems. The quasi-steady state model investigated in this paper is a reduced order model of the original system using singular perturbation techniques. This paper results in an optimal control synthesis to design an observer based feedback controller by standard stochastic control theory techniques using Linear Quadratic Gaussian (LQG) approach and Kalman filter design with less complexity and computation requirements. Numerical example is given at the end to demonstrate the efficiency of the proposed method.

Keywords: decentralized, optimal control, output, singular perturb

Procedia PDF Downloads 362
11922 The Effects of Phenolic Compounds in Brown Iranian Propolis Extracts on Ruminal Nitrogen Ammonia Concentration in in Vitro

Authors: Alireza Vakili, Shahab Ehtesham, Mohsen Danesh Mesgaran, Mahdi Paktinat

Abstract:

The goal of this study is to determine the chemical compounds of brown Iranian propolis(BIP) extracts and to show flavonoids and phenol effects on nitrogen ammonia (NH3-N) in in vitro. Experimental samples were including two diets with different concentrate: forage ratio (80:20 and 60:40) with eight treatments (1:Control diet 60:40 without BIP,2: 60:40 diet with 25% BIP, 3:60:40 diet with 50% BIP, 4: 60:40 diet with 75% BIP,5: Control diet 80:20 without BIP,6: 80:20 diet with 25% BIP,7: 80:20 diet with 50% BIP and 8: 80:20 diet with 75% BIP) and eight repeats. The trial was analyzed considering a completely randomized design by the GLM procedure of SAS 9.1. Means among treatment were compared by Tukey test. The results of this study showed that in food with 80:20 (concentrate: forage), adding BIP 25% did not statistically change NH3-N (p > 0.05) compared to the control treatment but there was a significant difference (p < 0.05) between the effect of BIP 50% on NH3-N compared to the BIP 25% and the control. In diet with 60:40 (concentrate: forage), there was no significant difference between the effect of BIP 25% on NH3-N and the control, nor was there a significant difference between the effect of BIP 50% and 75%, while a significant difference (p < 0.05) between BIP 50% and 75% and the rest was observed. The propolis extract makes nitrogen ammonia decrease. This may help the nitrogen retain longer in ruminants.

Keywords: brown Iranian propolis, in vitro, nitrogen ammonia, ruminant

Procedia PDF Downloads 474
11921 Sustainability Management Control Adoption and Sustainable Performance of Healthcare Supply Chains in Times of Crisis

Authors: Edward Nartey

Abstract:

Although sustainability management control (SMC) systems provide information that enhances corporate sustainability decisions, reviews on the SMC implications for sustainable supply chains (SCs) demonstrate a wide research gap, particularly the sustainability performance of healthcare SCs in unusual times. This study provides preliminary empirical evidence on the level of SMC adoption and the decision-making implications for the Tripple Bottom Line (TBL) principles of SC sustainability of Ghanaian public healthcare institutions (PHIs). Using a sample of 226 public health managers, the results show that sustainable formal control has a positive and significant impact on economic sustainability but an insignificant effect on social and environmental sustainability. In addition, a positive relationship was established between informal controls and economic and environmental sustainability but an insignificant relationship with social sustainability. Although the findings highlight the prevalence of the SMC system being prioritized over regular MCS in crisis situations, the MCSs are inadequate in promoting PHIs' sustainable behaviours in SCs. It also provides little empirical evidence on the effective enhancement of the TBL principle of SC sustainability perhaps because the SMC is in misalignment with the TBL principle in crisis situations. Thus, in crisis situations, PHIs need to redesign their MCSs to support the integration of sustainability issues in SCs.

Keywords: sustainability management control, informal control, formal control, sustainable supply chain performance

Procedia PDF Downloads 45