Search results for: 3D smart network composite structures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11379

Search results for: 3D smart network composite structures

1389 Mandate of Heaven and Serving the People in Chinese Political Rhetoric: An Evolving Discourse System across Three Thousand Years

Authors: Weixiao Wei, Chris Shei

Abstract:

This paper describes Mandate of Heaven as a source of justification for the ruling regime from ancient China approximately three thousand years ago. Initially, the kings of Shang dynasty simply nominated themselves as the sons of Heaven sent to Earth to rule the common people. As the last generation of the kings became corrupted and ruled withbrutal force and crueltywhich directly caused their destruction, the successive kings of Zhou dynasty realised the importance of virtue and the provision of goods to the people. Legitimacy of the ruling regimes became rested not entirely on random allocation of the throne by an unknown supernatural force but on a foundation comprising morality and the ability to provide goods. The latter composite was picked up by the current ruling regime, the Chinese Communist Party, and became the cornerstone of its political legitimacy, also known as ‘performance legitimacy’ where economic development accounts for the satisfaction of the people in place of election and other democratic means of providing legal-rational legitimacy. Under this circumstance, it becomes important as well for the ruling party to use political rhetoric to convince people of the good performance of the government in the economy, morality, and foreign policy. Thus, we see a lot of propaganda materials in both government policy statements and international press conference announcements. The former consists mainly of important speeches made by prominent figures in Party conferences which are not only made publicly available on the government websites but also become obligatory reading materials for university entrance examinations. The later consists of announcements about foreign policies and strategies and actions taken by the government regarding foreign affairsmade in international conferences and offered in Chinese-English bilingual versions on official websites. This documentation strategy creates an impressive image of the Chinese Communist Party that is domestically competent and international strong, taking care of the people it governs in terms of economic needs and defending the country against any foreign interference and global adversities. This political discourse system comprising reading materials fully extractable from government websites also becomes excellent repertoire for teaching and researching in contemporary Chinese language, discourse and rhetoric, Chinese culture and tradition, Chinese political ideology, and Chinese-English translation. This paper aims to provide a detailed and comprehensive description of the current Chinese political discourse system, arguing about its lineage from the rhetorical convention of Mandate of Heaven in ancient China and its current concentration on serving the people in place of election, human rights, and freedom of speech. The paper will also provide guidelines as to how this discourse system and the manifestation of official documents created under this system can become excellent research and teaching materials in applied linguistics.

Keywords: mandate of heaven, Chinese communist party, performance legitimacy, serving the people, political discourse

Procedia PDF Downloads 110
1388 Sentiment Analysis of Fake Health News Using Naive Bayes Classification Models

Authors: Danielle Shackley, Yetunde Folajimi

Abstract:

As more people turn to the internet seeking health-related information, there is more risk of finding false, inaccurate, or dangerous information. Sentiment analysis is a natural language processing technique that assigns polarity scores to text, ranging from positive, neutral, and negative. In this research, we evaluate the weight of a sentiment analysis feature added to fake health news classification models. The dataset consists of existing reliably labeled health article headlines that were supplemented with health information collected about COVID-19 from social media sources. We started with data preprocessing and tested out various vectorization methods such as Count and TFIDF vectorization. We implemented 3 Naive Bayes classifier models, including Bernoulli, Multinomial, and Complement. To test the weight of the sentiment analysis feature on the dataset, we created benchmark Naive Bayes classification models without sentiment analysis, and those same models were reproduced, and the feature was added. We evaluated using the precision and accuracy scores. The Bernoulli initial model performed with 90% precision and 75.2% accuracy, while the model supplemented with sentiment labels performed with 90.4% precision and stayed constant at 75.2% accuracy. Our results show that the addition of sentiment analysis did not improve model precision by a wide margin; while there was no evidence of improvement in accuracy, we had a 1.9% improvement margin of the precision score with the Complement model. Future expansion of this work could include replicating the experiment process and substituting the Naive Bayes for a deep learning neural network model.

Keywords: sentiment analysis, Naive Bayes model, natural language processing, topic analysis, fake health news classification model

Procedia PDF Downloads 97
1387 Testing the Simplification Hypothesis in Constrained Language Use: An Entropy-Based Approach

Authors: Jiaxin Chen

Abstract:

Translations have been labeled as more simplified than non-translations, featuring less diversified and more frequent lexical items and simpler syntactic structures. Such simplified linguistic features have been identified in other bilingualism-influenced language varieties, including non-native and learner language use. Therefore, it has been proposed that translation could be studied within a broader framework of constrained language, and simplification is one of the universal features shared by constrained language varieties due to similar cognitive-physiological and social-interactive constraints. Yet contradicting findings have also been presented. To address this issue, this study intends to adopt Shannon’s entropy-based measures to quantify complexity in language use. Entropy measures the level of uncertainty or unpredictability in message content, and it has been adapted in linguistic studies to quantify linguistic variance, including morphological diversity and lexical richness. In this study, the complexity of lexical and syntactic choices will be captured by word-form entropy and pos-form entropy, and a comparison will be made between constrained and non-constrained language use to test the simplification hypothesis. The entropy-based method is employed because it captures both the frequency of linguistic choices and their evenness of distribution, which are unavailable when using traditional indices. Another advantage of the entropy-based measure is that it is reasonably stable across languages and thus allows for a reliable comparison among studies on different language pairs. In terms of the data for the present study, one established (CLOB) and two self-compiled corpora will be used to represent native written English and two constrained varieties (L2 written English and translated English), respectively. Each corpus consists of around 200,000 tokens. Genre (press) and text length (around 2,000 words per text) are comparable across corpora. More specifically, word-form entropy and pos-form entropy will be calculated as indicators of lexical and syntactical complexity, and ANOVA tests will be conducted to explore if there is any corpora effect. It is hypothesized that both L2 written English and translated English have lower entropy compared to non-constrained written English. The similarities and divergences between the two constrained varieties may provide indications of the constraints shared by and peculiar to each variety.

Keywords: constrained language use, entropy-based measures, lexical simplification, syntactical simplification

Procedia PDF Downloads 94
1386 Development and application of Humidity-Responsive Controlled Release Active Packaging Based on Electrospinning Nanofibers and In Situ Growth Polymeric Film in Food preservation

Authors: Jin Yue

Abstract:

Fresh produces especially fruits, vegetables, meats and aquatic products have limited shelf life and are highly susceptible to deterioration. Essential oils (EOs) extracted from plants have excellent antioxidant and broad-spectrum antibacterial activities, and they can play as natural food preservatives. But EOs are volatile, water insoluble, pungent, and easily decomposing under light and heat. Many approaches have been developed to improve the solubility and stability of EOs such as polymeric film, coating, nanoparticles, nano-emulsions and nanofibers. Construction of active packaging film which can incorporate EOs with high loading efficiency and controlled release of EOs has received great attention. It is still difficult to achieve accurate release of antibacterial compounds at specific target locations in active packaging. In this research, a relative humidity-responsive packaging material was designed, employing the electrospinning technique to fabricate a nanofibrous film loaded with a 4-terpineol/β-cyclodextrin inclusion complexes (4-TA/β-CD ICs). Functioning as an innovative food packaging material, the film demonstrated commendable attributes including pleasing appearance, thermal stability, mechanical properties, and effective barrier properties. The incorporation of inclusion complexes greatly enhanced the antioxidant and antibacterial activity of the film, particularly against Shewanella putrefaciens, with an inhibitory efficiency of up to 65%. Crucially, the film realized controlled release of 4-TA under 98% high relative humidity conditions by inducing the plasticization of polymers caused by water molecules, swelling of polymer chains, and destruction of hydrogen bonds within the cyclodextrin inclusion complex. This film with a long-term antimicrobial effect successfully extended the shelf life of Litopenaeus vannamei shrimp to 7 days at 4 °C. To further improve the loading efficiency and long-acting release of EOs, we synthesized the γ-cyclodextrin-metal organic frameworks (γ-CD-MOFs), and then efficiently anchored γ-CD-MOFs on chitosan-cellulose (CS-CEL) composite film by in situ growth method for controlled releasing of carvacrol (CAR). We found that the growth efficiency of γ-CD-MOFs was the highest when the concentration of CEL dispersion was 5%. The anchoring of γ-CD-MOFs on CS-CEL film significantly improved the surface area of CS-CEL film from 1.0294 m2/g to 43.3458 m2/g. The molecular docking and 1H NMR spectra indicated that γ-CD-MOF has better complexing and stabilizing ability for CAR molecules than γ-CD. In addition, the release of CAR reached 99.71±0.22% on the 10th day, while under 22% RH, the release pattern of CAR was a plateau with 14.71 ± 4.46%. The inhibition rate of this film against E. coli, S. aureus and B. cinerea was more than 99%, and extended the shelf life of strawberries to 7 days. By incorporating the merits of natural biopolymers and MOFs, this active packaging offers great potential as a substitute for traditional packaging materials.

Keywords: active packaging, antibacterial activity, controlled release, essential oils, food quality control

Procedia PDF Downloads 64
1385 Optimization of Doubly Fed Induction Generator Equivalent Circuit Parameters by Direct Search Method

Authors: Mamidi Ramakrishna Rao

Abstract:

Doubly-fed induction generator (DFIG) is currently the choice for many wind turbines. These generators, when connected to the grid through a converter, is subjected to varied power system conditions like voltage variation, frequency variation, short circuit fault conditions, etc. Further, many countries like Canada, Germany, UK, Scotland, etc. have distinct grid codes relating to wind turbines. Accordingly, following the network faults, wind turbines have to supply a definite reactive current. To satisfy the requirements including reactive current capability, an optimum electrical design becomes a mandate for DFIG to function. This paper intends to optimize the equivalent circuit parameters of an electrical design for satisfactory DFIG performance. Direct search method has been used for optimization of the parameters. The variables selected include electromagnetic core dimensions (diameters and stack length), slot dimensions, radial air gap between stator and rotor and winding copper cross section area. Optimization for 2 MW DFIG has been executed separately for three objective functions - maximum reactive power capability (Case I), maximum efficiency (Case II) and minimum weight (Case III). In the optimization analysis program, voltage variations (10%), power factor- leading and lagging (0.95), speeds for corresponding to slips (-0.3 to +0.3) have been considered. The optimum designs obtained for objective functions were compared. It can be concluded that direct search method of optimization helps in determining an optimum electrical design for each objective function like efficiency or reactive power capability or weight minimization.

Keywords: direct search, DFIG, equivalent circuit parameters, optimization

Procedia PDF Downloads 256
1384 An Analysis of the Affect of Climate Change on Humanitarian Law: The Way Forward

Authors: Anjali Kanagali, Astha Sinha

Abstract:

Climate change is the greatest threat being faced by mankind in the 21st century. It no longer is merely an environmental, scientific or economic issue but is a humanitarian issue as well. Paris Agreement put great pressure on the businesses to reduce carbon emissions and mitigate the impact of climate change. However, the already increased climate variability and extreme weather are aggravating emergency humanitarian needs. According to the Intergovernmental Panel on Climate Change (IPCC), if efficient policy changes are not made in time to combat the climate change issues, the situation will deteriorate with an estimated global temperature rise of 4 degrees. The existing international network of Humanitarian system is not adequately structured to handle the projected natural disasters and climate change crisis. The 2030 Agenda which embraces the 17 Sustainable Development Goals (SGDs) discussed the relationship between the climate change and humanitarian assistance. The Humanitarian law aims to protect, amongst other things, ‘internally displaced persons’ which includes people displaced due to natural hazard related disasters engulfing the hazards of climate change. ‘Legal protection’ of displaced people to protect their rights is becoming a pressing need in such times. In this paper, attempts will be made to analyze the causes of the displacement, identify areas where the effect of the climate change is most likely to occur and to examine the character of forced displacement triggering population movement. We shall discuss the pressure on the Humanitarian system and assistance due to climate change issues and the need for vesting powers to the local communities or local government players to deal with the climate changes. We shall also discuss the possibility of setting up a new framework where non-state actors could be set up for climate change impact and its governance.

Keywords: humanitarian assistance to climate change, humanitarian crisis, internally displaced person, legal framework for climate migrants, non-state actors

Procedia PDF Downloads 320
1383 Polygenetic Iron Mineralization in the Baba-Ali and Galali Deposits, Further Evidences from Stable (S, O, H) Isotope Data, NW Hamedan, Iran

Authors: Ghodratollah Rostami Paydar

Abstract:

The Baba-Ali and Galali iron deposits are located in northwest Hamedan and the Iranian Sanandaj-Sirjan geological structural zone. The host rocks of these deposits are metavolcanosedimentary successions of Songhor stratigraphic series with permo-trriassic age. Field investigation, ore geometry, textures and structures and paragenetic sequence of minerals, all indicate that the ore minerals are crystallized in four stages: primary volcanosedimentary stage, secondary regional metamorphism with formation of ductile shear zones, contact metamorphism and metasomatism stage and the finally late hydrothermal mineralization within uplift and exposure. Totally 29 samples of sulfide, oxide-silicate and carbonate minerals of iron orees and gangue has been purified for stable isotope analysis. The isotope ratio data assure that occurrence of dynamothermal metamorphism in these areas typically involves a lengthy period of time, which results in a tendency toward isotopic homogenization specifically in O and H stable isotopes and showing the role of metamorphic waters in mineralization process. Measurement of δ34S (CDT) in first generation of pyrite is higher than another ones, so it confirms the volcanogenic origin of primary iron mineralization. δ13C data measurements in Galali carbonate country rocks show a marine origin. δ18O in magnetite and skarn forming silicates, δ18O and δ13C in limestone and skarn calcite and δ34S in sulphides are all consistent with the interaction of a magmatic-equilibrated fluid with Galali limestone, and a dominantly magmatic source for S. All these data imply skarn formation and mineralisation in a magmatic-hydrothermal system that maintained high salinity to relatively late stages resulting in the formation of the regional Na metasomatic alteration halo. Late stage hydrothermal quartz-calcite veinlets are important for gold mineralization, but the economic evaluation is required to detailed geochemical studies.

Keywords: iron, polygenetic, stable isotope, BabaAli, Galali

Procedia PDF Downloads 301
1382 A Radiomics Approach to Predict the Evolution of Prostate Imaging Reporting and Data System Score 3/5 Prostate Areas in Multiparametric Magnetic Resonance

Authors: Natascha C. D'Amico, Enzo Grossi, Giovanni Valbusa, Ala Malasevschi, Gianpiero Cardone, Sergio Papa

Abstract:

Purpose: To characterize, through a radiomic approach, the nature of areas classified PI-RADS (Prostate Imaging Reporting and Data System) 3/5, recognized in multiparametric prostate magnetic resonance with T2-weighted (T2w), diffusion and perfusion sequences with paramagnetic contrast. Methods and Materials: 24 cases undergoing multiparametric prostate MR and biopsy were admitted to this pilot study. Clinical outcome of the PI-RADS 3/5 was found through biopsy, finding 8 malignant tumours. The analysed images were acquired with a Philips achieva 1.5T machine with a CE- T2-weighted sequence in the axial plane. Semi-automatic tumour segmentation was carried out on MR images using 3DSlicer image analysis software. 45 shape-based, intensity-based and texture-based features were extracted and represented the input for preprocessing. An evolutionary algorithm (a TWIST system based on KNN algorithm) was used to subdivide the dataset into training and testing set and select features yielding the maximal amount of information. After this pre-processing 20 input variables were selected and different machine learning systems were used to develop a predictive model based on a training testing crossover procedure. Results: The best machine learning system (three-layers feed-forward neural network) obtained a global accuracy of 90% ( 80 % sensitivity and 100% specificity ) with a ROC of 0.82. Conclusion: Machine learning systems coupled with radiomics show a promising potential in distinguishing benign from malign tumours in PI-RADS 3/5 areas.

Keywords: machine learning, MR prostate, PI-Rads 3, radiomics

Procedia PDF Downloads 188
1381 Machine Learning Approach for Automating Electronic Component Error Classification and Detection

Authors: Monica Racha, Siva Chandrasekaran, Alex Stojcevski

Abstract:

The engineering programs focus on promoting students' personal and professional development by ensuring that students acquire technical and professional competencies during four-year studies. The traditional engineering laboratory provides an opportunity for students to "practice by doing," and laboratory facilities aid them in obtaining insight and understanding of their discipline. Due to rapid technological advancements and the current COVID-19 outbreak, the traditional labs were transforming into virtual learning environments. Aim: To better understand the limitations of the physical laboratory, this research study aims to use a Machine Learning (ML) algorithm that interfaces with the Augmented Reality HoloLens and predicts the image behavior to classify and detect the electronic components. The automated electronic components error classification and detection automatically detect and classify the position of all components on a breadboard by using the ML algorithm. This research will assist first-year undergraduate engineering students in conducting laboratory practices without any supervision. With the help of HoloLens, and ML algorithm, students will reduce component placement error on a breadboard and increase the efficiency of simple laboratory practices virtually. Method: The images of breadboards, resistors, capacitors, transistors, and other electrical components will be collected using HoloLens 2 and stored in a database. The collected image dataset will then be used for training a machine learning model. The raw images will be cleaned, processed, and labeled to facilitate further analysis of components error classification and detection. For instance, when students conduct laboratory experiments, the HoloLens captures images of students placing different components on a breadboard. The images are forwarded to the server for detection in the background. A hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm will be used to train the dataset for object recognition and classification. The convolution layer extracts image features, which are then classified using Support Vector Machine (SVM). By adequately labeling the training data and classifying, the model will predict, categorize, and assess students in placing components correctly. As a result, the data acquired through HoloLens includes images of students assembling electronic components. It constantly checks to see if students appropriately position components in the breadboard and connect the components to function. When students misplace any components, the HoloLens predicts the error before the user places the components in the incorrect proportion and fosters students to correct their mistakes. This hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm automating electronic component error classification and detection approach eliminates component connection problems and minimizes the risk of component damage. Conclusion: These augmented reality smart glasses powered by machine learning provide a wide range of benefits to supervisors, professionals, and students. It helps customize the learning experience, which is particularly beneficial in large classes with limited time. It determines the accuracy with which machine learning algorithms can forecast whether students are making the correct decisions and completing their laboratory tasks.

Keywords: augmented reality, machine learning, object recognition, virtual laboratories

Procedia PDF Downloads 134
1380 Development of Mesoporous Gel Based Nonwoven Structure for Thermal Barrier Application

Authors: R. P. Naik, A. K. Rakshit

Abstract:

In recent years, with the rapid development in science and technology, people have increasing requirements on uses of clothing for new functions, which contributes to opportunities for further development and incorporation of new technologies along with novel materials. In this context, textiles are of fast decalescence or fast heat radiation media as per as comfort accountability of textile articles are concern. The microstructure and texture of textiles play a vital role in determining the heat-moisture comfort level of the human body because clothing serves as a barrier to the outside environment and a transporter of heat and moisture from the body to the surrounding environment to keep thermal balance between body heat produced and body heat loss. The main bottleneck which is associated with textile materials to be successful as thermal insulation materials can be enumerated as; firstly, high loft or bulkiness of material so as to provide predetermined amount of insulation by ensuring sufficient trapping of air. Secondly, the insulation depends on forced convection; such convective heat loss cannot be prevented by textile material. Third is that the textile alone cannot reach the level of thermal conductivity lower than 0.025 W/ m.k of air. Perhaps, nano-fibers can do so, but still, mass production and cost-effectiveness is a problem. Finally, such high loft materials for thermal insulation becomes heavier and uneasy to manage especially when required to carry over a body. The proposed works aim at developing lightweight effective thermal insulation textiles in combination with nanoporous silica-gel which provides the fundamental basis for the optimization of material properties to achieve good performance of the clothing system. This flexible nonwoven silica-gel composites fabric in intact monolith was successfully developed by reinforcing SiO2-gel in thermal bonded nonwoven fabric via sol-gel processing. Ambient Pressure Drying method is opted for silica gel preparation for cost-effective manufacturing. The formed structure of the nonwoven / SiO₂ -gel composites were analyzed, and the transfer properties were measured. The effects of structure and fibre on the thermal properties of the SiO₂-gel composites were evaluated. Samples are then tested against untreated samples of same GSM in order to study the effect of SiO₂-gel application on various properties of nonwoven fabric. The nonwoven fabric composites reinforced with aerogel showed intact monolith structure were also analyzed for their surface structure, functional group present, microscopic images. Developed product reveals a significant reduction in pores' size and air permeability than the conventional nonwoven fabric. Composite made from polyester fibre with lower GSM shows lowest thermal conductivity. Results obtained were statistically analyzed by using STATISTICA-6 software for their level of significance. Univariate tests of significance for various parameters are practiced which gives the P value for analyzing significance level along with that regression summary for dependent variable are also studied to obtain correlation coefficient.

Keywords: silica-gel, heat insulation, nonwoven fabric, thermal barrier clothing

Procedia PDF Downloads 111
1379 Bridging Binaries: Exploring Students' Conceptions of Good Teaching within Teacher-Centered and Learner-Centered Pedagogies of Their Teachers in Disadvantaged Public Schools in the Philippines

Authors: Julie Lucille H. Del Valle

Abstract:

To improve its public school education, the Philippines took a radical curriculum reform in 2012, by launching the K-to-12 program which not only added two years to its basic education but also mandated for a replacement of traditional teaching with learner-centered pedagogy, an instruction whose western underpinnings suggest improving student achievement, thus, making pedagogies in the country more or less similar with those in Europe and USA. This policy, however, placed learner-centered pedagogy in a binary opposition against teacher-centered instruction, creating a simplistic dichotomy between good and bad teaching. It is in this dichotomy that this study seeks to explore, using Critical Pedagogy of the Place as the lens, in understanding what constitutes good teaching across a range of learner-centered and teacher-centered pedagogies in the context of public schools in disadvantaged communities. Furthermore, this paper examines how pedagogical homogeneity, arguably influenced by dominant global imperatives with economic agenda – often referred as economisation of education – not only thins out local identities as structures of global schooling become increasingly similar but also limits the concept of good teaching to student outcomes and corporate employability. This paper draws from qualitative research on students, thus addressing the gap created by studies on good teaching which looked mainly into the perceptions of teachers and administrators, while overlooking those of students whose voices must be considered in the formulation of inclusive policies that advocate for true education reform. Using ethnographic methods including student focus groups, classroom observations, and teacher interviews, responses from students of disadvantaged schools reveal that good teaching includes both learner-centered and teacher-centered practices that incorporate ‘academic caring’ which sustains their motivation to achieve in school despite the challenging learning environments. The combination of these two pedagogies equips students with life-long skills necessary to gain equal access to sustainable economic opportunities in their local communities.

Keywords: critical pedagogy of the place, good teaching, learner-centered pedagogy, placed-based instruction

Procedia PDF Downloads 261
1378 Automatic Near-Infrared Image Colorization Using Synthetic Images

Authors: Yoganathan Karthik, Guhanathan Poravi

Abstract:

Colorizing near-infrared (NIR) images poses unique challenges due to the absence of color information and the nuances in light absorption. In this paper, we present an approach to NIR image colorization utilizing a synthetic dataset generated from visible light images. Our method addresses two major challenges encountered in NIR image colorization: accurately colorizing objects with color variations and avoiding over/under saturation in dimly lit scenes. To tackle these challenges, we propose a Generative Adversarial Network (GAN)-based framework that learns to map NIR images to their corresponding colorized versions. The synthetic dataset ensures diverse color representations, enabling the model to effectively handle objects with varying hues and shades. Furthermore, the GAN architecture facilitates the generation of realistic colorizations while preserving the integrity of dimly lit scenes, thus mitigating issues related to over/under saturation. Experimental results on benchmark NIR image datasets demonstrate the efficacy of our approach in producing high-quality colorizations with improved color accuracy and naturalness. Quantitative evaluations and comparative studies validate the superiority of our method over existing techniques, showcasing its robustness and generalization capability across diverse NIR image scenarios. Our research not only contributes to advancing NIR image colorization but also underscores the importance of synthetic datasets and GANs in addressing domain-specific challenges in image processing tasks. The proposed framework holds promise for various applications in remote sensing, medical imaging, and surveillance where accurate color representation of NIR imagery is crucial for analysis and interpretation.

Keywords: computer vision, near-infrared images, automatic image colorization, generative adversarial networks, synthetic data

Procedia PDF Downloads 43
1377 Design and Simulation of an Inter-Satellite Optical Wireless Communication System Using Diversity Techniques

Authors: Sridhar Rapuru, D. Mallikarjunreddy, Rajanarendra Sai

Abstract:

In this reign of the internet, the access of any multimedia file to the users at any time with a superior quality is needed. To achieve this goal, it is very important to have a good network without any interruptions between the satellites along with various earth stations. For that purpose, a high speed inter-satellite optical wireless communication system (IsOWC) is designed with space and polarization diversity techniques. IsOWC offers a high bandwidth, small size, less power requirement and affordable when compared with the present microwave satellite systems. To improve the efficiency and to reduce the propagation delay, inter-satellite link is established between the satellites. High accurate tracking systems are required to establish the reliable connection between the satellites as they have their own orbits. The only disadvantage of this IsOWC system is laser beam width is narrower than the RF because of this highly accurate tracking system to meet this requirement. The satellite uses the 'ephemerides data' for rough pointing and tracking system for fine pointing to the other satellite. In this proposed IsOWC system, laser light is used as a wireless connectedness between the source and destination and free space acts as the channel to carry the message. The proposed system will be designed, simulated and analyzed for 6000km with an improvement of data rate over previously existing systems. The performance parameters of the system are Q-factor, eye opening, bit error rate, etc., The proposed system for Inter-satellite Optical Wireless Communication System Design Using Diversity Techniques finds huge scope of applications in future generation communication purposes.

Keywords: inter-satellite optical wireless system, space and polarization diversity techniques, line of sight, bit error rate, Q-factor

Procedia PDF Downloads 269
1376 Assessment of Air Quality Around Western Refinery in Libya: Mobile Monitoring

Authors: A. Elmethnani, A. Jroud

Abstract:

This coastal crude oil refinery is situated north of a big city west of Tripoli; the city then could be highly prone to downwind refinery emissions where the NNE wind direction is prevailing through most seasons of the year. Furthermore, due to the absence of an air quality monitoring network and scarce emission data available for the neighboring community, nearby residents have serious worries about the impacts of the oil refining operations on local air quality. In responding to these concerns, a short term survey has performed for three consecutive days where a semi-continues mobile monitoring approach has developed effectively in this study; the monitoring station (Compact AQM 65 AeroQual) was mounted on a vehicle to move quickly between locations, measurements of 10 minutes averaging of 60 seconds then been taken at each fixed sampling point. The downwind ambient concentration of CO, H₂S, NOₓ, NO₂, SO₂, PM₁, PM₂.₅ PM₁₀, and TSP were measured at carefully chosen sampling locations, ranging from 200m nearby the fence-line passing through the city center up to 4.7 km east to attain best spatial coverage. Results showed worrying levels of PM₂.₅ PM₁₀, and TSP at one sampling location in the city center, southeast of the refinery site, with an average mean of 16.395μg/m³, 33.021μg/m³, and 42.426μg/m³ respectively, which could be attributed to road traffic. No significant concentrations have been detected for other pollutants of interest over the study area, as levels observed for CO, SO₂, H₂S, NOₓ, and NO₂ haven’t respectively exceeded 1.707 ppm, 0.021ppm, 0.134 ppm, 0.4582 ppm, and 0.0018 ppm, which was at the same sampling locations as well. Although it wasn’t possible to compare the results with the Libyan air quality standards due to the difference in the averaging time period, the technique was adequate for the baseline air quality screening procedure. Overall, findings primarily suggest modeling of dispersion of the refinery emissions to assess the likely impact and spatial-temporal distribution of air pollutants.

Keywords: air quality, mobil monitoring, oil refinery

Procedia PDF Downloads 96
1375 Expert System: Debugging Using MD5 Process Firewall

Authors: C. U. Om Kumar, S. Kishore, A. Geetha

Abstract:

An Operating system (OS) is software that manages computer hardware and software resources by providing services to computer programs. One of the important user expectations of the operating system is to provide the practice of defending information from unauthorized access, disclosure, modification, inspection, recording or destruction. Operating system is always vulnerable to the attacks of malwares such as computer virus, worm, Trojan horse, backdoors, ransomware, spyware, adware, scareware and more. And so the anti-virus software were created for ensuring security against the prominent computer viruses by applying a dictionary based approach. The anti-virus programs are not always guaranteed to provide security against the new viruses proliferating every day. To clarify this issue and to secure the computer system, our proposed expert system concentrates on authorizing the processes as wanted and unwanted by the administrator for execution. The Expert system maintains a database which consists of hash code of the processes which are to be allowed. These hash codes are generated using MD5 message-digest algorithm which is a widely used cryptographic hash function. The administrator approves the wanted processes that are to be executed in the client in a Local Area Network by implementing Client-Server architecture and only the processes that match with the processes in the database table will be executed by which many malicious processes are restricted from infecting the operating system. The add-on advantage of this proposed Expert system is that it limits CPU usage and minimizes resource utilization. Thus data and information security is ensured by our system along with increased performance of the operating system.

Keywords: virus, worm, Trojan horse, back doors, Ransomware, Spyware, Adware, Scareware, sticky software, process table, MD5, CPU usage and resource utilization

Procedia PDF Downloads 427
1374 Systems Intelligence in Management (High Performing Organizations and People Score High in Systems Intelligence)

Authors: Raimo P. Hämäläinen, Juha Törmänen, Esa Saarinen

Abstract:

Systems thinking has been acknowledged as an important approach in the strategy and management literature ever since the seminal works of Ackhoff in the 1970´s and Senge in the 1990´s. The early literature was very much focused on structures and organizational dynamics. Understanding systems is important but making improvements also needs ways to understand human behavior in systems. Peter Senge´s book The Fifth Discipline gave the inspiration to the development of the concept of Systems Intelligence. The concept integrates the concepts of personal mastery and systems thinking. SI refers to intelligent behavior in the context of complex systems involving interaction and feedback. It is a competence related to the skills needed in strategy and the environment of modern industrial engineering and management where people skills and systems are in an increasingly important role. The eight factors of Systems Intelligence have been identified from extensive surveys and the factors relate to perceiving, attitude, thinking and acting. The personal self-evaluation test developed consists of 32 items which can also be applied in a peer evaluation mode. The concept and test extend to organizations too. One can talk about organizational systems intelligence. This paper reports the results of an extensive survey based on peer evaluation. The results show that systems intelligence correlates positively with professional performance. People in a managerial role score higher in SI than others. Age improves the SI score but there is no gender difference. Top organizations score higher in all SI factors than lower ranked ones. The SI-tests can also be used as leadership and management development tools helping self-reflection and learning. Finding ways of enhancing learning organizational development is important. Today gamification is a new promising approach. The items in the SI test have been used to develop an interactive card game following the Topaasia game approach. It is an easy way of engaging people in a process which both helps participants see and approach problems in their organization. It also helps individuals in identifying challenges in their own behavior and in improving in their SI.

Keywords: gamification, management competence, organizational learning, systems thinking

Procedia PDF Downloads 96
1373 Evaluation of a Remanufacturing for Lithium Ion Batteries from Electric Cars

Authors: Achim Kampker, Heiner H. Heimes, Mathias Ordung, Christoph Lienemann, Ansgar Hollah, Nemanja Sarovic

Abstract:

Electric cars with their fast innovation cycles and their disruptive character offer a high degree of freedom regarding innovative design for remanufacturing. Remanufacturing increases not only the resource but also the economic efficiency by a prolonged product life time. The reduced power train wear of electric cars combined with high manufacturing costs for batteries allow new business models and even second life applications. Modular and intermountable designed battery packs enable the replacement of defective or outdated battery cells, allow additional cost savings and a prolongation of life time. This paper discusses opportunities for future remanufacturing value chains of electric cars and their battery components and how to address their potentials with elaborate designs. Based on a brief overview of implemented remanufacturing structures in different industries, opportunities of transferability are evaluated. In addition to an analysis of current and upcoming challenges, promising perspectives for a sustainable electric car circular economy enabled by design for remanufacturing are deduced. Two mathematical models describe the feasibility of pursuing a circular economy of lithium ion batteries and evaluate remanufacturing in terms of sustainability and economic efficiency. Taking into consideration not only labor and material cost but also capital costs for equipment and factory facilities to support the remanufacturing process, cost benefit analysis prognosticate that a remanufacturing battery can be produced more cost-efficiently. The ecological benefits were calculated on a broad database from different research projects which focus on the recycling, the second use and the assembly of lithium ion batteries. The results of this calculations show a significant improvement by remanufacturing in all relevant factors especially in the consumption of resources and greenhouse warming potential. Exemplarily suitable design guidelines for future remanufacturing lithium ion batteries, which consider modularity, interfaces and disassembly, are used to illustrate the findings. For one guideline, potential cost improvements were calculated and upcoming challenges are pointed out.

Keywords: circular economy, electric mobility, lithium ion batteries, remanufacturing

Procedia PDF Downloads 358
1372 Development and Implementation of An "Electric Island" Monitoring Infrastructure for Promoting Energy Efficiency in Schools

Authors: Vladislav Grigorovitch, Marina Grigorovitch, David Pearlmutter, Erez Gal

Abstract:

The concept of “electric island” is involved with achieving the balance between the self-power generation ability of each educational institution and energy consumption demand. Photo-Voltaic (PV) solar system installed on the roofs of educational buildings is a common way to absorb the available solar energy and generate electricity for self-consumption and even for returning to the grid. The main objective of this research is to develop and implement an “electric island” monitoring infrastructure for promoting energy efficiency in educational buildings. A microscale monitoring methodology will be developed to provide a platform to estimate energy consumption performance classified by rooms and subspaces rather than the more common macroscale monitoring of the whole building. The monitoring platform will be established on the experimental sites, enabling an estimation and further analysis of the variety of environmental and physical conditions. For each building, separate measurement configurations will be applied taking into account the specific requirements, restrictions, location and infrastructure issues. The direct results of the measurements will be analyzed to provide deeper understanding of the impact of environmental conditions and sustainability construction standards, not only on the energy demand of public building, but also on the energy consumption habits of the children that study in those schools and the educational and administrative staff that is responsible for providing the thermal comfort conditions and healthy studying atmosphere for the children. A monitoring methodology being developed in this research is providing online access to real-time data of Interferential Therapy (IFTs) from any mobile phone or computer by simply browsing the dedicated website, providing powerful tools for policy makers for better decision making while developing PV production infrastructure to achieve “electric islands” in educational buildings. A detailed measurement configuration was technically designed based on the specific conditions and restriction of each of the pilot buildings. A monitoring and analysis methodology includes a large variety of environmental parameters inside and outside the schools to investigate the impact of environmental conditions both on the energy performance of the school and educational abilities of the children. Indoor measurements are mandatory to acquire the energy consumption data, temperature, humidity, carbon dioxide and other air quality conditions in different parts of the building. In addition to that, we aim to study the awareness of the users to the energy consideration and thus the impact on their energy consumption habits. The monitoring of outdoor conditions is vital for proper design of the off-grid energy supply system and validation of its sufficient capacity. The suggested outcomes of this research include: 1. both experimental sites are designed to have PV production and storage capabilities; 2. Developing an online information feedback platform. The platform will provide consumer dedicated information to academic researchers, municipality officials and educational staff and students; 3. Designing an environmental work path for educational staff regarding optimal conditions and efficient hours for operating air conditioning, natural ventilation, closing of blinds, etc.

Keywords: sustainability, electric island, IOT, smart building

Procedia PDF Downloads 179
1371 Designing Nanowire Based Honeycomb Photonic Crystal Surface Emitting Lasers

Authors: Balthazar Temu, Zhao Yan, Bogdan-Petrin Ratiu, Sang Soon Oh, Qiang Li

Abstract:

Photonic Crystal Surface Emitting Lasers (PCSELs) are structures which are made up of a periodically repeating patterns with a unit cell consisting of changes in refractive index. The variation in refractive index can be achieved by etching air holes in a semiconductor material to get hole based PCSELs or by growing nanowires to get nanowire based PCSELs. As opposed to hole based PCSELs, nanowire based PCSELs can be integrated on silicon platform without threading dislocations, thanks to the small area of the nanowire that is in contact with silicon substrate that relaxes the strain. Nanowire based PCSELs reported in the literature have been designed using a triangular, square or honeycomb patterns. The triangular and square pattern PCSELs have limited degrees of freedom in tuning the design parameters which hinders the ability to design high quality factor (Q-factor) and/or variable wavelength devices. Nanowire based PCSELs designed using triangular and square patterns have been reported with the lasing thresholds of 130 kW/〖cm〗^2 and 7 kW/〖cm〗^2 respectively. On the other hand the honeycomb pattern gives more degrees of freedom in tuning the design parameters, which can allow one to design high Q-factor devices. A deformed honeycomb pattern device was reported with lasing threshold of 6.25 W/〖cm〗^2 corresponding to a simulated Q-factor of 5.84X〖10〗^5.Despite this achievement, the design principles which can lead to realization of even higher Q-factor honeycomb pattern PCSELs have not yet been investigated. In this work we study how the resonance wavelength and the Q-factor of three different resonance modes of the device vary when their design parameters are tuned. Through this study we establish the design and simulation of devices operating in 970nm wavelength band, O band and in the C band with quality factors up to 7X〖10〗^7 . We also investigate the quality factors of undeformed device and establish that the band edge close to 970nm can attain high quality factor when the device is undeformed and the quality factor degrades as the device is deformed.

Keywords: honeycomb PCSEL, nanowire laser, photonic crystal laser, simulation of photonic crystal surface emitting laser

Procedia PDF Downloads 11
1370 Job in Modern Arabic Poetry: A Semantic and Comparative Approach to Two Poems Referring to the Poet Al-Sayyab

Authors: Jeries Khoury

Abstract:

The use of legendary, folkloric and religious symbols is one of the most important phenomena in modern Arabic poetry. Interestingly enough, most of the modern Arabic poetry’s pioneers were so fascinated by the biblical symbols and they managed to use many modern techniques to make these symbols adequate for their personal life from one side and fit to their Islamic beliefs from the other. One of the most famous poets to do so was al-Sayya:b. The way he employed one of these symbols ‘job’, the new features he adds to this character and the link between this character and his personal life will be discussed in this study. Besides, the study will examine the influence of al-Sayya:b on another modern poet Saadi Yusuf, who, following al-Sayya:b, used the character of Job in a special way, by mixing its features with al-Sayya:b’s personal features and in this way creating a new mixed character. A semantic, cultural and comparative analysis of the poems written by al-Sayya:b himself and the other poets who evoked the mixed image of al-Sayya:b-Job, can reveal the changes Arab poets made to the original biblical figure of Job to bring it closer to Islamic culture. The paper will make an intensive use of intertextuality idioms in order to shed light on the network of relations between three kinds of texts (indeed three palimpsests’: 1- biblical- the primary text; 2- poetic- al-Syya:b’s secondary version; 3- re-poetic- Sa’di Yusuf’s tertiary version). The bottom line in this paper is that that al-Sayya:b was directly influenced by the dramatic biblical story of Job more than the brief Quranic version of the story. In fact, the ‘new’ character of Job designed by al-Sayya:b himself differs from the original one in many aspects that we can safely say it is the Sayyabian-Job that cannot be found in the poems of any other poets, unless they are evoking the own tragedy of al-Sayya:b himself, like what Saadi Yusuf did.

Keywords: Arabic poetry, intertextuality, job, meter, modernism, symbolism

Procedia PDF Downloads 199
1369 Children of Quarantine: A Post COVID-19 Mental Health Dilemma

Authors: Salman Abdul Majeed, Vidur Solanki, Ruqiya Shama Tareen

Abstract:

BACKGROUND: The COVID-19 pandemic has affected the way of living as we have known for all strata of society. While disease containment measures imposed by governmental agencies have been instrumental in controlling the spread of the virus, it has had profound collateral impacts on all populations. However, the disruption caused in the lives of one segment of population has been far more damaging than most others: the emotional wellbeing of our child and adolescent populations. This impact was even more pronounced in children who already suffered from neurodevelopmental or psychiatric disorders. In particular, school closures have not only led to profound social isolation, but also negative impacts on normal developmental opportunities and interruptions in mental health services obtained through school systems. It is too soon to understand the full impacts of quarantine, isolation, stress of social detachment and fear of pandemic, but we have started to see the devastating impact on C&A already. This review intends to shed light on the current understanding of psychiatric wellbeing of C&A during COVID-19 pandemic. METHOD: Literature search utilizing key words COVID-19 and children, quarantine and children, social isolation, Loneliness, pandemic stress and children, and mental health of children, disease containment measures was carried out. Over 200 articles were identified, out of which 81 articles were included in this review article. RESULTS: The disruption caused by COVID-19 in the lives of C&A is much more damaging and its impact is far reaching. The C&A ED visits for possible suicide attempts have jumped to 22.3% in 2020 and 39.1% during 2021. One study utilizing T1-weighted structural images, computed the thickness of cortical and subcortical structures including amygdala, hippocampus, and nucleus accumbens. The Peri-COVID group showed reduced cortical and subcortical thickness and more advanced brain aging compared to pre pandemic studies. CONCLUSION: Mental health resources for C&A remain under funded, neglected, and inaccessible to population that needs it most. Children with ongoing mental health disorders were impacted worst, along with those with predisposed biopsychosocial risk factors.

Keywords: COVID-19 and children, quarantine and children, social isolation, Loneliness, pandemic stress and children, disease containment measures, mental health of children

Procedia PDF Downloads 75
1368 Mathematical Modeling of Avascular Tumor Growth and Invasion

Authors: Meitham Amereh, Mohsen Akbari, Ben Nadler

Abstract:

Cancer has been recognized as one of the most challenging problems in biology and medicine. Aggressive tumors are a lethal type of cancers characterized by high genomic instability, rapid progression, invasiveness, and therapeutic resistance. Their behavior involves complicated molecular biology and consequential dynamics. Although tremendous effort has been devoted to developing therapeutic approaches, there is still a huge need for new insights into the dark aspects of tumors. As one of the key requirements in better understanding the complex behavior of tumors, mathematical modeling and continuum physics, in particular, play a pivotal role. Mathematical modeling can provide a quantitative prediction on biological processes and help interpret complicated physiological interactions in tumors microenvironment. The pathophysiology of aggressive tumors is strongly affected by the extracellular cues such as stresses produced by mechanical forces between the tumor and the host tissue. During the tumor progression, the growing mass displaces the surrounding extracellular matrix (ECM), and due to the level of tissue stiffness, stress accumulates inside the tumor. The produced stress can influence the tumor by breaking adherent junctions. During this process, the tumor stops the rapid proliferation and begins to remodel its shape to preserve the homeostatic equilibrium state. To reach this, the tumor, in turn, upregulates epithelial to mesenchymal transit-inducing transcription factors (EMT-TFs). These EMT-TFs are involved in various signaling cascades, which are often associated with tumor invasiveness and malignancy. In this work, we modeled the tumor as a growing hyperplastic mass and investigated the effects of mechanical stress from surrounding ECM on tumor invasion. The invasion is modeled as volume-preserving inelastic evolution. In this framework, principal balance laws are considered for tumor mass, linear momentum, and diffusion of nutrients. Also, mechanical interactions between the tumor and ECM is modeled using Ciarlet constitutive strain energy function, and dissipation inequality is utilized to model the volumetric growth rate. System parameters, such as rate of nutrient uptake and cell proliferation, are obtained experimentally. To validate the model, human Glioblastoma multiforme (hGBM) tumor spheroids were incorporated inside Matrigel/Alginate composite hydrogel and was injected into a microfluidic chip to mimic the tumor’s natural microenvironment. The invasion structure was analyzed by imaging the spheroid over time. Also, the expression of transcriptional factors involved in invasion was measured by immune-staining the tumor. The volumetric growth, stress distribution, and inelastic evolution of tumors were predicted by the model. Results showed that the level of invasion is in direct correlation with the level of predicted stress within the tumor. Moreover, the invasion length measured by fluorescent imaging was shown to be related to the inelastic evolution of tumors obtained by the model.

Keywords: cancer, invasion, mathematical modeling, microfluidic chip, tumor spheroids

Procedia PDF Downloads 111
1367 Tonal Pitch Structure as a Tool of Social Consolidation

Authors: Piotr Podlipniak

Abstract:

Social consolidation has often been indicated as an adaptive function of music which led to the evolution of music faculty. According to many scholars this function is possible thanks to musical rhythm that enables sensorimotor synchronization to a musical beat. The ability to synchronize to music allows performing music collectively which enhances social cohesion. However, the collective performance of music consists also in spectral synchronization that depends on musical pitch structure. Similarly to rhythmic synchronization, spectral synchronization is a result of ‘brain states alignment’ between people who collectively listen to or perform music. In order to successfully synchronize pitches performers have to adequately expect the pitch structure. The most common form of music which predominates among all human societies is tonal music. In fact tonality understood in the broadest sense as such an organization of musical pitches in which some pitch is more important than others is the only kind of musical pitch structure that has been observed in all currently known musical cultures. The perception of such a musical pitch structure elicits specific emotional reactions which are often described as tensions and relaxations. These facts provoke some important questions. What is the evolutionary reason that people use pitch structure as a form of vocal communication? Why different pitch structures elicit different emotional states independent of extra-musical context? It is proposed in the current presentation that in the course of evolution pitch structure became a human specific tool of communication the function of which is to induce emotional states such as uncertainty and cohesion. By the means of eliciting these emotions during collective music performance people are able to unconsciously give cues concerning social acceptance. This is probably one of the reasons why in all cultures people collectively perform tonal music. It is also suggested that tonal pitch structure had been invented socially before it became an evolutionary innovation of Homo sapiens. It means that a predisposition to tonally organize pitches evolved by the means of ‘Baldwin effect’ – a process in which natural selection transforms the learned response of an organism into the instinctive response. The hypothetical evolutionary scenario of the emergence of tonal pitch structure will be proposed. In this scenario social forces such as a need for closer cooperation play the crucial role.

Keywords: emotion, evolution, tonality, social consolidation

Procedia PDF Downloads 323
1366 An Endophyte of Amphipterygium adstringens as Producer of Cytotoxic Compounds

Authors: Karol Rodriguez-Peña, Martha L. Macias-Rubalcava, Leticia Rocha-Zavaleta, Sergio Sanchez

Abstract:

A bioassay-guided study for anti-cancer compounds from endophytes of the Mexican medicinal plant Amphipteryygium adstringens resulted in the isolation of a streptomycete capable of producing a group of compounds with high cytotoxic activity. Microorganisms from surface sterilized samples of various sections of the plant were isolated and all the actinomycetes found were evaluated for their potential to produce compounds with cytotoxic activity against cancer cell lines MCF7 (breast cancer) and HeLa (cervical cancer) as well as the non-tumoural cell line HaCaT (keratinocyte). The most active microorganism was picked for further evaluation. The identification of the microorganism was carried out by 16S rDNA gene sequencing, finding the closest proximity to Streptomyces scabrisporus, but with the additional characteristic that the strain isolated in this study was capable of producing colorful compounds never described for this species. Crude extracts of dichloromethane and ethyl acetate showed IC50 values of 0.29 and 0.96 μg/mL for MCF7, 0.51 and 1.98 μg/mL for HeLa and 0.96 and 2.7 μg/mL for HaCaT. Scaling the fermentation to 10 L in a bioreactor generated 1 g of total crude extract, which was fractionated by silica gel open column to yield 14 fractions. Nine of the fractions showed cytotoxic activity. Fraction 4 was chosen for subsequent purification because of its high activity against cancerous cell lines, lower activity against keratinocytes. HPLC-UV-MS/ESI was used for the evaluation of this fraction, finding at least 10 different compounds with high values of m/z (≈588). Purification of the compounds was carried out by preparative thin-layer chromatography. The prevalent compound was Steffimycin B, a molecule known for its antibiotic and cytotoxic activities and also for its low solubility in aqueous solutions. Along with steffimycin B, another five compounds belonging to the steffimycin family were isolated and at this moment their structures are being elucidated, some of which display better solubility in water: an attractive property for the pharmaceutical industry. As a conclusion to this study, the isolation of endophytes resulted in the discovery of a strain capable of producing compounds with high cytotoxic activity that need to be studied for their possible utilization.

Keywords: amphipterygium adstringens, cytotoxicity, streptomyces scabrisporus, steffimycin

Procedia PDF Downloads 364
1365 Combination of Modelling and Environmental Life Cycle Assessment Approach for Demand Driven Biogas Production

Authors: Juan A. Arzate, Funda C. Ertem, M. Nicolas Cruz-Bournazou, Peter Neubauer, Stefan Junne

Abstract:

— One of the biggest challenges the world faces today is global warming that is caused by greenhouse gases (GHGs) coming from the combustion of fossil fuels for energy generation. In order to mitigate climate change, the European Union has committed to reducing GHG emissions to 80–95% below the level of the 1990s by the year 2050. Renewable technologies are vital to diminish energy-related GHG emissions. Since water and biomass are limited resources, the largest contributions to renewable energy (RE) systems will have to come from wind and solar power. Nevertheless, high proportions of fluctuating RE will present a number of challenges, especially regarding the need to balance the variable energy demand with the weather dependent fluctuation of energy supply. Therefore, biogas plants in this content would play an important role, since they are easily adaptable. Feedstock availability varies locally or seasonally; however there is a lack of knowledge in how biogas plants should be operated in a stable manner by local feedstock. This problem may be prevented through suitable control strategies. Such strategies require the development of convenient mathematical models, which fairly describe the main processes. Modelling allows us to predict the system behavior of biogas plants when different feedstocks are used with different loading rates. Life cycle assessment (LCA) is a technique for analyzing several sides from evolution of a product till its disposal in an environmental point of view. It is highly recommend to use as a decision making tool. In order to achieve suitable strategies, the combination of a flexible energy generation provided by biogas plants, a secure production process and the maximization of the environmental benefits can be obtained by the combination of process modelling and LCA approaches. For this reason, this study focuses on the biogas plant which flexibly generates required energy from the co-digestion of maize, grass and cattle manure, while emitting the lowest amount of GHG´s. To achieve this goal AMOCO model was combined with LCA. The program was structured in Matlab to simulate any biogas process based on the AMOCO model and combined with the equations necessary to obtain climate change, acidification and eutrophication potentials of the whole production system based on ReCiPe midpoint v.1.06 methodology. Developed simulation was optimized based on real data from operating biogas plants and existing literature research. The results prove that AMOCO model can successfully imitate the system behavior of biogas plants and the necessary time required for the process to adapt in order to generate demanded energy from available feedstock. Combination with LCA approach provided opportunity to keep the resulting emissions from operation at the lowest possible level. This would allow for a prediction of the process, when the feedstock utilization supports the establishment of closed material circles within a smart bio-production grid – under the constraint of minimal drawbacks for the environment and maximal sustainability.

Keywords: AMOCO model, GHG emissions, life cycle assessment, modelling

Procedia PDF Downloads 188
1364 Occurrence and Levels of Mycotoxins in On-Farm Stored Sesame in Major-Growing Districts of Ethiopia

Authors: S. Alemayehu, F. A. Abera, K. M. Ayimut, R. Mahroof, J. Harvey, B. Subramanyam

Abstract:

The occurrence of mycotoxins in sesame seeds poses a significant threat to food safety and the economy in Ethiopia. This study aimed to determine the levels and occurrence of mycotoxins in on-farm stored sesame seeds in major-growing districts of Ethiopia. A total of 470 sesame seed samples were collected from randomly selected farmers' storage structures in five major-growing districts using purposive sampling techniques. An enzyme-linked immunosorbent assay (ELISA) was used to analyze the collected samples for the presence of four mycotoxins: total aflatoxins (AFT), ochratoxin A (OTA), total fumonisins (FUM), and deoxynivalenol (DON). The study found that all samples contained varying levels of mycotoxins, with AFT and DON being the most prevalent. AFT concentrations in detected samples ranged from 2.5 to 27.8 parts per billion (ppb), with a mean concentration of 13.8 ppb. OTA levels ranged from 5.0 ppb to 9.7 ppb, with a mean level of 7.1 ppb. Total fumonisin concentrations ranged from 300 to 1300 ppb in all samples, with a mean of 800 ppb. DON concentrations ranged from 560 to 700 ppb in the analyzed samples. The majority (96.8%) of the samples were safe from AFT, FUM, and DON mean levels when compared to the Federal Drug Administration maximum limit. AFT-OTA, DON-OTA, AFT-FUM, FUM-DON, and FUM-OTA, respectively, had co-occurrence rates of 44.0, 38.3, 33.8, 30.2, 29.8 and 26.0% for mycotoxins. On average, 37.2% of the sesame samples had fungal infection, and seed germination rates ranged from 66.8% to 91.1%. The Limmu district had higher levels of total aflatoxins, kernel infection, and lower germination rates than other districts. The Wollega variety of sesame had higher kernel infection, total aflatoxins concentration, and lower germination rates than other varieties. Grain age had a statistically significant (p<0.05) effect on both kernel infection and germination. The storage methods used for sesame in major-growing districts of Ethiopia favor mycotoxin-producing fungi. As the levels of mycotoxins in sesame are of public health significance, stakeholders should come together to identify secure and suitable storage technologies to maintain the quantity and quality of sesame at the level of smallholder farmers. This study suggests the need for suitable storage technologies to maintain the quality of sesame and reduce the risk of mycotoxin contamination.

Keywords: districts, seed germination, kernel infection, moisture content, relative humidity, temperature

Procedia PDF Downloads 131
1363 Sediment Transport Monitoring in the Port of Veracruz Expansion Project

Authors: Francisco Liaño-Carrera, José Isaac Ramírez-Macías, David Salas-Monreal, Mayra Lorena Riveron-Enzastiga, Marcos Rangel-Avalos, Adriana Andrea Roldán-Ubando

Abstract:

The construction of most coastal infrastructure developments around the world are usually made considering wave height, current velocities and river discharges; however, little effort has been paid to surveying sediment transport during dredging or the modification to currents outside the ports or marinas during and after the construction. This study shows a complete survey during the construction of one of the largest ports of the Gulf of Mexico. An anchored Acoustic Doppler Current Velocity profiler (ADCP), a towed ADCP and a combination of model outputs were used at the Veracruz port construction in order to describe the hourly sediment transport and current modifications in and out of the new port. Owing to the stability of the system the new port was construction inside Vergara Bay, a low wave energy system with a tidal range of up to 0.40 m. The results show a two-current system pattern within the bay. The north side of the bay has an anticyclonic gyre, while the southern part of the bay shows a cyclonic gyre. Sediment transport trajectories were made every hour using the anchored ADCP, a numerical model and the weekly data obtained from the towed ADCP within the entire bay. The sediment transport trajectories were carefully tracked since the bay is surrounded by coral reef structures which are sensitive to sedimentation rate and water turbidity. The survey shows that during dredging and rock input used to build the wave breaker sediments were locally added (< 2500 m2) and local currents disperse it in less than 4 h. While the river input located in the middle of the bay and the sewer system plant may add more than 10 times this amount during a rainy day or during the tourist season. Finally, the coastal line obtained seasonally with a drone suggests that the southern part of the bay has not been modified by the construction of the new port located in the northern part of the bay, owing to the two subsystem division of the bay.

Keywords: Acoustic Doppler Current Profiler, construction around coral reefs, dredging, port construction, sediment transport monitoring,

Procedia PDF Downloads 227
1362 Networking Approach for Historic Urban Landscape: Case Study of the Porcelain Capital of China

Authors: Ding He, Ping Hu

Abstract:

This article presents a “networking approach” as an alternative to the “layering model” in the issue of the historic urban landscape [HUL], based on research conducted in the historic city of Jingdezhen, the center of the porcelain industry in China. This study points out that the existing HUL concept, which can be traced back to the fundamental conceptual divisions set forth by western science, tends to analyze the various elements of urban heritage (composed of hybrid natural-cultural elements) by layers and ignore the nuanced connections and interweaving structure of various elements. Instead, the networking analysis approach can respond to the challenges of complex heritage networks and to the difficulties that are often faced when modern schemes of looking and thinking of landscape in the Eurocentric heritage model encounters local knowledge of Chinese settlement. The fieldwork in this paper examines the local language regarding place names and everyday uses of urban spaces, thereby highlighting heritage systems grounded in local life and indigenous knowledge. In the context of Chinese “Fengshui”, this paper demonstrates the local knowledge of nature and local intelligence of settlement location and design. This paper suggests that industrial elements (kilns, molding rooms, piers, etc.) and spiritual elements (temples for ceramic saints or water gods) are located in their intimate natural networks. Furthermore, the functional, spiritual, and natural elements are perceived as a whole and evolve as an interactive system. This paper proposes a local and cognitive approach in heritage, which was initially developed in European Landscape Convention and historic landscape characterization projects, and yet seeks a more tentative and nuanced model based on urban ethnography in a Chinese city.

Keywords: Chinese city, historic urban landscape, heritage conservation, network

Procedia PDF Downloads 140
1361 Cross-Dipole Right-Hand Circularly Polarized UHF/VHF Yagi-Uda Antenna for Satellite Applications

Authors: Shativel S., Chandana B. R., Kavya B. C., Obli B. Vikram, Suganthi J., Nagendra Rao G.

Abstract:

Satellite communication plays a pivotal role in modern global communication networks, serving as a vital link between terrestrial infrastructure and remote regions. The demand for reliable satellite reception systems, especially in UHF (Ultra High Frequency) and VHF (Very High Frequency) bands, has grown significantly over the years. This research paper presents the design and optimization of a high-gain, dual-band crossed Yagi-Uda antenna in CST Studio Suite, specifically tailored for satellite reception. The proposed antenna system incorporates a circularly polarized (Right-Hand Circular Polarization - RHCP) design to reduce Faraday loss. Our aim was to use fewer elements and achieve gain, so the antenna is constructed using 6x2 elements arranged in cross dipole and supported with a boom. We have achieved 10.67dBi at 146MHz and 9.28dBi at 437.5MHz.The process includes parameter optimization and fine-tuning of the Yagi-Uda array’s elements, such as the length and spacing of directors and reflectors, to achieve high gain and desirable radiation patterns. Furthermore, the optimization process considers the requirements for UHF and VHF frequency bands, ensuring broad frequency coverage for satellite reception. The results of this research are anticipated to significantly contribute to the advancement of satellite reception systems, enhancing their capabilities to reliably connect remote and underserved areas to the global communication network. Through innovative antenna design and simulation techniques, this study seeks to provide a foundation for the development of next-generation satellite communication infrastructure.

Keywords: Yagi-Uda antenna, RHCP, gain, UHF antenna, VHF antenna, CST, radiation pattern.

Procedia PDF Downloads 61
1360 Machine Learning Techniques for COVID-19 Detection: A Comparative Analysis

Authors: Abeer A. Aljohani

Abstract:

COVID-19 virus spread has been one of the extreme pandemics across the globe. It is also referred to as coronavirus, which is a contagious disease that continuously mutates into numerous variants. Currently, the B.1.1.529 variant labeled as omicron is detected in South Africa. The huge spread of COVID-19 disease has affected several lives and has surged exceptional pressure on the healthcare systems worldwide. Also, everyday life and the global economy have been at stake. This research aims to predict COVID-19 disease in its initial stage to reduce the death count. Machine learning (ML) is nowadays used in almost every area. Numerous COVID-19 cases have produced a huge burden on the hospitals as well as health workers. To reduce this burden, this paper predicts COVID-19 disease is based on the symptoms and medical history of the patient. This research presents a unique architecture for COVID-19 detection using ML techniques integrated with feature dimensionality reduction. This paper uses a standard UCI dataset for predicting COVID-19 disease. This dataset comprises symptoms of 5434 patients. This paper also compares several supervised ML techniques to the presented architecture. The architecture has also utilized 10-fold cross validation process for generalization and the principal component analysis (PCA) technique for feature reduction. Standard parameters are used to evaluate the proposed architecture including F1-Score, precision, accuracy, recall, receiver operating characteristic (ROC), and area under curve (AUC). The results depict that decision tree, random forest, and neural networks outperform all other state-of-the-art ML techniques. This achieved result can help effectively in identifying COVID-19 infection cases.

Keywords: supervised machine learning, COVID-19 prediction, healthcare analytics, random forest, neural network

Procedia PDF Downloads 92