Search results for: user-based approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13868

Search results for: user-based approach

3908 Advancements in Autonomous Drones for Enhanced Healthcare Logistics

Authors: Bhaargav Gupta P., Vignesh N., Nithish Kumar R., Rahul J., Nivetha Ruvah D.

Abstract:

Delivering essential medical supplies to rural and underserved areas is challenging due to infrastructure limitations and logistical barriers, often resulting in inefficiencies and delays. Traditional delivery methods are hindered by poor road networks, long distances, and difficult terrains, compromising timely access to vital resources, especially in emergencies. This paper introduces an autonomous drone system engineered to optimize last-mile delivery. By utilizing advanced navigation and object-detection algorithms, such as region-based convolutional neural networks (R-CNN), our drones efficiently avoid obstacles, identify safe landing zones, and adapt dynamically to varying environments. Equipped with high-precision GPS and autonomous capabilities, the drones effectively navigate complex, remote areas with minimal dependence on established infrastructure. The system includes a dedicated mobile application for secure order placement and real-time tracking, and a secure payload box with OTP verification ensures tamper-resistant delivery to authorized recipients. This project demonstrates the potential of automated drone technology in healthcare logistics, offering a scalable and eco-friendly approach to enhance accessibility and service delivery in underserved regions. By addressing logistical gaps through advanced automation, this system represents a significant advancement toward sustainable, accessible healthcare in remote areas.

Keywords: region-based convolutional neural network, one time password, global positioning system, autonomous drones, healthcare logistics

Procedia PDF Downloads 9
3907 Analysis of the Detachment of Water Droplets from a Porous Fibrous Surface

Authors: Ibrahim Rassoul, E-K. Si Ahmed

Abstract:

The growth, deformation, and detachment of fluid droplets adherent to solid substrates is a problem of fundamental interest with numerous practical applications. Specific interest in this proposal is the problem of a droplet on a fibrous, hydrophobic substrate subjected to body or external forces (gravity, convection). The past decade has seen tremendous advances in proton exchange membrane fuel cell (PEMFC) technology. However, there remain many challenges to bring commercially viable stationary PEMFC products to the market. PEMFCs are increasingly emerging as a viable alternative clean power source for automobile and stationary applications. Before PEMFCs can be employed to power automobiles and homes, several key technical challenges must be properly addressed. One technical challenge is elucidating the mechanisms underlying water transport in and removal from PEMFCs. On the one hand, sufficient water is needed in the polymer electrolyte membrane or PEM to maintain sufficiently high proton conductivity. On the other hand, too much liquid water present in the cathode can cause 'flooding' (that is, pore space is filled with excessive liquid water) and hinder the transport of the oxygen reactant from the gas flow channel (GFC) to the three-phase reaction sites. The aim of this work is to investigate the stability of a liquid water droplet emerging form a GDL pore, to gain fundamental insight into the instability process leading to detachment. The approach will combine analytical and numerical modeling with experimental visualization and measurements.

Keywords: polymer electrolyte fuel cell, water droplet, gas diffusion layer, contact angle, surface tension

Procedia PDF Downloads 251
3906 Synthesis and Characterization of CNPs Coated Carbon Nanorods for Cd2+ Ion Adsorption from Industrial Waste Water and Reusable for Latent Fingerprint Detection

Authors: Bienvenu Gael Fouda Mbanga

Abstract:

This study reports a new approach of preparation of carbon nanoparticles coated cerium oxide nanorods (CNPs/CeONRs) nanocomposite and reusing the spent adsorbent of Cd2+- CNPs/CeONRs nanocomposite for latent fingerprint detection (LFP) after removing Cd2+ ions from aqueous solution. CNPs/CeONRs nanocomposite was prepared by using CNPs and CeONRs with adsorption processes. The prepared nanocomposite was then characterized by using UV-visible spectroscopy (UV-visible), Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction pattern (XRD), scanning electron microscope (SEM), Transmission electron microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDS), Zeta potential, X-ray photoelectron spectroscopy (XPS). The average size of the CNPs was 7.84nm. The synthesized CNPs/CeONRs nanocomposite has proven to be a good adsorbent for Cd2+ removal from water with optimum pH 8, dosage 0. 5 g / L. The results were best described by the Langmuir model, which indicated a linear fit (R2 = 0.8539-0.9969). The adsorption capacity of CNPs/CeONRs nanocomposite showed the best removal of Cd2+ ions with qm = (32.28-59.92 mg/g), when compared to previous reports. This adsorption followed pseudo-second order kinetics and intra particle diffusion processes. ∆G and ∆H values indicated spontaneity at high temperature (40oC) and the endothermic nature of the adsorption process. CNPs/CeONRs nanocomposite therefore showed potential as an effective adsorbent. Furthermore, the metal loaded on the adsorbent Cd2+- CNPs/CeONRs has proven to be sensitive and selective for LFP detection on various porous substrates. Hence Cd2+-CNPs/CeONRs nanocomposite can be reused as a good fingerprint labelling agent in LFP detection so as to avoid secondary environmental pollution by disposal of the spent adsorbent.

Keywords: Cd2+-CNPs/CeONRs nanocomposite, cadmium adsorption, isotherm, kinetics, thermodynamics, reusable for latent fingerprint detection

Procedia PDF Downloads 121
3905 Aggregate Supply Response of Some Livestock Commodities in Algeria: Cointegration- Vector Error Correction Model Approach

Authors: Amine M. Benmehaia, Amine Oulmane

Abstract:

The supply response of agricultural commodities to changes in price incentives is an important issue for the success of any policy reform in the agricultural sector. This study aims to quantify the responsiveness of producers of some livestock commodities to price incentives in Algerian context. Time series analysis is used on annual data for a period of 52 years (1966-2018). Both co-integration and vector error correction model (VECM) are used through the Nerlove model of partial adjustment. The study attempts to determine the long-run and short-run relationships along with the magnitudes of disequilibria in the selected commodities. Results show that the short-run price elasticities are low in cow and sheep meat sectors (8.7 and 8% respectively), while their respective long-run elasticities are 16.5 and 10.5, whereas eggs and milk have very high short-run price elasticities (82 and 90% respectively) with long-run elasticities of 40 and 46 respectively. The error correction coefficient, reflecting the speed of adjustment towards the long-run equilibrium, is statistically significant and have the expected negative sign. Its estimates are 12.7 for cow meat, 33.5 for sheep meat, 46.7 for eggs and 8.4 for milk. It seems that cow meat and milk producers have a weak feedback of about 12.7% and 8.4% respectively of the previous year's disequilibrium from the long-run price elasticity, whereas sheep meat and eggs producers adjust to correct long run disequilibrium with a high speed of adjustment (33.5% and 46.7 % respectively). The implication of this is that much more in-depth research is needed to identify those factors that affect agricultural supply and to describe the effect of factors that shift supply in response to price incentives. This could provide valuable information for government in the use of appropriate policy measures.

Keywords: Algeria, cointegration, livestock, supply response, vector error correction model

Procedia PDF Downloads 141
3904 Raising Forest Voices: A Cross-Country Comparative Study of Indigenous Peoples’ Engagement with Grassroots Climate Change Mitigation Projects in the Initial Pilot Phase of Community-Based Reducing Emissions from Deforestation and forest Degradation

Authors: Karl D. Humm

Abstract:

The United Nations’ Community-based REDD+ (Reducing Emissions from Deforestation and forest Degradation) (CBR+) is a programme that directly finances grassroots climate change mitigation strategies that uplift Indigenous Peoples (IPs) and other marginalised groups. A pilot for it in six countries was developed in response to criticism of the REDD+ programme for excluding IPs from dialogues about climate change mitigation strategies affecting their lands and livelihoods. Despite the pilot’s conclusion in 2017, no complete report has yet been produced on the results of CBR+. To fill this gap, this study investigated the experiences with involving IPs in the CBR+ programmes and local projects across all six pilot countries. A literature review of official UN reports and academic articles identified challenges and successes with IP participation in REDD+ which became the basis for a framework guiding data collection. A mixed methods approach was used to collect and analyse qualitative and quantitative data from CBR+ documents and written interviews with CBR+ National Coordinators in each country for a cross-country comparative analysis. The study found that the most frequent challenges were lack of organisational capacity, illegal forest activities, and historically-based contentious relationships in IP and forest-dependent communities. Successful programmes included IPs and incorporated respect and recognition of IPs as major stakeholders in managing sustainable forests. Findings are summarized and shared with a set of recommendations for improvement of future projects.

Keywords: climate change, forests, indigenous peoples, REDD+

Procedia PDF Downloads 124
3903 Impact of Economic Globalization on Ecological Footprint in India: Evidenced with Dynamic ARDL Simulations

Authors: Muhammed Ashiq Villanthenkodath, Shreya Pal

Abstract:

Purpose: This study scrutinizes the impact of economic globalization on ecological footprint while endogenizing economic growth and energy consumption from 1990 to 2018 in India. Design/methodology/approach: The standard unit root test has been employed for time series analysis to unveil the integration order. Then, the cointegration was confirmed using autoregressive distributed lag (ARDL) analysis. Further, the study executed the dynamic ARDL simulation model to estimate long-run and short-run results along with simulation and robotic prediction. Findings: The cointegration analysis confirms the existence of a long-run association among variables. Further, economic globalization reduces the ecological footprint in the long run. Similarly, energy consumption decreases the ecological footprint. In contrast, economic growth spurs the ecological footprint in India. Originality/value: This study contributes to the literature in many ways. First, unlike studies that employ CO2 emissions and globalization nexus, this study employs ecological footprint for measuring environmental quality; since it is the broader measure of environmental quality, it can offer a wide range of climate change mitigation policies for India. Second, the study executes a multivariate framework with updated series from 1990 to 2018 in India to explore the link between EF, economic globalization, energy consumption, and economic growth. Third, the dynamic autoregressive distributed lag (ARDL) model has been used to explore the short and long-run association between the series. Finally, to our limited knowledge, this is the first study that uses economic globalization in the EF function of India amid facing a trade-off between sustainable economic growth and the environment in the era of globalization.

Keywords: economic globalization, ecological footprint, India, dynamic ARDL simulation model

Procedia PDF Downloads 124
3902 Flexible and Color Tunable Inorganic Light Emitting Diode Array for High Resolution Optogenetic Devices

Authors: Keundong Lee, Dongha Yoo, Youngbin Tchoe, Gyu-Chul Yi

Abstract:

Light emitting diode (LED) array is an ideal optical stimulation tool for optogenetics, which controls inhibition and excitation of specific neurons with light-sensitive ion channels or pumps. Although a fiber-optic cable with an external light source, either a laser or LED mechanically connected to the end of the fiber-optic cable has widely been used for illumination on neural tissue, a new approach to use micro LEDs (µLEDs) has recently been demonstrated. The LEDs can be placed directly either on the cortical surface or within the deep brain using a penetrating depth probe. Accordingly, this method would not need a permanent opening in the skull if the LEDs are integrated with miniature electrical power source and wireless communication. In addition, multiple color generation from single µLED cell would enable to excite and/or inhibit neurons in localized regions. Here, we demonstrate flexible and color tunable µLEDs for the optogenetic device applications. The flexible and color tunable LEDs was fabricated using multifaceted gallium nitride (GaN) nanorod arrays with GaN nanorods grown on InxGa1−xN/GaN single quantum well structures (SQW) anisotropically formed on the nanorod tips and sidewalls. For various electroluminescence (EL) colors, current injection paths were controlled through a continuous p-GaN layer depending on the applied bias voltage. The electric current was injected through different thickness and composition, thus changing the color of light from red to blue that the LED emits. We believe that the flexible and color tunable µLEDs enable us to control activities of the neuron by emitting various colors from the single µLED cell.

Keywords: light emitting diode, optogenetics, graphene, flexible optoelectronics

Procedia PDF Downloads 211
3901 Strained Channel Aluminum Nitride/Gallium Nitride Heterostructures Homoepitaxially Grown on Aluminum Nitride-On-Sapphire Template by Plasma-Assisted Molecular Beam Epitaxy

Authors: Jiajia Yao, GuanLin Wu, Fang liu, JunShuai Xue, JinCheng Zhang, Yue Hao

Abstract:

Due to its outstanding material properties like high thermal conductivity and ultra-wide bandgap, Aluminum nitride (AlN) has the promising potential to provide high breakdown voltage and high output power among III-nitrides for various applications in electronics and optoelectronics. This work presents material growth and characterization of strained channel Aluminum nitride/Gallium nitride (AlN/GaN) heterostructures grown by plasma-assisted molecular beam epitaxy (PA-MBE) on AlN-on-sapphire templates. To improve the crystal quality and manifest the ability of the PA-MBE approach, a thick AlN buffer with a thickness of 180 nm is first grown on AlN template, which acts as a back-barrier to enhance the breakdown characteristic and isolates the leakage path existing in the interface between AlN epilayer and AlN template, as well as improve the heat dissipation. The grown AlN buffer features a root-mean-square roughness of 0.2 nm over a scanned area of 2×2 µm2 measured by atomic force microscopy (AFM), and exhibits full-width at half-maximum of 95 and 407 arcsec for the (002) and (102) plane the X-ray rocking curve, respectively, tested by high resolution x-ray diffraction (HR-XRD). With a thin and strained GaN channel, the electron mobility of 294 cm2 /Vs. with a carrier concentration of 2.82×1013 cm-2 at room temperature is achieved in AlN/GaN double-channel heterostructures, and the depletion capacitance is as low as 14 pF resolved by the capacitance-voltage, which indicates the promising opportunities for future applications in next-generation high temperature, high-frequency and high-power electronics with a further increased electron mobility by optimization of heterointerface quality.

Keywords: AlN/GaN, HEMT, MBE, homoepitaxy

Procedia PDF Downloads 96
3900 Bayesian System and Copula for Event Detection and Summarization of Soccer Videos

Authors: Dhanuja S. Patil, Sanjay B. Waykar

Abstract:

Event detection is a standout amongst the most key parts for distinctive sorts of area applications of video data framework. Recently, it has picked up an extensive interest of experts and in scholastics from different zones. While detecting video event has been the subject of broad study efforts recently, impressively less existing methodology has considered multi-model data and issues related efficiency. Start of soccer matches different doubtful circumstances rise that can't be effectively judged by the referee committee. A framework that checks objectively image arrangements would prevent not right interpretations because of some errors, or high velocity of the events. Bayesian networks give a structure for dealing with this vulnerability using an essential graphical structure likewise the probability analytics. We propose an efficient structure for analysing and summarization of soccer videos utilizing object-based features. The proposed work utilizes the t-cherry junction tree, an exceptionally recent advancement in probabilistic graphical models, to create a compact representation and great approximation intractable model for client’s relationships in an interpersonal organization. There are various advantages in this approach firstly; the t-cherry gives best approximation by means of junction trees class. Secondly, to construct a t-cherry junction tree can be to a great extent parallelized; and at last inference can be performed utilizing distributed computation. Examination results demonstrates the effectiveness, adequacy, and the strength of the proposed work which is shown over a far reaching information set, comprising more soccer feature, caught at better places.

Keywords: summarization, detection, Bayesian network, t-cherry tree

Procedia PDF Downloads 326
3899 A Cultural Materialistic Approach to Toni Morrison’s Beloved and the Bluest Eye

Authors: Irfan Mehmood

Abstract:

The goal of this paper is to examine Toni Morrison's novels Beloved and The Bluest Eye from a cultural materialistic perspective. The history and society of African Americans provide the inspiration for the stories of Beloved and The Bluest Eye. The cultural materialist elements and characteristics of Morrison's literary text will be highlighted in this study. The topic covered in this paper will include racism, gender discrimination, social class differences, and slavery in the text. In other words, the study will focus on the underrepresented groups in society, including women, slaves, and Afro-Americans. In this aspect, Toni Morrison is a fantastic writer whose works are full of diverse races. Morrison uses her incredibly well-informed language and well-produced stories to attempt to illuminate many facets of American life. She establishes a distinctive style of writing that sharply contrasts the suffering and enslavement of Afro-Americans with the traditional writings of Euro-American authors. Morrison shows a profound understanding of the exploitation of Afro-Americans in terms of race, gender, and class conflict in Beloved and The Bluest Eye. A unique culture and the history of a typically ignored set of people whose minds and societies have been permanently changed by class, racial, and gender discrimination were introduced through the study of Morrison's chosen novels. Toni Morrison places a lot of emphasis on the marginalized members of society, particularly in terms of class, ethnicity, and gender, because the majority of the key characters in her book are black. Therefore, the purpose of this essay is to concentrate on the culturally materialistic elements of Morrison's Beloved and The Bluest Eye and to ascertain the author's position on these minorities.

Keywords: race, slavery, social class, Toni Morrison, African American culture

Procedia PDF Downloads 68
3898 Molecular Insights into the Genetic Integrity of Long-Term Micropropagated Clones Using Start Codon Targeted (SCoT) Markers: A Case Study with Ansellia africana, an Endangered, Medicinal Orchid

Authors: Paromik Bhattacharyya, Vijay Kumar, Johannes Van Staden

Abstract:

Micropropagation is an important tool for the conservation of threatened and commercially important plant species of which orchids deserve special attention. Ansellia africana is one such medicinally important orchid species having much commercial significance. Thus, development of regeneration protocols for producing clonally stable regenerates using axillary buds is of much importance. However, for large-scale micropropagation to become not only successful but also acceptable by end-users, somaclonal variations occurring in the plantlets need to be eliminated. In the light of the various factors (genotype, ploidy level, in vitro culture age, explant and culture type, etc.) that may account for the somaclonal variations of divergent genetic changes at the cellular and molecular levels, genetic analysis of micropropagated plants using a multidisciplinary approach is of utmost importance. In the present study, the clonal integrity of the long term micropropagated A. africana plants were assessed using advanced molecular marker system i.e. Start Codon Targeted Polymorphism (SCoT). Our studies recorded a clonally stable regeneration protocol for A. africana with a very high degree of clonal fidelity amongst the regenerates. The results obtained from these molecular analyses could help in modifying the regeneration protocols for obtaining clonally stable true to type plantlets for sustainable commercial use.

Keywords: medicinal orchid micropropagation, start codon targeted polymorphism (SCoT), RAP), traditional African pharmacopoeia, genetic fidelity

Procedia PDF Downloads 426
3897 Neural Network based Risk Detection for Dyslexia and Dysgraphia in Sinhala Language Speaking Children

Authors: Budhvin T. Withana, Sulochana Rupasinghe

Abstract:

The educational system faces a significant concern with regards to Dyslexia and Dysgraphia, which are learning disabilities impacting reading and writing abilities. This is particularly challenging for children who speak the Sinhala language due to its complexity and uniqueness. Commonly used methods to detect the risk of Dyslexia and Dysgraphia rely on subjective assessments, leading to limited coverage and time-consuming processes. Consequently, delays in diagnoses and missed opportunities for early intervention can occur. To address this issue, the project developed a hybrid model that incorporates various deep learning techniques to detect the risk of Dyslexia and Dysgraphia. Specifically, Resnet50, VGG16, and YOLOv8 models were integrated to identify handwriting issues. The outputs of these models were then combined with other input data and fed into an MLP model. Hyperparameters of the MLP model were fine-tuned using Grid Search CV, enabling the identification of optimal values for the model. This approach proved to be highly effective in accurately predicting the risk of Dyslexia and Dysgraphia, providing a valuable tool for early detection and intervention. The Resnet50 model exhibited a training accuracy of 0.9804 and a validation accuracy of 0.9653. The VGG16 model achieved a training accuracy of 0.9991 and a validation accuracy of 0.9891. The MLP model demonstrated impressive results with a training accuracy of 0.99918, a testing accuracy of 0.99223, and a loss of 0.01371. These outcomes showcase the high accuracy achieved by the proposed hybrid model in predicting the risk of Dyslexia and Dysgraphia.

Keywords: neural networks, risk detection system, dyslexia, dysgraphia, deep learning, learning disabilities, data science

Procedia PDF Downloads 64
3896 Creating Inclusive Information Services: Librarians’ Design-Thinking Approach to Helping Students Succeed in the Digital Age

Authors: Yi Ding

Abstract:

With the rapid development of educational technologies, higher education institutions are facing the challenge of creating an inclusive learning environment for students from diverse backgrounds. Academic libraries, the hubs of research, instruction, and innovation at higher educational institutions, are facing the same challenge. While academic librarians worldwide have been working hard to provide services for emerging information technology such as information literacy education, online learning support, and scholarly communication advocacy, the problem of digital exclusion remains a difficult one at higher education institutions. Information services provided by academic libraries can result in the digital exclusion of students from diverse backgrounds, such as students with various digital readiness levels, students with disabilities, as well as English-as-a-Second-Language learners. This research study shows how academic librarians can design digital learning objects that are cognizant of differences in learner traits and student profiles through the lens of design thinking. By demonstrating how the design process of digital learning objects can take into consideration users’ needs, experiences, and engagement with different technologies, this research study explains design principles of accessibility, connectivity, and scalability in creating inclusive digital learning objects as shown in various case studies. Equipped with the mindset and techniques to be mindful of diverse student learning traits and profiles when designing information services, academic libraries can improve the digital inclusion and ultimately student success at higher education institutions.

Keywords: academic librarians, digital inclusion, information services, digital learning objects, student success

Procedia PDF Downloads 216
3895 Advantages and Disadvantages of Socioscientific Issue Based Instruction in Science Classrooms: Pre-Service Science Teachers' Views

Authors: Aysegul Evren Yapicioglu

Abstract:

The social roles and responsibilities expected from citizens are increasing due to changing global living conditions. Science education is expected to prepare conscious and sensitive students. Because today’s students are the adults of future. Precondition of this task is Teacher Education. In the past decade, one of the most important research field is socioscientific issues. This study deals with advantages and disadvantages of socioscientific issue based instruction in science classroom according to pre-service science teachers’ views. A case study approach that is one of the qualitative research design was used to explore their views. Fourteen pre-service science teachers participated to instruction process. Dolphinariums, Kyoto Protocol, genetically modified organisms, recyclable black bags’ benefits and damages, genetic tests, alternative energy sources and organ donation are examples of socioscientific issues, which were taught through activities in a special teaching course. Diaries and focus group interview were used as data collection tools. As a result of the study, the advantages of socioscientific issue based instruction in science classroom comprise of six sub-categories which are multi-skilling, social awareness development of thinking, meaningful learning, character and professional development, contribution of scientific literacy whereas disadvantages of this instruction process are challenges teachers and students, limitations of teaching and learning process in pre-service science teachers’ perspectives. Finally, this study contributes to science teachers and researchers to overcome disadvantages and benefit from the advantage of socioscientific issue based instruction in science classroom.

Keywords: science education, socioscientific issues, socioscientific issue based instruction, pre-service science teacher

Procedia PDF Downloads 181
3894 [Keynote Talk]: Caught in the Tractorbeam of Larger Influences: The Filtration of Innovation in Education Technology Design

Authors: Justin D. Olmanson, Fitsum Abebe, Valerie Jones, Eric Kyle, Xianquan Liu, Katherine Robbins, Guieswende Rouamba

Abstract:

The history of education technology--and designing, adapting, and adopting technologies for use in educational spaces--is nuanced, complex, and dynamic. Yet, despite a range of continually emerging technologies, the design and development process often yields results that appear quite similar in terms of affordances and interactions. Through this study we (1) verify the extent to which designs have been constrained, (2) consider what might account for it, and (3) offer a way forward in terms of how we might identify and strategically sidestep these influences--thereby increasing the diversity of our designs with a given technology or within a particular learning domain. We begin our inquiry from the perspective that a host of co-influencing elements, fields, and meta narratives converge on the education technology design process to exert a tangible, often homogenizing effect on the resultant designs. We identify several elements that influence design in often implicit or unquestioned ways (e.g. curriculum, learning theory, economics, learning context, pedagogy), we describe our methodology for identifying the elemental positionality embedded in a design, we direct our analysis to a particular subset of technologies in the field of literacy, and unpack our findings. Our early analysis suggests that the majority of education technologies designed for use/used in US public schools are heavily influenced by a handful of mainstream theories and meta narratives. These findings have implications for how we approach the education technology design process--which we use to suggest alternative methods for designing/ developing with emerging technologies. Our analytical process and re conceptualized design process hold the potential to diversify the ways emerging and established technologies get incorporated into our designs.

Keywords: curriculum, design, innovation, meta narratives

Procedia PDF Downloads 509
3893 Experimental Evaluation of 10 Ecotypes of Toxic and Non-Toxic Jatropha curcas as Raw Material to Produce Biodiesel in Morelos State, Mexico

Authors: Guadalupe Pérez, Jorge Islas, Mirna Guevara, Raúl Suárez

Abstract:

Jatropha curcas is a perennial oleaginous plant that is currently considered an energy crop with high potential as an environmentally sustainable biofuel. During the last decades, research in biofuels has grown in tropical and subtropical regions in Latin America. However, as far we know, there are no reports on the growth and yield patterns of Jatropha curcas under the specific agro climatic scenarios of the State of Morelos, Mexico. This study presents the results of 52 months monitoring of 10 toxic and non-toxic ecotypes of Jatropha curcas (E1M, E2M, E3M, E4M, E5M, E6O, E7O, E8O, E9C, E10C) in an experimental plantation with minimum watering and fertilization resources. The main objective is to identify the ecotypes with the highest potential as biodiesel raw material in the select region, by developing experimental information. Specifically, we monitored biophysical and growth parameters, including plant survival and seed production (at the end of month 52), to study the performance of each ecotype and to establish differences among the variables of morphological growth, net seed oil content, and toxicity. To analyze the morphological growth, a statistical approach to the biophysical parameters was used; the net seed oil content -80 to 192 kg/ha- was estimated with the first harvest; and the toxicity was evaluated by examining the phorbol ester concentration (µg/L) in the oil extracted from the seeds. The comparison and selection of ecotypes was performed through a methodology developed based on the normalization of results. We identified four outstanding ecotypes (E1M, E2M, E3M, and E4M) that can be used to establish Jatropha curcas as energy crops in the state of Morelos for feasible agro-industrial production of biodiesel and other products related to the use of biomass.

Keywords: biodiesel production, Jatropha curcas, seed oil content, toxic and non-toxic ecotypes

Procedia PDF Downloads 133
3892 Digital System Design for Strategic Improvement Planning in Education: A Socio-Technical and Iterative Design Approach

Authors: Neeley Current, Fatih Demir, Kenneth Haggerty, Blake Naughton, Isa Jahnke

Abstract:

Educational systems seek reform using data-intensive continuous improvement processes known as strategic improvement plans (SIPs). Schools turn to digital systems to monitor, analyze and report SIPs. One technical challenge of these digital systems focuses on integrating a highly diverse set of data sources. Another challenge is to create a learnable sociotechnical system to help administrators, principals and teachers add, manipulate and interpret data. This study explores to what extent one particular system is usable and useful for strategic planning activities and whether intended users see the benefit of the system achieve the goal of improving workflow related to strategic planning in schools. In a three-phase study, researchers used sociotechnical design methods to understand the current workflow, technology use, and processes of teachers and principals surrounding their strategic improvement planning. Additionally, design review and task analysis usability methods were used to evaluate task completion, usability, and user satisfaction of the system. The resulting socio-technical models illustrate the existing work processes and indicate how and at which places in the workflow the newly developed system could have an impact. The results point to the potential of the system but also indicate that it was initially too complicated for use. However, the diverse users see the potential benefits, especially to overcome the diverse set of data sources, and that the system could fill a gap for schools in planning and conducting strategic improvement plans.

Keywords: continuous improvement process, education reform, strategic improvement planning, sociotechnical design, software development, usability

Procedia PDF Downloads 297
3891 Navigating a Changing Landscape: Opportunities for Research Managers

Authors: Samba Lamine Cisse, Cheick Oumar Tangara, Seynabou Sissoko, Mahamadou Diakite, Seydou Doumbia

Abstract:

Introduction: Over the past two decades, the world has been constantly changing, with new trends in project management. These trends are transforming the methods and priorities of research project management. They include the rise of digital technologies, multidisciplinary, open science, and the pressure for high-impact results. Managers, therefore, find themselves at a crossroads between the challenges and opportunities offered by these new trends. This paper aims to identify the challenges and opportunities they face while proposing strategies for effectively navigating this dynamic context. Methodology: This is a qualitative study based on an analysis of the challenges and opportunities facing the University Clinical Research Center in terms of new technologies and project management methods. This blended approach provides an overview of emerging trends and practices. Results: This article shows how research managers can turn new research trends in their favor and how they can adapt to the changes they face to optimize the productivity of research teams while ensuring the quality and ethics of the work. It also explores the importance of developing skills in data management, international collaboration, and innovation management. Finally, it proposes strategies for responding effectively to the challenges posed by these new trends while strengthening the position of research managers as essential facilitators of scientific progress. Conclusion: Navigating this changing landscape requires research managers to be highly flexible and able to anticipate the realities of their institution. By adopting modern project management methodologies and cultivating a culture of innovation, they can turn challenges into opportunities and propel research toward new horizons. This paper provides a strategic framework for overcoming current obstacles and capitalizing on future developments in research.

Keywords: new trends, research management, opportunities, challenges

Procedia PDF Downloads 11
3890 Intercultural Sensitivity in Iran: A Case Study of Intercultural Relations between Turks and Lors

Authors: Sepideh Mohammadi

Abstract:

Iran is a country that boasts of ethnic diversity, comprising various groups such as Turks, Lors, Arabs, Baluchs, Persians, Kurds, Gliks, Azaris, and Tabaris. The majority of people in Iran are Persians and as such, the Persian language is the official language of the country. However, it is also a common language among different ethnic groups. It is worth noting that there is a longstanding history of coexistence and cultural relations between the Turkic and Lor ethnic groups. The purpose of this article is to study the range of intercultural sensitivities of Turks and Lor peoples to identify the state of intercultural competence and reduce conflicts in the direction of cultural policy. It is important to gain insight into the mutual perceptions of Lor and Turkic people towards each other. Understanding these perceptions can greatly aid in fostering stronger relationships and promoting effective communication between the two ethnic groups. The study employed a qualitative content analysis approach to gather data using a semi-structured interview tool. The participants consisted of ten individuals from the Lor ethnic and ten individuals from the Turk ethnic. According to Milton Bennett's six-stage model, our findings reveal that the Turkish and Lor ethnic groups tend to exhibit higher intercultural sensitivity in the second stage, which consists of defense against differences. Both groups tend to emphasize the differences between them, and the notion of "us and the other" holds significant importance for them. It is important to acknowledge that both the Turk and Lor ethnicities consist of various clans, which significantly shape intercultural relations between them. A common stereotype in this regard is that the Turks of Tabriz province often do not recognize the Turks of other provinces of the country as their own. Moreover, our study indicates that an increase in interaction and communication between the Lor and Turk ethnic groups may lead to a reduction in cultural sensitivities between them.

Keywords: intercultural communication, intercultural sensitivity, Iran, Lor, Turk

Procedia PDF Downloads 47
3889 Applications of Evolutionary Optimization Methods in Reinforcement Learning

Authors: Rahul Paul, Kedar Nath Das

Abstract:

The paradigm of Reinforcement Learning (RL) has become prominent in training intelligent agents to make decisions in environments that are both dynamic and uncertain. The primary objective of RL is to optimize the policy of an agent in order to maximize the cumulative reward it receives throughout a given period. Nevertheless, the process of optimization presents notable difficulties as a result of the inherent trade-off between exploration and exploitation, the presence of extensive state-action spaces, and the intricate nature of the dynamics involved. Evolutionary Optimization Methods (EOMs) have garnered considerable attention as a supplementary approach to tackle these challenges, providing distinct capabilities for optimizing RL policies and value functions. The ongoing advancement of research in both RL and EOMs presents an opportunity for significant advancements in autonomous decision-making systems. The convergence of these two fields has the potential to have a transformative impact on various domains of artificial intelligence (AI) applications. This article highlights the considerable influence of EOMs in enhancing the capabilities of RL. Taking advantage of evolutionary principles enables RL algorithms to effectively traverse extensive action spaces and discover optimal solutions within intricate environments. Moreover, this paper emphasizes the practical implementations of EOMs in the field of RL, specifically in areas such as robotic control, autonomous systems, inventory problems, and multi-agent scenarios. The article highlights the utilization of EOMs in facilitating RL agents to effectively adapt, evolve, and uncover proficient strategies for complex tasks that may pose challenges for conventional RL approaches.

Keywords: machine learning, reinforcement learning, loss function, optimization techniques, evolutionary optimization methods

Procedia PDF Downloads 80
3888 Partial Purification and Characterization of a Low Molecular Weight and Industrially Important Chitinase and a Chitin Deacetylase Enzyme from Streptomyces Chilikensis RC1830, a Novel Strain Isolated from Chilika Lake, India

Authors: Lopamudra Ray, Malla Padma, Dibya Bhol, Samir Ranjan Mishra, A. N. Panda, Gurdeep Rastogi, T. K. Adhya, Ajit Kumar Pattnaik, Mrutyunjay Suar, Vishakha Raina

Abstract:

Chilika Lake is the largest coastal estuarine brackish water lagoon in Asia situated on the east coast of India and is a designated Ramsar site. In the current study, several chitinolytic microorganisms were isolated and screened by appearance of clearance zone on 0.5% colloidal chitin agar plate. A strain designated as RC 1830 displayed maximum colloidal chitin degradation by release of 112 μmol/ml/min of N-acetyl D-glucosamine (GlcNAc) in 48h. The strain was taxonomically identified by polyphasic approach based on a range of phenotypic and genotypic properties and was found to be a novel species named Streptomyces chilikensis RC1830. The organism was halophilic (12% NaCl w/v), alkalophilic (pH10) and was capable of hydrolyzing chitin, starch, cellulose, gelatin, casein, tributyrin and tween 80. The partial purification of chitinase enzymes from RC1830 was performed by DEAE Sephacel anion exchange chromatography which revealed the presence of a very low molecular weight chitinase(10.5kD) which may be a probable chitobiosidase enzyme. The study reports the presence of a low MW chitinase (10.5kD) and a chitin decaetylase from a novel Streptomyces strain RC1830 isolated from Chilika Lake. Previously chitinases less than 20.5kD have not been reported from any other Streptomyces species. The enzymes was characterized with respect to optimum pH, temperature, and substrate specificity and temperature stability.

Keywords: chitinases, chitobiosidase, Chilika Lake, India

Procedia PDF Downloads 499
3887 Knowledge of Trauma-Informed Practice: A Mixed Methods Exploratory Study with Educators of Young Children

Authors: N. Khodarahmi, L. Ford

Abstract:

Decades of research on the impact of trauma in early childhood suggest severe risks to the mental health, emotional, social and physical development of a young child. Trauma-exposed students can pose a variety of different levels of challenges to schools and educators of young children and to date, few studies have addressed ECE teachers’ role in providing trauma support. The present study aims to contribute to this literature by exploring the beliefs of British Columbia’s (BC) early childhood education (ECE) teachers in their level of readiness and capability to work within a trauma-informed practice (TIP) framework to support their trauma-exposed students. Through a sequential, mix-methods approach, a self-report questionnaire and semi-structured interviews will be used to gauge BC ECE teachers’ knowledge of TIP, their preparedness, and their ability in using this framework to support their most vulnerable students. Teacher participants will be recruited through the ECEBC organization and various school districts in the Greater Vancouver Area. Questionnaire data will be primarily collected through an online survey tool whereas interviews will be taking place in-person and audio-recorded. Data analysis of survey responses will be largely descriptive, whereas interviews, once transcribed, will be employing thematic content analysis to generate themes from teacher responses. Ultimately, this study hopes to highlight the necessity of utilizing the TIP framework in BC ECE classrooms in order to support both trauma-exposed students and provide essential resources to compassionate educators of young children.

Keywords: early childhood education, early learning classrooms, refugee students, trauma-exposed students, trauma-informed practice

Procedia PDF Downloads 141
3886 Research of Actuators of Common Rail Injection Systems with the Use of LabVIEW on a Specially Designed Test Bench

Authors: G. Baranski, A. Majczak, M. Wendeker

Abstract:

Currently, the most commonly used solution to provide fuel to the diesel engines is the Common Rail system. Compared to previous designs, as a due to relatively simple construction and electronic control systems, these systems allow achieving favourable engine operation parameters with particular emphasis on low emission of toxic compounds into the atmosphere. In this system, the amount of injected fuel dose is strictly dependent on the course of parameters of the electrical impulse sent by the power amplifier power supply system injector from the engine controller. The article presents the construction of a laboratory test bench to examine the course of the injection process and the expense in storage injection systems. The test bench enables testing of injection systems with electromagnetically controlled injectors with the use of scientific engineering tools. The developed system is based on LabView software and CompactRIO family controller using FPGA systems and a real time microcontroller. The results of experimental research on electromagnetic injectors of common rail system, controlled by a dedicated National Instruments card, confirm the effectiveness of the presented approach. The results of the research described in the article present the influence of basic parameters of the electric impulse opening the electromagnetic injector on the value of the injected fuel dose. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK ‘PZL-KALISZ’ S.A.’ and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.

Keywords: fuel injector, combustion engine, fuel pressure, compression ignition engine, power supply system, controller, LabVIEW

Procedia PDF Downloads 131
3885 Design and Optimisation of 2-Oxoglutarate Dioxygenase Expression in Escherichia coli Strains for Production of Bioethylene from Crude Glycerol

Authors: Idan Chiyanzu, Maruping Mangena

Abstract:

Crude glycerol, a major by-product from the transesterification of triacylglycerides with alcohol to biodiesel, is known to have a broad range of applications. For example, its bioconversion can afford a wide range of chemicals including alcohols, organic acids, hydrogen, solvents and intermediate compounds. In bacteria, the 2-oxoglutarate dioxygenase (2-OGD) enzymes are widely found among the Pseudomonas syringae species and have been recognized with an emerging importance in ethylene formation. However, the use of optimized enzyme function in recombinant systems for crude glycerol conversion to ethylene is still not been reported. The present study investigated the production of ethylene from crude glycerol using engineered E. coli MG1655 and JM109 strains. Ethylene production with an optimized expression system for 2-OGD in E. coli using a codon optimized construct of the ethylene-forming gene was studied. The codon-optimization resulted in a 20-fold increase of protein production and thus an enhanced production of the ethylene gas. For a reliable bioreactor performance, the effect of temperature, fermentation time, pH, substrate concentration, the concentration of methanol, concentration of potassium hydroxide and media supplements on ethylene yield was investigated. The results demonstrate that the recombinant enzyme can be used for future studies to exploit the conversion of low-priced crude glycerol into advanced value products like light olefins, and tools including recombineering techniques for DNA, molecular biology, and bioengineering can be used to allowing unlimited the production of ethylene directly from the fermentation of crude glycerol. It can be concluded that recombinant E.coli production systems represent significantly secure, renewable and environmentally safe alternative to thermochemical approach to ethylene production.

Keywords: crude glycerol, bioethylene, recombinant E. coli, optimization

Procedia PDF Downloads 279
3884 Deep Learning-Based Approach to Automatic Abstractive Summarization of Patent Documents

Authors: Sakshi V. Tantak, Vishap K. Malik, Neelanjney Pilarisetty

Abstract:

A patent is an exclusive right granted for an invention. It can be a product or a process that provides an innovative method of doing something, or offers a new technical perspective or solution to a problem. A patent can be obtained by making the technical information and details about the invention publicly available. The patent owner has exclusive rights to prevent or stop anyone from using the patented invention for commercial uses. Any commercial usage, distribution, import or export of a patented invention or product requires the patent owner’s consent. It has been observed that the central and important parts of patents are scripted in idiosyncratic and complex linguistic structures that can be difficult to read, comprehend or interpret for the masses. The abstracts of these patents tend to obfuscate the precise nature of the patent instead of clarifying it via direct and simple linguistic constructs. This makes it necessary to have an efficient access to this knowledge via concise and transparent summaries. However, as mentioned above, due to complex and repetitive linguistic constructs and extremely long sentences, common extraction-oriented automatic text summarization methods should not be expected to show a remarkable performance when applied to patent documents. Other, more content-oriented or abstractive summarization techniques are able to perform much better and generate more concise summaries. This paper proposes an efficient summarization system for patents using artificial intelligence, natural language processing and deep learning techniques to condense the knowledge and essential information from a patent document into a single summary that is easier to understand without any redundant formatting and difficult jargon.

Keywords: abstractive summarization, deep learning, natural language Processing, patent document

Procedia PDF Downloads 123
3883 Surface-Enhanced Raman Spectroscopy-Based Detection of SARS-CoV-2 Through In Situ One-pot Electrochemical Synthesis of 3D Au-Lysate Nanocomposite Structures on Plasmonic Au Electrodes

Authors: Ansah Iris Baffour, Dong-Ho Kim, Sung-Gyu Park

Abstract:

The ongoing COVID-19 pandemic, caused by the SARS-CoV-2 virus and is gradually shifting to an endemic phase which implies the outbreak is far from over and will be difficult to eradicate. Global cooperation has led to unified precautions that aim to suppress epidemiological spread (e.g., through travel restrictions) and reach herd immunity (through vaccinations); however, the primary strategy to restrain the spread of the virus in mass populations relies on screening protocols that enable rapid on-site diagnosis of infections. Herein, we employed surface enhanced Raman spectroscopy (SERS) for the rapid detection of SARS-CoV-2 lysate on an Au-modified Au nanodimple(AuND)electrode. Through in situone-pot Au electrodeposition on the AuND electrode, Au-lysate nanocomposites were synthesized, generating3D internal hotspots for large SERS signal enhancements within 30 s of the deposition. The capture of lysate into newly generated plasmonic nanogaps within the nanocomposite structures enhanced metal-spike protein contact in 3D spaces and served as hotspots for sensitive detection. The limit of detection of SARS-CoV-2 lysate was 5 x 10-2 PFU/mL. Interestingly, ultrasensitive detection of the lysates of influenza A/H1N1 and respiratory syncytial virus (RSV) was possible, but the method showed ultimate selectivity for SARS-CoV-2 in lysate solution mixtures. We investigated the practical application of the approach for rapid on-site diagnosis by detecting SARS-CoV-2 lysate spiked in normal human saliva at ultralow concentrations. The results presented demonstrate the reliability and sensitivity of the assay for rapid diagnosis of COVID-19.

Keywords: label-free detection, nanocomposites, SARS-CoV-2, surface-enhanced raman spectroscopy

Procedia PDF Downloads 123
3882 Artificial Neural Network-Based Prediction of Effluent Quality of Wastewater Treatment Plant Employing Data Preprocessing Approaches

Authors: Vahid Nourani, Atefeh Ashrafi

Abstract:

Prediction of treated wastewater quality is a matter of growing importance in water treatment procedure. In this way artificial neural network (ANN), as a robust data-driven approach, has been widely used for forecasting the effluent quality of wastewater treatment. However, developing ANN model based on appropriate input variables is a major concern due to the numerous parameters which are collected from treatment process and the number of them are increasing in the light of electronic sensors development. Various studies have been conducted, using different clustering methods, in order to classify most related and effective input variables. This issue has been overlooked in the selecting dominant input variables among wastewater treatment parameters which could effectively lead to more accurate prediction of water quality. In the presented study two ANN models were developed with the aim of forecasting effluent quality of Tabriz city’s wastewater treatment plant. Biochemical oxygen demand (BOD) was utilized to determine water quality as a target parameter. Model A used Principal Component Analysis (PCA) for input selection as a linear variance-based clustering method. Model B used those variables identified by the mutual information (MI) measure. Therefore, the optimal ANN structure when the result of model B compared with model A showed up to 15% percent increment in Determination Coefficient (DC). Thus, this study highlights the advantage of PCA method in selecting dominant input variables for ANN modeling of wastewater plant efficiency performance.

Keywords: Artificial Neural Networks, biochemical oxygen demand, principal component analysis, mutual information, Tabriz wastewater treatment plant, wastewater treatment plant

Procedia PDF Downloads 128
3881 Value Proposition and Value Creation in Network Environments: An Experimental Study of Academic Productivity via the Application of Bibliometrics

Authors: R. Oleko, A. Saraceni

Abstract:

The aim of this research is to provide a rigorous evaluation of the existing academic productivity in relation to value proposition and creation in networked environments. Bibliometrics is a vigorous approach used to structure existing literature in an objective and reliable manner. To that aim, a thorough bibliometric analysis was performed in order to assess the large volume of the information encountered in a structured and reliable manner. A clear distinction between networks and service networks was considered indispensable in order to capture the effects of each network’s type properties on value creation processes. Via the use of bibliometric parameters, this review was able to capture the state-of-the-art in both value proposition and value creation consecutively. The results provide a rigorous assessment of the annual scientific production, the most influential journals, and the leading corresponding author countries. By means of citation analysis, the most frequently cited manuscripts and countries for each network type were identified. Moreover, by means of co-citation analysis, existing collaborative patterns were detected through the creation of reference co-citation networks and country collaboration networks. Co-word analysis was also performed in order to provide an overview of the conceptual structure in both networks and service networks. The acquired results provide a rigorous and systematic assessment of the existing scientific output in networked settings. As such, they positively contribute to a better understanding of the distinct impact of service networks on value proposition and value creation when compared to regular networks. The implications derived can serve as a guide for informed decision-making by practitioners during network formation and provide a structured evaluation that can stand as a basis for future research in the field.

Keywords: bibliometrics, co-citation analysis, networks, service networks, value creation, value proposition

Procedia PDF Downloads 203
3880 Adenoid Cystic Carcinoma of the Lacrimal Gland (About a Case)

Authors: H. Hadjeris, R. B. Ghoul, Lekhlaf, M. Nebbal

Abstract:

Introduction: Adenoid cystic carcinomas of the lacrimal gland or orbital cylindroma constitute the second cause of epithelial tumors of this gland. It is a malignant tumor usually developed at the expense of the salivary glands; its orbital location is exceptional. It is a rare clinical entity, formidable by its malignancy and local aggressiveness; the recurrence rate is high. Materials and methods: Clinical case: 63 years old woman who presents with irreducible no pulsatile painful left exophthalmos with inflammatory chemosis and a decrease in visual acuity with a moderate intracranial hypertension syndrome that has been evolving for 03 months. Antecedent; a biopsy of the tumor was made; the histological examination was in favor of an adenoid cystic carcinoma of the lacrimal gland. Lesion assessment: computed tomography and brain MRI: show an intra and extra-conical mass; with sinus (ethmoido-frontal) and cerebral (left frontal) extension strongly enhanced after injection of contrast product surrounded by edema around the lesion, associated with left frontal bone lysis extension assessment: unremarkable treatment: Patient operated by left frontotemporal approach, a total exenteration was performed with macroscopically complete excision of the frontal lesion and wide frontal craniectomy with craniofacial reconstruction, followed by complementary radiotherapy. Results: The patient was seen again after 3 months in consultation; she does not present any signs in favor of a recurrence. Conclusion: Adenoid cystic carcinomas of the lacrimal gland are rare malignant tumors; they are very infiltrating and invasive. The prognosis is strongly linked to the treatment time.

Keywords: adenoid cystic, lacrimal gland, orbital location, fronto-temporal approac

Procedia PDF Downloads 71
3879 Ground Short Circuit Contributions of a MV Distribution Line Equipped with PWMSC

Authors: Mohamed Zellagui, Heba Ahmed Hassan

Abstract:

This paper proposes a new approach for the calculation of short-circuit parameters in the presence of Pulse Width Modulated based Series Compensator (PWMSC). PWMSC is a newly Flexible Alternating Current Transmission System (FACTS) device that can modulate the impedance of a transmission line through applying a variation to the duty cycle (D) of a train of pulses with fixed frequency. This results in an improvement of the system performance as it provides virtual compensation of distribution line impedance by injecting controllable apparent reactance in series with the distribution line. This controllable reactance can operate in both capacitive and inductive modes and this makes PWMSC highly effective in controlling the power flow and increasing system stability in the system. The purpose of this work is to study the impact of fault resistance (RF) which varies between 0 to 30 Ω on the fault current calculations in case of a ground fault and a fixed fault location. The case study is for a medium voltage (MV) Algerian distribution line which is compensated by PWMSC in the 30 kV Algerian distribution power network. The analysis is based on symmetrical components method which involves the calculations of symmetrical components of currents and voltages, without and with PWMSC in both cases of maximum and minimum duty cycle value for capacitive and inductive modes. The paper presents simulation results which are verified by the theoretical analysis.

Keywords: pulse width modulated series compensator (pwmsc), duty cycle, distribution line, short-circuit calculations, ground fault, symmetrical components method

Procedia PDF Downloads 500