Search results for: AI-driven vehicle recognition
2100 Being Your Own First Responder: A Training to Identify and Respond to Mental Health
Authors: Joe Voshall, Leigha Shoup
Abstract:
In 2022, the Ohio Peace Officer Training Council and the Attorney General required officers to complete a minimum of 24 hours of continued professional training for the year. Much of the training was based on Mental Health or similarly related topics. This includes Officer Wellness and Officer Mental Health. It is becoming clearer that the stigma of Officer / First Responder Mental Health is a topic that is becoming more prevalently faced. To assist officers and first responders in facing mental health issues, we are developing new training. This training will aid in recognizing mental health-related issues in officers/first responders and citizens, as well as further using the same information to better respond and interact with one another and the public. In general, society has many varying views of mental health, much of which is largely over-sensationalized by television, movies, and other forms of entertainment. There has also been a stigma in law enforcement / first responders related to mental health and being weak as a result of on-the-job-related trauma-induced struggles. It is our hope this new training will assist officers and first responders in not only positively facing and addressing their mental health but using their own experience and education to recognize signs and symptoms of mental health within individuals in the community. Further, we hope that through this recognition, officers and first responders can use their experiences and more in-depth understanding to better interact within the field and with the public. Through recognition and better understanding of mental health issues and more positive interaction with the public, additional achievements are likely to result. This includes in the removal of bias and stigma for everyone.Keywords: law enforcement, mental health, officer related mental health, trauma
Procedia PDF Downloads 1742099 Mirrors and Lenses: Multiple Views on Recognition in Holocaust Literature
Authors: Kirsten A. Bartels
Abstract:
There are a number of similarities between survivor literature and Holocaust fiction for children and young adults. The paper explores three facets of the parallels of recognition found specifically between Livia Bitton-Jackson’s memoir of her experience during the Holocaust as an inmate in Auschwitz, I Have Lived a Thousand Years (1999) and Morris Glietzman series of Holocaust fiction. While Bitton-Jackson reflects on her past and Glietzman designs a fictive character, both are judicious with what they are willing to impart, only providing information about their appearance or themselves when it impacts others or when it serves a necessary purpose to the story. Another similarity lies in another critical aspect of many works of Holocaust literature – the idea of being ‘representatively Jewish’. The authors come to this idea from different angles, perhaps best explained as the difference between showing and telling, for Bitton-Jackson provides personal details, and Gleitzman constructed Felix arguably with this idea in mind. Interwoven through their journeys is a shift in perspectives on being recognized -- from wanting to be seen as individuals to being seen as Jew. With this, being Jewish takes on different meaning, both youths struggle with being labeled as something they do not truly understand, and may have not truly identified with, from a label, to a death warrant. With survivor literature viewed as the most credible and worthwhile type of Holocaust literature and Holocaust fiction is often seen as the least (with children’s and young-adult being the lowest form) the similarities in approaches to telling the stories may go overlooked or be undervalued. This paper serves as an exploration in the some of parallel messages shared between the two.Keywords: holocaust fiction, Holocaust literature, representatively Jewish, survivor literature
Procedia PDF Downloads 1732098 Correlation between Speech Emotion Recognition Deep Learning Models and Noises
Authors: Leah Lee
Abstract:
This paper examines the correlation between deep learning models and emotions with noises to see whether or not noises mask emotions. The deep learning models used are plain convolutional neural networks (CNN), auto-encoder, long short-term memory (LSTM), and Visual Geometry Group-16 (VGG-16). Emotion datasets used are Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS), Crowd-sourced Emotional Multimodal Actors Dataset (CREMA-D), Toronto Emotional Speech Set (TESS), and Surrey Audio-Visual Expressed Emotion (SAVEE). To make it four times bigger, audio set files, stretch, and pitch augmentations are utilized. From the augmented datasets, five different features are extracted for inputs of the models. There are eight different emotions to be classified. Noise variations are white noise, dog barking, and cough sounds. The variation in the signal-to-noise ratio (SNR) is 0, 20, and 40. In summation, per a deep learning model, nine different sets with noise and SNR variations and just augmented audio files without any noises will be used in the experiment. To compare the results of the deep learning models, the accuracy and receiver operating characteristic (ROC) are checked.Keywords: auto-encoder, convolutional neural networks, long short-term memory, speech emotion recognition, visual geometry group-16
Procedia PDF Downloads 822097 Using Deep Learning Real-Time Object Detection Convolution Neural Networks for Fast Fruit Recognition in the Tree
Authors: K. Bresilla, L. Manfrini, B. Morandi, A. Boini, G. Perulli, L. C. Grappadelli
Abstract:
Image/video processing for fruit in the tree using hard-coded feature extraction algorithms have shown high accuracy during recent years. While accurate, these approaches even with high-end hardware are computationally intensive and too slow for real-time systems. This paper details the use of deep convolution neural networks (CNNs), specifically an algorithm (YOLO - You Only Look Once) with 24+2 convolution layers. Using deep-learning techniques eliminated the need for hard-code specific features for specific fruit shapes, color and/or other attributes. This CNN is trained on more than 5000 images of apple and pear fruits on 960 cores GPU (Graphical Processing Unit). Testing set showed an accuracy of 90%. After this, trained data were transferred to an embedded device (Raspberry Pi gen.3) with camera for more portability. Based on correlation between number of visible fruits or detected fruits on one frame and the real number of fruits on one tree, a model was created to accommodate this error rate. Speed of processing and detection of the whole platform was higher than 40 frames per second. This speed is fast enough for any grasping/harvesting robotic arm or other real-time applications.Keywords: artificial intelligence, computer vision, deep learning, fruit recognition, harvesting robot, precision agriculture
Procedia PDF Downloads 4252096 The Impact of Public Charging Infrastructure on the Adoption of Electric Vehicles
Authors: Shaherah Jordan, Paula Vandergert
Abstract:
The discussion on public charging infrastructure is usually framed around the ‘chicken-egg’ challenge of consumers feeling reluctant to purchase without the necessary infrastructure and policymakers reluctant to invest in the infrastructure without the demand. However, public charging infrastructure may be more crucial to electric vehicle (EV) adoption than previously thought. Historically, access to residential charging was thought to be a major factor in potential for growth in the EV market as it offered a guaranteed place for a vehicle to be charged. The purpose of this study is to understand how the built environment may encourage uptake of EVs by seeking a correlation between EV ownership and public charging points in an urban and densely populated city such as London. Using a statistical approach with data from the Department for Transport and Zap-Map, a statistically significant correlation was found between the total (slow, fast and rapid) number of public charging points and a number of EV registrations per borough – with the strongest correlation found between EV registrations and rapid chargers. This research does not explicitly prove that there is a cause and effect relationship between public charging points EVs but challenges some of the previous literature which indicates that public charging infrastructure is not as important as home charging. Furthermore, the study provides strong evidence that public charging points play a functional and psychological role in the adoption of EVs and supports the notion that the built environment can influence human behaviour.Keywords: behaviour change, electric vehicles, public charging infrastructure, transportation
Procedia PDF Downloads 2192095 Analysis of Operating Speed on Four-Lane Divided Highways under Mixed Traffic Conditions
Authors: Chaitanya Varma, Arpan Mehar
Abstract:
The present study demonstrates the procedure to analyse speed data collected on various four-lane divided sections in India. Field data for the study was collected at different straight and curved sections on rural highways with the help of radar speed gun and video camera. The data collected at the sections were analysed and parameters pertain to speed distributions were estimated. The different statistical distribution was analysed on vehicle type speed data and for mixed traffic speed data. It was found that vehicle type speed data was either follows the normal distribution or Log-normal distribution, whereas the mixed traffic speed data follows more than one type of statistical distribution. The most common fit observed on mixed traffic speed data were Beta distribution and Weibull distribution. The separate operating speed model based on traffic and roadway geometric parameters were proposed in the present study. The operating speed model with traffic parameters and curve geometry parameters were established. Two different operating speed models were proposed with variables 1/R and Ln(R) and were found to be realistic with a different range of curve radius. The models developed in the present study are simple and realistic and can be used for forecasting operating speed on four-lane highways.Keywords: highway, mixed traffic flow, modeling, operating speed
Procedia PDF Downloads 4612094 Neuroprotective Effect of Chrysin on Thioacetamide-Induced Hepatic Encephalopathy in Rats: Role of Oxidative Stress and TLR-4/NF-κB Pathway
Authors: S. A. El-Marasy, S. A. El Awdan, R. M. Abd-Elsalam
Abstract:
This study aimed to investigate the possible neuroprotective effect of chrysin on thioacetamide (TAA)-induced hepatic encephalopathy in rats. Also, the effect of chrysin on motor impairment, cognitive deficits, oxidative stress, neuroinflammation, apoptosis and histopathological damage was assessed. Male Wistar rats were randomly allocated into five groups. The first group received the vehicle (distilled water) for 21 days and is considered as normal group. While the second one received intraperitoneal dose of TAA (200 mg/kg) at three alternative days during the third week of the experiment to induce HE and is considered as control group. The other three groups were orally administered chrysin for 21 days (25, 50, 100 mg/kg) and starting from day 17; rats received intraperitoneal dose of TAA (200 mg/kg) at three alternative days. Then behavioral, biochemical, histopathological and immunohistochemical analyses were assessed. Then behavioral, biochemical, histopathological and immunohistochemical analyses were assessed. Chrysin reversed TAA-induced motor coordination in rotarod test, cognitive deficits in object recognition test (ORT) and attenuated serum ammonia, hepatic liver enzymes, reduced malondialdehyde (MDA), elevated reduced glutathione (GSH), reduced nuclear factor kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α) and Interleukin-6 (IL-6) brain contents. Chrysin administration also reduced Toll-4 receptor (TLR-4) gene expression, caspase-3 protein expression, hepatic necrosis and astrocyte swelling. This study depicts that chrysin exerted neuroprotective effect in TAA-induced HE rats, evidenced by improvement of cognitive deficits, motor incoordination and histopathological changes such as astrocyte swelling and vacuolization; hallmarks in HE, via reducing hyperammonemia, ameliorating hepatic function, in addition to its anti-oxidant, inactivation of TLR-4/NF-κB inflammatory pathway, and anti-apoptotic effects.Keywords: chrysin, hepatic encephalopathy, oxidative stress, rats, thioacetamide, TLR4/NF-κB pathway
Procedia PDF Downloads 1632093 Vision-Based Collision Avoidance for Unmanned Aerial Vehicles by Recurrent Neural Networks
Authors: Yao-Hong Tsai
Abstract:
Due to the sensor technology, video surveillance has become the main way for security control in every big city in the world. Surveillance is usually used by governments for intelligence gathering, the prevention of crime, the protection of a process, person, group or object, or the investigation of crime. Many surveillance systems based on computer vision technology have been developed in recent years. Moving target tracking is the most common task for Unmanned Aerial Vehicle (UAV) to find and track objects of interest in mobile aerial surveillance for civilian applications. The paper is focused on vision-based collision avoidance for UAVs by recurrent neural networks. First, images from cameras on UAV were fused based on deep convolutional neural network. Then, a recurrent neural network was constructed to obtain high-level image features for object tracking and extracting low-level image features for noise reducing. The system distributed the calculation of the whole system to local and cloud platform to efficiently perform object detection, tracking and collision avoidance based on multiple UAVs. The experiments on several challenging datasets showed that the proposed algorithm outperforms the state-of-the-art methods.Keywords: unmanned aerial vehicle, object tracking, deep learning, collision avoidance
Procedia PDF Downloads 1672092 Solar Electric Propulsion: The Future of Deep Space Exploration
Authors: Abhishek Sharma, Arnab Banerjee
Abstract:
The research is intended to study the solar electric propulsion (SEP) technology for planetary missions. The main benefits of using solar electric propulsion for such missions are shorter flight times, more frequent target accessibility and the use of a smaller launch vehicle than that required by a comparable chemical propulsion mission. Energized by electric power from on-board solar arrays, the electrically propelled system uses 10 times less propellant than conventional chemical propulsion system, yet the reduced fuel mass can provide vigorous power which is capable of propelling robotic and crewed missions beyond the Lower Earth Orbit (LEO). The various thrusters used in the SEP are gridded ion thrusters and the Hall Effect thrusters. The research is solely aimed to study the ion thrusters and investigate the complications related to it and what can be done to overcome the glitches. The ion thrusters are used because they are found to have a total lower propellant requirement and have substantially longer time. In the ion thrusters, the anode pushes or directs the incoming electrons from the cathode. But the anode is not maintained at a very high potential which leads to divergence. Divergence leads to the charges interacting against the surface of the thruster. Just as the charges ionize the xenon gases, they are capable of ionizing the surfaces and over time destroy the surface and hence contaminate it. Hence the lifetime of thruster gets limited. So a solution to this problem is using substances which are not easy to ionize as the surface material. Another approach can be to increase the potential of anode so that the electrons don’t deviate much or reduce the length of thruster such that the positive anode is more effective. The aim is to work on these aspects as to how constriction of the deviation of charges can be done by keeping the input power constant and hence increase the lifetime of the thruster. Predominantly ring cusp magnets are used in the ion thrusters. However, the study is also intended to observe the effect of using solenoid for producing micro-solenoidal magnetic field apart from using the ring cusp magnetic field which are used in the discharge chamber for prevention of interaction of electrons with the ionization walls. Another foremost area of interest is what are the ways by which power can be provided to the Solar Electric Propulsion Vehicle for lowering and boosting the orbit of the spacecraft and also provide substantial amount of power to the solenoid for producing stronger magnetic fields. This can be successfully achieved by using the concept of Electro-dynamic tether which will serve as a power source for powering both the vehicle and the solenoids in the ion thruster and hence eliminating the need for carrying extra propellant on the spacecraft which will reduce the weight and hence reduce the cost of space propulsion.Keywords: electro-dynamic tether, ion thruster, lifetime of thruster, solar electric propulsion vehicle
Procedia PDF Downloads 2142091 Fuel Cells Not Only for Cars: Technological Development in Railways
Authors: Marita Pigłowska, Beata Kurc, Paweł Daszkiewicz
Abstract:
Railway vehicles are divided into two groups: traction (powered) vehicles and wagons. The traction vehicles include locomotives (line and shunting), railcars (sometimes referred to as railbuses), and multiple units (electric and diesel), consisting of several or a dozen carriages. In vehicles with diesel traction, fuel energy (petrol, diesel, or compressed gas) is converted into mechanical energy directly in the internal combustion engine or via electricity. In the latter case, the combustion engine generator produces electricity that is then used to drive the vehicle (diesel-electric drive or electric transmission). In Poland, such a solution dominates both in heavy linear and shunting locomotives. The classic diesel drive is available for the lightest shunting locomotives, railcars, and passenger diesel multiple units. Vehicles with electric traction do not have their own source of energy -they use pantographs to obtain electricity from the traction network. To determine the competitiveness of the hydrogen propulsion system, it is essential to understand how it works. The basic elements of the construction of a railway vehicle drive system that uses hydrogen as a source of traction force are fuel cells, batteries, fuel tanks, traction motors as well as main and auxiliary converters. The compressed hydrogen is stored in tanks usually located on the roof of the vehicle. This resource is supplemented with the use of specialized infrastructure while the vehicle is stationary. Hydrogen is supplied to the fuel cell, where it oxidizes. The effect of this chemical reaction is electricity and water (in two forms -liquid and water vapor). Electricity is stored in batteries (so far, lithium-ion batteries are used). Electricity stored in this way is used to drive traction motors and supply onboard equipment. The current generated by the fuel cell passes through the main converter, whose task is to adjust it to the values required by the consumers, i.e., batteries and the traction motor. The work will attempt to construct a fuel cell with unique electrodes. This research is a trend that connects industry with science. The first goal will be to obtain hydrogen on a large scale in tube furnaces, to thoroughly analyze the obtained structures (IR), and to apply the method in fuel cells. The second goal is to create low-energy energy storage and distribution station for hydrogen and electric vehicles. The scope of the research includes obtaining a carbon variety and obtaining oxide systems on a large scale using a tubular furnace and then supplying vehicles. Acknowledgments: This work is supported by the Polish Ministry of Science and Education, project "The best of the best! 4.0", number 0911/MNSW/4968 – M.P. and grant 0911/SBAD/2102—B.K.Keywords: railway, hydrogen, fuel cells, hybrid vehicles
Procedia PDF Downloads 1942090 Conventional Four Steps Travel Demand Modeling for Kabul New City
Authors: Ahmad Mansoor Stanikzai, Yoshitaka Kajita
Abstract:
This research is a very essential towards transportation planning of Kabul New City. In this research, the travel demand of Kabul metropolitan area (Existing and Kabul New City) are evaluated for three different target years (2015, current, 2025, mid-term, 2040, long-term). The outcome of this study indicates that, though currently the vehicle volume is less the capacity of existing road networks, Kabul city is suffering from daily traffic congestions. This is mainly due to lack of transportation management, the absence of proper policies, improper public transportation system and violation of traffic rules and regulations by inhabitants. On the other hand, the observed result indicates that the current vehicle to capacity ratio (VCR) which is the most used index to judge traffic status in the city is around 0.79. This indicates the inappropriate traffic condition of the city. Moreover, by the growth of population in mid-term (2025) and long-term (2040) and in the case of no development in the road network and transportation system, the VCR value will dramatically increase to 1.40 (2025) and 2.5 (2040). This can be a critical situation for an urban area from an urban transportation perspective. Thus, by introducing high-capacity public transportation system and the development of road network in Kabul New City and integrating these links with the existing city road network, significant improvements were observed in the value of VCR.Keywords: Afghanistan, Kabul new city, planning, policy, urban transportation
Procedia PDF Downloads 3342089 The Experience of Applying Multi-Sensory Stimulation ICU for Arousing a Patient with Traumatic Brain Injury in Intensive Care
Authors: Hsiao-Wen Tsai
Abstract:
Motor vehicle accident is the first cause of head injury in the world; severe head injury cases may cause conscious disturbance and death. This is a report about a case of a young adult patient suffering from motor vehicle accident leading to severe head injury who passed through three time surgical procedures, and his mother (who is the informal caregiver). This case was followed from 28th January to 15th February 2011 by using Gordon’s 11 functional health patterns. Patient’s cognitive-perceptual and self-perception-self-concept patterns were altered. Anxiety was also noted on his informal caregiver due to patients’ condition. During the intensive care period, maintaining patient’s vital signs and cerebral perfusion pressure were essential to avoid secondary neuronal injury. Multi-sensory stimulation, caring accompanying, supporting, listening and encouraging patient’s family involved in patient care were very important to reduce informal caregiver anxiety. Finally, the patient consciousness improved from GCS 4 to GCS 11 before discharging from ICU. Patient’s primary informal caregiver, his mother, also showed anxiety improvement. This is was successful case with traumatic brain injury recovered from coma.Keywords: anxiety, multi-sensory stimulation, reduce intracranial adaptive capacity, traumatic brain injury
Procedia PDF Downloads 2712088 Real-Time Web Map Service Based on Solar-Powered Unmanned Aerial Vehicle
Authors: Sunghun Jung
Abstract:
The existing web map service providers contract with the satellite operators to update their maps by paying an astronomical amount of money, but the cost could be minimized by operating a cheap and small UAV. In contrast to the satellites, we only need to replace aged battery packs from time to time for the usage of UAVs. Utilizing both a regular camera and an infrared camera mounted on a small, solar-powered, long-endurance, and hoverable UAV, daytime ground surface photographs, and nighttime infrared photographs will be continuously and repeatedly uploaded to the web map server and overlapped with the existing ground surface photographs in real-time. The real-time web map service using a small, solar-powered, long-endurance, and hoverable UAV can also be applied to the surveillance missions, in particular, to detect border area intruders. The improved real-time image stitching algorithm is developed for the graphic map data overlapping. Also, a small home server will be developed to manage the huge size of incoming map data. The map photographs taken at tens or hundreds of kilometers by a UAV would improve the map graphic resolution compared to the map photographs taken at thousands of kilometers by satellites since the satellite photographs are limited by weather conditions.Keywords: long-endurance, real-time web map service (RWMS), solar-powered, unmanned aerial vehicle (UAV)
Procedia PDF Downloads 2802087 Effective Nutrition Label Use on Smartphones
Authors: Vladimir Kulyukin, Tanwir Zaman, Sarat Kiran Andhavarapu
Abstract:
Research on nutrition label use identifies four factors that impede comprehension and retention of nutrition information by consumers: label’s location on the package, presentation of information within the label, label’s surface size, and surrounding visual clutter. In this paper, a system is presented that makes nutrition label use more effective for nutrition information comprehension and retention. The system’s front end is a smartphone application. The system’s back end is a four node Linux cluster for image recognition and data storage. Image frames captured on the smartphone are sent to the back end for skewed or aligned barcode recognition. When barcodes are recognized, corresponding nutrition labels are retrieved from a cloud database and presented to the user on the smartphone’s touchscreen. Each displayed nutrition label is positioned centrally on the touchscreen with no surrounding visual clutter. Wikipedia links to important nutrition terms are embedded to improve comprehension and retention of nutrition information. Standard touch gestures (e.g., zoom in/out) available on mainstream smartphones are used to manipulate the label’s surface size. The nutrition label database currently includes 200,000 nutrition labels compiled from public web sites by a custom crawler. Stress test experiments with the node cluster are presented. Implications for proactive nutrition management and food policy are discussed.Keywords: mobile computing, cloud computing, nutrition label use, nutrition management, barcode scanning
Procedia PDF Downloads 3782086 Competitiveness of a Share Autonomous Electrical Vehicle Fleet Compared to Traditional Means of Transport: A Case Study for Transportation Network Companies
Authors: Maximilian Richter
Abstract:
Implementing shared autonomous electric vehicles (SAEVs) has many advantages. The main advantages are achieved when SAEVs are offered as on-demand services by a fleet operator. However, autonomous mobility on demand (AMoD) will be distributed nationwide only if a fleet operation is economically profitable for the operator. This paper proposes a microscopic approach to modeling two implementation scenarios of an AMoD fleet. The city of Zurich is used as a case study, with the results and findings being generalizable to other similar European and North American cities. The data are based on the traffic model of the canton of Zurich (Gesamtverkehrsmodell des Kantons Zürich (GVM-ZH)). To determine financial profitability, demand is based on the simulation results and combined with analyzing the costs of a SAEV per kilometer. The results demonstrate that depending on the scenario; journeys can be offered profitably to customers for CHF 0.3 up to CHF 0.4 per kilometer. While larger fleets allowed for lower price levels and increased profits in the long term, smaller fleets exhibit elevated efficiency levels and profit opportunities per day. The paper concludes with recommendations for how fleet operators can prepare themselves to maximize profit in the autonomous future.Keywords: autonomous vehicle, mobility on demand, traffic simulation, fleet provider
Procedia PDF Downloads 1282085 Flexible Integration of Airbag Weakening Lines in Interior Components: Airbag Weakening with Jenoptik Laser Technology
Authors: Markus Remm, Sebastian Dienert
Abstract:
Vehicle interiors are not only changing in terms of design and functionality but also due to new driving situations in which, for example, autonomous operating modes are possible. Flexible seating positions are changing the requirements for passive safety system behavior and location in the interior of a vehicle. With fully autonomous driving, the driver can, for example, leave the position behind the steering wheel and take a seated position facing backward. Since autonomous and non-autonomous vehicles will share the same road network for the foreseeable future, accidents cannot be avoided, which makes the use of passive safety systems indispensable. With JENOPTIK-VOTAN® A technology, the trend towards flexible predetermined airbag weakening lines is enabled. With the help of laser beams, the predetermined weakening lines are introduced from the backside of the components so that they are absolutely invisible. This machining process is sensor-controlled and guarantees that a small residual wall thickness remains for the best quality and reliability for airbag weakening lines. Due to the wide processing range of the laser, the processing of almost all materials is possible. A CO₂ laser is used for many plastics, natural fiber materials, foams, foils and material composites. A femtosecond laser is used for natural materials and textiles that are very heat-sensitive. This laser type has extremely short laser pulses with very high energy densities. Supported by a high-precision and fast movement of the laser beam by a laser scanner system, the so-called cold ablation is enabled to predetermine weakening lines layer by layer until the desired residual wall thickness remains. In that way, for example, genuine leather can be processed in a material-friendly and process-reliable manner without design implications to the components A-Side. Passive safety in the vehicle is increased through the interaction of modern airbag technology and high-precision laser airbag weakening. The JENOPTIK-VOTAN® A product family has been representing this for more than 25 years and is pointing the way to the future with new and innovative technologies.Keywords: design freedom, interior material processing, laser technology, passive safety
Procedia PDF Downloads 1292084 Re-identification Risk and Mitigation in Federated Learning: Human Activity Recognition Use Case
Authors: Besma Khalfoun
Abstract:
In many current Human Activity Recognition (HAR) applications, users' data is frequently shared and centrally stored by third parties, posing a significant privacy risk. This practice makes these entities attractive targets for extracting sensitive information about users, including their identity, health status, and location, thereby directly violating users' privacy. To tackle the issue of centralized data storage, a relatively recent paradigm known as federated learning has emerged. In this approach, users' raw data remains on their smartphones, where they train the HAR model locally. However, users still share updates of their local models originating from raw data. These updates are vulnerable to several attacks designed to extract sensitive information, such as determining whether a data sample is used in the training process, recovering the training data with inversion attacks, or inferring a specific attribute or property from the training data. In this paper, we first introduce PUR-Attack, a parameter-based user re-identification attack developed for HAR applications within a federated learning setting. It involves associating anonymous model updates (i.e., local models' weights or parameters) with the originating user's identity using background knowledge. PUR-Attack relies on a simple yet effective machine learning classifier and produces promising results. Specifically, we have found that by considering the weights of a given layer in a HAR model, we can uniquely re-identify users with an attack success rate of almost 100%. This result holds when considering a small attack training set and various data splitting strategies in the HAR model training. Thus, it is crucial to investigate protection methods to mitigate this privacy threat. Along this path, we propose SAFER, a privacy-preserving mechanism based on adaptive local differential privacy. Before sharing the model updates with the FL server, SAFER adds the optimal noise based on the re-identification risk assessment. Our approach can achieve a promising tradeoff between privacy, in terms of reducing re-identification risk, and utility, in terms of maintaining acceptable accuracy for the HAR model.Keywords: federated learning, privacy risk assessment, re-identification risk, privacy preserving mechanisms, local differential privacy, human activity recognition
Procedia PDF Downloads 172083 Performance Assessment of Multi-Level Ensemble for Multi-Class Problems
Authors: Rodolfo Lorbieski, Silvia Modesto Nassar
Abstract:
Many supervised machine learning tasks require decision making across numerous different classes. Multi-class classification has several applications, such as face recognition, text recognition and medical diagnostics. The objective of this article is to analyze an adapted method of Stacking in multi-class problems, which combines ensembles within the ensemble itself. For this purpose, a training similar to Stacking was used, but with three levels, where the final decision-maker (level 2) performs its training by combining outputs from the tree-based pair of meta-classifiers (level 1) from Bayesian families. These are in turn trained by pairs of base classifiers (level 0) of the same family. This strategy seeks to promote diversity among the ensembles forming the meta-classifier level 2. Three performance measures were used: (1) accuracy, (2) area under the ROC curve, and (3) time for three factors: (a) datasets, (b) experiments and (c) levels. To compare the factors, ANOVA three-way test was executed for each performance measure, considering 5 datasets by 25 experiments by 3 levels. A triple interaction between factors was observed only in time. The accuracy and area under the ROC curve presented similar results, showing a double interaction between level and experiment, as well as for the dataset factor. It was concluded that level 2 had an average performance above the other levels and that the proposed method is especially efficient for multi-class problems when compared to binary problems.Keywords: stacking, multi-layers, ensemble, multi-class
Procedia PDF Downloads 2712082 Electromechanical-Traffic Model of Compression-Based Piezoelectric Energy Harvesting System
Authors: Saleh Gareh, B. C. Kok, H. H. Goh
Abstract:
Piezoelectric energy harvesting has advantages over other alternative sources due to its large power density, ease of applications, and capability to be fabricated at different scales: macro, micro, and nano. This paper presents an electromechanical-traffic model for roadway compression-based piezoelectric energy harvesting system. A two-degree-of-freedom (2-DOF) electromechanical model has been developed for the piezoelectric energy harvesting unit to define its performance in power generation under a number of external excitations on road surface. Lead Zirconate Titanate (PZT-5H) is selected as the piezoelectric material to be used in this paper due to its high Piezoelectric Charge Constant (d) and Piezoelectric Voltage Constant (g) values. The main source of vibration energy that has been considered in this paper is the moving vehicle on the road. The effect of various frequencies on possible generated power caused by different vibration characteristics of moving vehicle has been studied. A single unit of circle-shape Piezoelectric Cymbal Transducer (PCT) with diameter of 32 mm and thickness of 0.3 mm be able to generate about 0.8 mW and 3 mW of electric power under 4 Hz and 20 Hz of excitation, respectively. The estimated power to be generated for multiple arrays of PCT is approximately 150 kW/ km. Thus, the developed electromechanical-traffic model has enormous potential to be used in estimating the macro scale of roadway power generation system.Keywords: piezoelectric energy harvesting, cymbal transducer, PZT (lead zirconate titanate), 2-DOF
Procedia PDF Downloads 3582081 Landslide Study Using Unmanned Aerial Vehicle and Resistivity Survey at Bkt Kukus, Penang Island, Malaysia
Authors: Kamal Bahrin Jaafar
Abstract:
The study area is located at Bukit Kukus, Penang where the construction of twin road project in ongoing. A landslide event has occurred on 19th October 2018, which causes fatal deaths. The purpose of this study is to figure out the causes of failure, the estimated volume of failure, and its balance. The study comprises of unmanned aerial vehicle (UAV) sensing and resistivity survey. The resistivity method includes spreading three lines of 200m length resistivity survey with the depth of penetration in the subsurface not exceeding 35m. The result of UAV shows the current view of the site condition. Based on resistivity result, the dominant layer in the study area consists of residual soil/filling material with a thickness of more than 35m. Three selected cross sections from construction drawing are overlain with the current cross sections to understand more on the condition of the subsurface profile. By comparison, there is a difference between past and present topography. The combination of result from the previous data and current condition shows the calculated volume of failure is 85,000 m³, and its balance is 50,000 m³. In conclusion, the failure occurs since the contractor has conducted the construction works without following the construction drawing supplied by the consultant. Besides, the cause of failure is triggered by the geology condition, such as a fault that should be considered prior to the commencement of work.Keywords: UAV, landslide, resistivity survey, cause of failure
Procedia PDF Downloads 1172080 Entrepreneurial Leadership in Malaysian Public University: Competency and Behavior in the Face of Institutional Adversity
Authors: Noorlizawati Abd Rahim, Zainai Mohamed, Zaidatun Tasir, Astuty Amrin, Haliyana Khalid, Nina Diana Nawi
Abstract:
Entrepreneurial leaders have been sought as in-demand talents to lead profit-driven organizations during turbulent and unprecedented times. However, research regarding the pertinence of their roles in the public sector has been limited. This paper examined the characteristics of the challenging experiences encountered by senior leaders in public universities that require them to embrace entrepreneurialism in their leadership. Through a focus group interview with five Malaysian university top senior leaders with experience being Vice-Chancellor, we explored and developed a framework of institutional adversity characteristics and exemplary entrepreneurial leadership competency in the face of adversity. Complexity of diverse stakeholders, multiplicity of academic disciplines, unfamiliarity to lead different and broader roles, leading new directions, and creating change in high velocity and uncertain environment are among the dimensions that characterise institutional adversities. Our findings revealed that learning agility, opportunity recognition capacity, and bridging capability are among the characteristics of entrepreneurial university leaders. The findings reinforced that the presence of specific attributes in institutional adversity and experiences in overcoming those challenges may contribute to the development of entrepreneurial leadership capabilities.Keywords: bridging capability, entrepreneurial leadership, leadership development, learning agility, opportunity recognition, university leaders
Procedia PDF Downloads 1152079 Aerothermal Analysis of the Brazilian 14-X Hypersonic Aerospace Vehicle at Mach Number 7
Authors: Felipe J. Costa, João F. A. Martos, Ronaldo L. Cardoso, Israel S. Rêgo, Marco A. S. Minucci, Antonio C. Oliveira, Paulo G. P. Toro
Abstract:
The Prof. Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics, at the Institute for Advanced Studies designed the Brazilian 14-X Hypersonic Aerospace Vehicle, which is a technological demonstrator endowed with two innovative technologies: waverider technology, to obtain lift from conical shockwave during the hypersonic flight; and uses hypersonic airbreathing propulsion system called scramjet that is based on supersonic combustion, to perform flights on Earth's atmosphere at 30 km altitude at Mach numbers 7 and 10. The scramjet is an aeronautical engine without moving parts that promote compression and deceleration of freestream atmospheric air at the inlet through the conical/oblique shockwaves generated during the hypersonic flight. During high speed flight, the shock waves and the viscous forces yield the phenomenon called aerodynamic heating, where this physical meaning is the friction between the fluid filaments and the body or compression at the stagnation regions of the leading edge that converts the kinetic energy into heat within a thin layer of air which blankets the body. The temperature of this layer increases with the square of the speed. This high temperature is concentrated in the boundary-layer, where heat will flow readily from the boundary-layer to the hypersonic aerospace vehicle structure. Fay and Riddell and Eckert methods are applied to the stagnation point and to the flat plate segments in order to calculate the aerodynamic heating. On the understanding of the aerodynamic heating it is important to analyze the heat conduction transfer to the 14-X waverider internal structure. ANSYS Workbench software provides the Thermal Numerical Analysis, using Finite Element Method of the 14-X waverider unpowered scramjet at 30 km altitude at Mach number 7 and 10 in terms of temperature and heat flux. Finally, it is possible to verify if the internal temperature complies with the requirements for embedded systems, and, if is necessary to do modifications on the structure in terms of wall thickness and materials.Keywords: aerodynamic heating, hypersonic, scramjet, thermal analysis
Procedia PDF Downloads 4612078 Optimization of the Dental Direct Digital Imaging by Applying the Self-Recognition Technology
Authors: Mina Dabirinezhad, Mohsen Bayat Pour, Amin Dabirinejad
Abstract:
This paper is intended to introduce the technology to solve some of the deficiencies of the direct digital radiology. Nowadays, digital radiology is the latest progression in dental imaging, which has become an essential part of dentistry. There are two main parts of the direct digital radiology comprised of an intraoral X-ray machine and a sensor (digital image receptor). The dentists and the dental nurses experience afflictions during the taking image process by the direct digital X-ray machine. For instance, sometimes they need to readjust the sensor in the mouth of the patient to take the X-ray image again due to the low quality of that. Another problem is, the position of the sensor may move in the mouth of the patient and it triggers off an inappropriate image for the dentists. It means that it is a time-consuming process for dentists or dental nurses. On the other hand, taking several the X-ray images brings some problems for the patient such as being harmful to their health and feeling pain in their mouth due to the pressure of the sensor to the jaw. The author provides a technology to solve the above-mentioned issues that is called “Self-Recognition Direct Digital Radiology” (SDDR). This technology is based on the principle that the intraoral X-ray machine is capable to diagnose the location of the sensor in the mouth of the patient automatically. In addition, to solve the aforementioned problems, SDDR technology brings out fewer environmental impacts in comparison to the previous version.Keywords: Dental direct digital imaging, digital image receptor, digital x-ray machine, and environmental impacts
Procedia PDF Downloads 1422077 Development of a New Characterization Method to Analyse Cypermethrin Penetration in Wood Material by Immunolabelling
Authors: Sandra Tapin-Lingua, Katia Ruel, Jean-Paul Joseleau, Daouia Messaoudi, Olivier Fahy, Michel Petit-Conil
Abstract:
The preservative efficacy of organic biocides is strongly related to their capacity of penetration and retention within wood tissues. The specific detection of the pyrethroid insecticide is currently obtained after extraction followed by chemical analysis by chromatography techniques. However visualizing the insecticide molecule within the wood structure requires specific probes together with microscopy techniques. Therefore, the aim of the present work was to apply a new methodology based on antibody-antigen recognition and electronic microscopy to visualize directly pyrethroids in the wood material. A polyclonal antibody directed against cypermethrin was developed and implement it on Pinus sylvestris wood samples coated with technical cypermethrin. The antibody was tested on impregnated wood and the specific recognition of the insecticide was visualized in transmission electron microscopy (TEM). The immunogold-TEM assay evidenced the capacity of the synthetic biocide to penetrate in the wood. The depth of penetration was measured on sections taken at increasing distances from the coated surface of the wood. Such results correlated with chemical analyzes carried out by GC-ECD after extraction. In addition, the immuno-TEM investigation allowed visualizing, for the first time at the ultrastructure scale of resolution, that cypermethrin was able to diffuse within the secondary wood cell walls.Keywords: cypermethrin, insecticide, wood penetration, wood retention, immuno-transmission electron microscopy, polyclonal antibody
Procedia PDF Downloads 4182076 Machine Learning and Deep Learning Approach for People Recognition and Tracking in Crowd for Safety Monitoring
Authors: A. Degale Desta, Cheng Jian
Abstract:
Deep learning application in computer vision is rapidly advancing, giving it the ability to monitor the public and quickly identify potentially anomalous behaviour from crowd scenes. Therefore, the purpose of the current work is to improve the performance of safety of people in crowd events from panic behaviour through introducing the innovative idea of Aggregation of Ensembles (AOE), which makes use of the pre-trained ConvNets and a pool of classifiers to find anomalies in video data with packed scenes. According to the theory of algorithms that applied K-means, KNN, CNN, SVD, and Faster-CNN, YOLOv5 architectures learn different levels of semantic representation from crowd videos; the proposed approach leverages an ensemble of various fine-tuned convolutional neural networks (CNN), allowing for the extraction of enriched feature sets. In addition to the above algorithms, a long short-term memory neural network to forecast future feature values and a handmade feature that takes into consideration the peculiarities of the crowd to understand human behavior. On well-known datasets of panic situations, experiments are run to assess the effectiveness and precision of the suggested method. Results reveal that, compared to state-of-the-art methodologies, the system produces better and more promising results in terms of accuracy and processing speed.Keywords: action recognition, computer vision, crowd detecting and tracking, deep learning
Procedia PDF Downloads 1682075 The Visible Third: Female Artists’ Participation in the Portuguese Contemporary Art World
Authors: Sonia Bernardo Correia
Abstract:
This paper is part of ongoing research that aims to understand the role of gender in the composition of the Portuguese contemporary art world and the possibilities and limits to the success of the professional paths of women and men artists. The field of visual arts is gender-sensitive as it differentiates the positions occupied by artists in terms of visibility and recognition. Women artists occupy a peripheral space, which may hinder the progression of their professional careers. Based on the collection of data on the participation of artists in Portuguese exhibitions, art fairs, auctions, and art awards between 2012 and 2019, the goal of this study is to portray female artists’ participation as a condition of professional, social, and cultural visibility. From the analysis of a significant sample of institutions from the artistic field, it was possible to observe that the works of female authors are under exhibited, never exceeding one-third of the total of exhibitions. Male artists also enjoy a comfortable majority as gallery artists (around 70%) and as part of institutional collections (around 80%). However, when analysing the younger age cohorts of artists by gender, it appears that there is representation parity, which may be a good sign of change. The data shows that there are persistent gender inequalities in accessing the artist profession. Women are not yet occupying positions of exposure, recognition, and legitimation in the market similar to those of their male counterparts, suggesting that they may face greater obstacles in experiencing successful professional trajectories.Keywords: inequalities, invisibility of the woman artist, gender, visual arts
Procedia PDF Downloads 1412074 Drag Reduction of Base Bleed at Various Flight Conditions
Authors: Man Chul Jeong, Hyoung Jin Lee, Sang Yoon Lee, Ji Hyun Park, Min Wook Chang, In-Seuck Jeung
Abstract:
This study focus on the drag reduction effect of the base bleed at supersonic flow. Base bleed is the method which bleeds the gas on the tail of the flight vehicle and reduces the base drag, which occupies over 50% of the total drag in any flight speed. Thus base bleed can reduce the total drag significantly, and enhance the total flight range. Drag reduction ratio of the base bleed is strongly related to the mass flow rate of the bleeding gas. Thus selecting appropriate mass flow rate is important. However, since the flight vehicle has various flight speed, same mass flow rate of the base bleed can have different drag reduction effect during the flight. Thus, this study investigates the effect of the drag reduction depending on the flight speed by numerical analysis using STAR-CCM+. The analysis model is 155mm diameter projectile with boat-tailed shape base. Angle of the boat-tail is chosen previously for minimum drag coefficient. Numerical analysis is conducted for Mach 2 and Mach 3, with various mass flow rate, or the injection parameter I, of the bleeding gas and the temperature of the bleeding gas, is fixed to 300K. The results showed that I=0.025 has the minimum drag at Mach 2, and I=0.014 has the minimum drag at Mach 3. Thus as the Mach number is higher, the lower mass flow rate of the base bleed has more effect on drag reduction.Keywords: base bleed, supersonic, drag reduction, recirculation
Procedia PDF Downloads 4182073 Sign Language Recognition of Static Gestures Using Kinect™ and Convolutional Neural Networks
Authors: Rohit Semwal, Shivam Arora, Saurav, Sangita Roy
Abstract:
This work proposes a supervised framework with deep convolutional neural networks (CNNs) for vision-based sign language recognition of static gestures. Our approach addresses the acquisition and segmentation of correct inputs for the CNN-based classifier. Microsoft Kinect™ sensor, despite complex environmental conditions, can track hands efficiently. Skin Colour based segmentation is applied on cropped images of hands in different poses, used to depict different sign language gestures. The segmented hand images are used as an input for our classifier. The CNN classifier proposed in the paper is able to classify the input images with a high degree of accuracy. The system was trained and tested on 39 static sign language gestures, including 26 letters of the alphabet and 13 commonly used words. This paper includes a problem definition for building the proposed system, which acts as a sign language translator between deaf/mute and the rest of the society. It is then followed by a focus on reviewing existing knowledge in the area and work done by other researchers. It also describes the working principles behind different components of CNNs in brief. The architecture and system design specifications of the proposed system are discussed in the subsequent sections of the paper to give the reader a clear picture of the system in terms of the capability required. The design then gives the top-level details of how the proposed system meets the requirements.Keywords: sign language, CNN, HCI, segmentation
Procedia PDF Downloads 1612072 Speech Enhancement Using Wavelet Coefficients Masking with Local Binary Patterns
Authors: Christian Arcos, Marley Vellasco, Abraham Alcaim
Abstract:
In this paper, we present a wavelet coefficients masking based on Local Binary Patterns (WLBP) approach to enhance the temporal spectra of the wavelet coefficients for speech enhancement. This technique exploits the wavelet denoising scheme, which splits the degraded speech into pyramidal subband components and extracts frequency information without losing temporal information. Speech enhancement in each high-frequency subband is performed by binary labels through the local binary pattern masking that encodes the ratio between the original value of each coefficient and the values of the neighbour coefficients. This approach enhances the high-frequency spectra of the wavelet transform instead of eliminating them through a threshold. A comparative analysis is carried out with conventional speech enhancement algorithms, demonstrating that the proposed technique achieves significant improvements in terms of PESQ, an international recommendation of objective measure for estimating subjective speech quality. Informal listening tests also show that the proposed method in an acoustic context improves the quality of speech, avoiding the annoying musical noise present in other speech enhancement techniques. Experimental results obtained with a DNN based speech recognizer in noisy environments corroborate the superiority of the proposed scheme in the robust speech recognition scenario.Keywords: binary labels, local binary patterns, mask, wavelet coefficients, speech enhancement, speech recognition
Procedia PDF Downloads 2312071 Structural Development and Multiscale Design Optimization of Additively Manufactured Unmanned Aerial Vehicle with Blended Wing Body Configuration
Authors: Malcolm Dinovitzer, Calvin Miller, Adam Hacker, Gabriel Wong, Zach Annen, Padmassun Rajakareyar, Jordan Mulvihill, Mostafa S.A. ElSayed
Abstract:
The research work presented in this paper is developed by the Blended Wing Body (BWB) Unmanned Aerial Vehicle (UAV) team, a fourth-year capstone project at Carleton University Department of Mechanical and Aerospace Engineering. Here, a clean sheet UAV with BWB configuration is designed and optimized using Multiscale Design Optimization (MSDO) approach employing lattice materials taking into consideration design for additive manufacturing constraints. The BWB-UAV is being developed with a mission profile designed for surveillance purposes with a minimum payload of 1000 grams. To demonstrate the design methodology, a single design loop of a sample rib from the airframe is shown in details. This includes presentation of the conceptual design, materials selection, experimental characterization and residual thermal stress distribution analysis of additively manufactured materials, manufacturing constraint identification, critical loads computations, stress analysis and design optimization. A dynamic turbulent critical load case was identified composed of a 1-g static maneuver with an incremental Power Spectral Density (PSD) gust which was used as a deterministic design load case for the design optimization. 2D flat plate Doublet Lattice Method (DLM) was used to simulate aerodynamics in the aeroelastic analysis. The aerodynamic results were verified versus a 3D CFD analysis applying Spalart-Allmaras and SST k-omega turbulence to the rigid UAV and vortex lattice method applied in the OpenVSP environment. Design optimization of a single rib was conducted using topology optimization as well as MSDO. Compared to a solid rib, weight savings of 36.44% and 59.65% were obtained for the topology optimization and the MSDO, respectively. These results suggest that MSDO is an acceptable alternative to topology optimization in weight critical applications while preserving the functional requirements.Keywords: blended wing body, multiscale design optimization, additive manufacturing, unmanned aerial vehicle
Procedia PDF Downloads 383