Search results for: student performance prediction
15635 Practical Ways to Acquire the Arabic Language through Electronic Means
Authors: Hondozi Jahja
Abstract:
There is an obvious need to learn Arabic language and teach it to other speakers through the new curricula. The idea is to bridge the gap between theory and practice. To that end, we have sought to offer some means of help to master the Arabic language, in addition to our efforts to apply these means, enriching the culture of the student and develop his vocabulary. There is no doubt that taking care of the practical aspect of the grammar was our constant goal, and this particular aspect is what builds the student’s positive values and refine his taste and develop his language. In addressing these issues, we have adopted a school-based approach based primarily on the active and positive participation of the student. The theoretical linguistic issues - in our opinion - are not a primary goal, but the goal is to be used them by students through speaking and applying them. Among the objectives of this research is to establish the basic language skills of the students using new means that help the student to acquire these skills and apply them in various subjects of interest in his progress and development. Unfortunately, some of our students consider the grammar as ‘difficult’, ‘complex’ and ‘heavy’ in itself. This is one of the obstacles that stand in the way of their desired results. As a consequence, they end up talking – mumbling - about the difficulties they face in applying those rules. Therefore, some of our students finish their university studies and are unable to express what they feel using language correctly. For this purpose, we have sought in this research to follow a new integrated approach, which is to study the grammar of the language through modern means of the consolidation of the principle of functional language, and that the rule implies to control tongues and linguistic expressions properly. This research is a result of a practical experience as a teacher of Arabic language for non-native speakers at the ‘Hassan Pristina’ University, located in Pristina, the capital of Kosovo and at the Qatar Training Center since its establishment in 2012.Keywords: arabic, applied methods, acquire, learning
Procedia PDF Downloads 16015634 Creating Inclusive Information Services: Librarians’ Design-Thinking Approach to Helping Students Succeed in the Digital Age
Authors: Yi Ding
Abstract:
With the rapid development of educational technologies, higher education institutions are facing the challenge of creating an inclusive learning environment for students from diverse backgrounds. Academic libraries, the hubs of research, instruction, and innovation at higher educational institutions, are facing the same challenge. While academic librarians worldwide have been working hard to provide services for emerging information technology such as information literacy education, online learning support, and scholarly communication advocacy, the problem of digital exclusion remains a difficult one at higher education institutions. Information services provided by academic libraries can result in the digital exclusion of students from diverse backgrounds, such as students with various digital readiness levels, students with disabilities, as well as English-as-a-Second-Language learners. This research study shows how academic librarians can design digital learning objects that are cognizant of differences in learner traits and student profiles through the lens of design thinking. By demonstrating how the design process of digital learning objects can take into consideration users’ needs, experiences, and engagement with different technologies, this research study explains design principles of accessibility, connectivity, and scalability in creating inclusive digital learning objects as shown in various case studies. Equipped with the mindset and techniques to be mindful of diverse student learning traits and profiles when designing information services, academic libraries can improve the digital inclusion and ultimately student success at higher education institutions.Keywords: academic librarians, digital inclusion, information services, digital learning objects, student success
Procedia PDF Downloads 21615633 Student Authenticity: A Foundation for First-Year Experience Courses
Authors: Amy L. Smith
Abstract:
This study investigates the impact of student authenticity while engaging in academic exploration of students' sense of belonging, autonomy, and persistence. Research questions include: How does incorporating authenticity in first-year academic exploration courses impact; 1) first-year students’ sense of belonging, autonomy, and persistence? 2) first-year students’ sense of belonging, autonomy, and persistence during the first and last halves of the fall semester? 3) first-year students’ sense of belonging, autonomy, and persistence among various student demographics? First-year students completed a Likert-like survey at the conclusion of eight weeks (first and last eight weeks/fall semester) academic exploration courses. Course redesign included grounding the curriculum and instruction with student authenticity and creating opportunities for students to explore, define, and reflect upon their authenticity during academic exploration. Surveys were administered at the conclusion of these eight week courses (first and last eight weeks/fall semester). Data analysis included an entropy balancing matching method and t-tests. Research findings indicate integrating authenticity into academic exploration courses for first-year students has a positive impact on students' autonomy and persistence. There is a significant difference between authenticity and first-year students' autonomy (p = 0.00) and persistence (p = 0.01). Academic exploration courses with the underpinnings of authenticity are more effective in the second half of the fall semester. There is a significant difference between an academic exploration course grounding the curriculum and instruction in authenticity offered M8A (first half, fall semester) and M8B (second half, fall semester) (p = 0); M8B courses illustrate an increase of students' sense of belonging, autonomy, and persistence. Integrating authenticity into academic exploration courses for first-year students has a positive impact on varying student demographics (p = 0.00). There is a significant difference between authenticity and low-income (p = 0.04), first-generation (p = 0.00), Caucasian (p = 0.02), and American Indian/Alaskan Native (p = 0.05) first-year students' sense of belonging, autonomy, and persistence. Academic exploration courses embedded in authenticity helps develop first-year students’ sense of belonging, autonomy, and persistence, which are effective traits of college students. As first-year students engage in content courses, professors can empower students to have greater engagement in their learning process by relating content to students' authenticity and helping students think critically about how content is authentic to them — how students' authenticity relates to the content, how students can take their content expertise into the future in ways that, to the student, authentically contribute to the greater good. A broader conversation within higher education needs to include 1) designing courses that allow students to develop and reflect upon their authenticity/to formulate answers to the questions: who am I, who am I becoming, and how will I move my authentic self forward; and 2) a discussion of how to shift from the university shaping students to the university facilitating the process of students shaping themselves.Keywords: authenticity, first-year experience, sense of belonging, autonomy, persistence
Procedia PDF Downloads 13815632 Unlocking Green Hydrogen Potential: A Machine Learning-Based Assessment
Authors: Said Alshukri, Mazhar Hussain Malik
Abstract:
Green hydrogen is hydrogen produced using renewable energy sources. In the last few years, Oman aimed to reduce its dependency on fossil fuels. Recently, the hydrogen economy has become a global trend, and many countries have started to investigate the feasibility of implementing this sector. Oman created an alliance to establish the policy and rules for this sector. With motivation coming from both global and local interest in green hydrogen, this paper investigates the potential of producing hydrogen from wind and solar energies in three different locations in Oman, namely Duqm, Salalah, and Sohar. By using machine learning-based software “WEKA” and local metrological data, the project was designed to figure out which location has the highest wind and solar energy potential. First, various supervised models were tested to obtain their prediction accuracy, and it was found that the Random Forest (RF) model has the best prediction performance. The RF model was applied to 2021 metrological data for each location, and the results indicated that Duqm has the highest wind and solar energy potential. The system of one wind turbine in Duqm can produce 8335 MWh/year, which could be utilized in the water electrolysis process to produce 88847 kg of hydrogen mass, while a solar system consisting of 2820 solar cells is estimated to produce 1666.223 MWh/ year which is capable of producing 177591 kg of hydrogen mass.Keywords: green hydrogen, machine learning, wind and solar energies, WEKA, supervised models, random forest
Procedia PDF Downloads 7915631 Concept-Based Assessment in Curriculum
Authors: Nandu C. Nair, Kamal Bijlani
Abstract:
This paper proposes a concept-based assessment to track the performance of the students. The idea behind this approach is to map the exam questions with the concepts learned in the course. So at the end of the course, each student will know how well he learned each concept. This system will give a self assessment for the students as well as instructor. By analyzing the score of all students, instructor can decide some concepts need to be teaching again or not. The system’s efficiency is proved using three courses from M-tech program in E-Learning technologies and results show that the concept-wise assessment improved the score in final exam of majority students on various courses.Keywords: assessment, concept, examination, question, score
Procedia PDF Downloads 47015630 Morality in Actual Behavior: The Moderation Effect of Identification with the Ingroup and Religion on Norm Compliance
Authors: Shauma L. Tamba
Abstract:
This study examined whether morality is the most important aspect in actual behavior. The prediction was that people tend to behave in line with moral (as compared to competence) norms, especially when such norms are presented by their ingroup. The actual behavior that was tested was support for a military intervention without a mandate from the UN. In addition, this study also examined whether identification with the ingroup and religion moderated the effect of group and norm on support for the norm that was prescribed by their ingroup. The prediction was that those who identified themselves higher with the ingroup moral would show a higher support for the norm. Furthermore, the prediction was also that those who have religion would show a higher support for the norm in the ingroup moral rather than competence. In an online survey, participants were asked to read a scenario in which a military intervention without a mandate was framed as either the moral (but stupid) or smart (but immoral) thing to do by members of their own (ingroup) or another (outgroup) society. This study found that when people identified themselves with the smart (but immoral) norm, they showed a higher support for the norm. However, when people identified themselves with the moral (but stupid) norm, they tend to show a lesser support towards the norm. Most of the results in the study did not support the predictions. Possible explanations and implications are discussed.Keywords: morality, competence, ingroup identification, religion, group norm
Procedia PDF Downloads 40815629 Application of the Electrical Resistivity Tomography and Tunnel Seismic Prediction 303 Methods for Detection Fracture Zones Ahead of Tunnel: A Case Study
Authors: Nima Dastanboo, Xiao-Qing Li, Hamed Gharibdoost
Abstract:
The purpose of this study is to investigate about the geological properties ahead of a tunnel face with using Electrical Resistivity Tomography ERT and Tunnel Seismic Prediction TSP303 methods. In deep tunnels with hydro-geological conditions, it is important to study the geological structures of the region before excavating tunnels. Otherwise, it would lead to unexpected accidents that impose serious damage to the project. For constructing Nosoud tunnel in west of Iran, the ERT and TSP303 methods are employed to predict the geological conditions dynamically during the excavation. In this paper, based on the engineering background of Nosoud tunnel, the important results of applying these methods are discussed. This work demonstrates seismic method and electrical tomography as two geophysical techniques that are able to detect a tunnel. The results of these two methods were being in agreement with each other but the results of TSP303 are more accurate and quality. In this case, the TSP 303 method was a useful tool for predicting unstable geological structures ahead of the tunnel face during excavation. Thus, using another geophysical method together with TSP303 could be helpful as a decision support in excavating, especially in complicated geological conditions.Keywords: tunnel seismic prediction (TSP303), electrical resistivity tomography (ERT), seismic wave, velocity analysis, low-velocity zones
Procedia PDF Downloads 15015628 The Role of Questioning Techniques in a Literature Classroom
Authors: Barbara Magallona
Abstract:
Given the observations between students who were active participants in a dialogue with their teacher and students who simply answered the teacher’s questions, the researcher will investigate the relationship between student-teacher dialogue in the classroom and the development of higher level thinking skills with an emphasis on the questioning techniques used by the teacher. The study posits the main question: What is the relationship between teachers’ questioning techniques and the development of students’ higher level thinking skills in a literature class (or in literature classes) in Xavier? The following are the study’s sub-questions: a) What types of questions do literature teachers at Xavier School ask? b) What types of responses do literature students at Xavier School give to teachers' questions? c) To what extent is the development of students' higher level thinking skills shown in teacher-student classroom dialogues in Xavier School's literature classroom? Since questioning techniques and student responses in the literature classroom form the core of this paper and in order to evaluate them, the study uses Andersen and Krathwohl’s revision of Harold Bloom’s Taxonomy of Educational Objectives. Teun van Dijk’s discourse-cognition-society triangle will be used as a theoretical framework to design and to guide the classroom interaction.Keywords: discourse analysis, literature classroom, questioning techniques, secondary education
Procedia PDF Downloads 52915627 Considerations for the Use of High Intensity Interval Training in Secondary Physical Education
Authors: Amy Stringer, Resa Chandler
Abstract:
High Intensity Interval Training (HIIT) involves a 3-10-minute circuit of various exercises which is a viable alternative to a traditional cardiovascular and strength training regimen. Research suggests that measures of health-related fitness can either be maintained or actually improve with the use of this training method. After conducting a 6-week HIIT research study with 10-14 year old children, considerations for using a daily HIIT workout are presented. Is the use of HIIT with children a reasonable consideration for physical education programs? The benefits and challenges of this type of an intervention are identified. This study is significant in that achieving fitness gains in a small amount of daily class time is an attractive concept – especially for physical education teachers who often do not have the time necessary to accomplish all of their curricular goals in the amount of class time assigned. Basic methodologies include students participating in a circuit of exercises for 7-10 minutes at 80-95% of max heart rate as measured by heart rate monitors. Student pre and post fitness test data were collected for cardio-vascular endurance, muscular endurance, and body composition. Research notes as well as commentary by the teachers and researchers who participated in the HIIT study contributed to the understanding of the cost-benefit analysis. Major findings of the study are that HIIT has limited effectiveness but is a good choice for limited class times. Student efficacy of their ability to complete the exercises and visible heart rate data were considered to be significant factors in success of the HIIT study. The effective use of technology promoting positive audience effect during the display of heart rate data was more important at the beginning of the study than at the end. Student ‘buy-in’ and motivation, teacher motivation and ‘buy-in’, the variety of activities in the circuit and the fitness level of the student at the beginning of the study were also findings influencing the fitness outcomes of the study. Concluding Statement: High intensity interval training can be used effectively in a secondary physical education program. It is not a ‘magic bullet’ to produce health-related fitness outcomes in every student but it is an effective tool to enhance student fitness in a limited time and contribute to the goals of the program.Keywords: cardio vascular fitness, children, high intensity interval training, physical education
Procedia PDF Downloads 11615626 Surface Roughness Analysis, Modelling and Prediction in Fused Deposition Modelling Additive Manufacturing Technology
Authors: Yusuf S. Dambatta, Ahmed A. D. Sarhan
Abstract:
Fused deposition modelling (FDM) is one of the most prominent rapid prototyping (RP) technologies which is being used to efficiently fabricate CAD 3D geometric models. However, the process is coupled with many drawbacks, of which the surface quality of the manufactured RP parts is among. Hence, studies relating to improving the surface roughness have been a key issue in the field of RP research. In this work, a technique of modelling the surface roughness in FDM is presented. Using experimentally measured surface roughness response of the FDM parts, an ANFIS prediction model was developed to obtain the surface roughness in the FDM parts using the main critical process parameters that affects the surface quality. The ANFIS model was validated and compared with experimental test results.Keywords: surface roughness, fused deposition modelling (FDM), adaptive neuro fuzzy inference system (ANFIS), orientation
Procedia PDF Downloads 46215625 Transformer Fault Diagnostic Predicting Model Using Support Vector Machine with Gradient Decent Optimization
Authors: R. O. Osaseri, A. R. Usiobaifo
Abstract:
The power transformer which is responsible for the voltage transformation is of great relevance in the power system and oil-immerse transformer is widely used all over the world. A prompt and proper maintenance of the transformer is of utmost importance. The dissolved gasses content in power transformer, oil is of enormous importance in detecting incipient fault of the transformer. There is a need for accurate prediction of the incipient fault in transformer oil in order to facilitate the prompt maintenance and reducing the cost and error minimization. Study on fault prediction and diagnostic has been the center of many researchers and many previous works have been reported on the use of artificial intelligence to predict incipient failure of transformer faults. In this study machine learning technique was employed by using gradient decent algorithms and Support Vector Machine (SVM) in predicting incipient fault diagnosis of transformer. The method focuses on creating a system that improves its performance on previous result and historical data. The system design approach is basically in two phases; training and testing phase. The gradient decent algorithm is trained with a training dataset while the learned algorithm is applied to a set of new data. This two dataset is used to prove the accuracy of the proposed model. In this study a transformer fault diagnostic model based on Support Vector Machine (SVM) and gradient decent algorithms has been presented with a satisfactory diagnostic capability with high percentage in predicting incipient failure of transformer faults than existing diagnostic methods.Keywords: diagnostic model, gradient decent, machine learning, support vector machine (SVM), transformer fault
Procedia PDF Downloads 32415624 The Effect of Air Filter Performance on Gas Turbine Operation
Authors: Iyad Al-Attar
Abstract:
Air filters are widely used in gas turbines applications to ensure that the large mass (500kg/s) of clean air reach the compressor. The continuous demand of high availability and reliability has highlighted the critical role of air filter performance in providing enhanced air quality. In addition to being challenged with different environments [tropical, coastal, hot], gas turbines confront wide array of atmospheric contaminants with various concentrations and particle size distributions that would lead to performance degradation and components deterioration. Therefore, the role of air filters is of a paramount importance since fouled compressor can reduce power output and availability of the gas turbine to over 70 % throughout operation. Consequently, accurate filter performance prediction is critical tool in their selection considering their role in minimizing the economic impact of outages. In fact, actual performance of Efficient Particulate Air [EPA] filters used in gas turbine tend to deviate from the performance predicted by laboratory results. This experimental work investigates the initial pressure drop and fractional efficiency curves of full-scale pleated V-shaped EPA filters used globally in gas turbine. The investigation involved examining the effect of different operational conditions such as flow rates [500 to 5000 m3/h] and design parameters such as pleat count [28, 30, 32 and 34 pleats per 100mm]. This experimental work has highlighted the underlying reasons behind the reduction in filter permeability due to the increase of flow rates and pleat density. The reasons, which led to surface area losses of filtration media, are due to one or combination of the following effects: pleat-crowding, deflection of the entire pleated panel, pleat distortion at the corner of the pleat and/or filtration medium compression. This paper also demonstrates that the effect of increasing the flow rate has more pronounced effect on filter performance compared to pleating density. This experimental work suggests that a valid comparison of the pleat densities should be based on the effective surface area, namely, the area that participates in the filtration process, and not the total surface area the pleat density provides. Throughout this study, optimal pleat count that satisfies both initial pressure drop and efficiency requirements may not have necessarily existed.Keywords: filter efficiency, EPA Filters, pressure drop, permeability
Procedia PDF Downloads 24115623 Seat Assignment Model for Student Admissions Process at Saudi Higher Education Institutions
Authors: Mohammed Salem Alzahrani
Abstract:
In this paper, student admission process is studied to optimize the assignment of vacant seats with three main objectives. Utilizing all vacant seats, satisfying all program of study admission requirements and maintaining fairness among all candidates are the three main objectives of the optimization model. Seat Assignment Method (SAM) is used to build the model and solve the optimization problem with help of Northwest Coroner Method and Least Cost Method. A closed formula is derived for applying the priority of assigning seat to candidate based on SAM.Keywords: admission process model, assignment problem, Hungarian Method, Least Cost Method, Northwest Corner Method, SAM
Procedia PDF Downloads 50015622 Validation of the Linear Trend Estimation Technique for Prediction of Average Water and Sewerage Charge Rate Prices in the Czech Republic
Authors: Aneta Oblouková, Eva Vítková
Abstract:
The article deals with the issue of water and sewerage charge rate prices in the Czech Republic. The research is specifically focused on the analysis of the development of the average prices of water and sewerage charge rate in the Czech Republic in the years 1994-2021 and on the validation of the chosen methodology relevant for the prediction of the development of the average prices of water and sewerage charge rate in the Czech Republic. The research is based on data collection. The data for this research was obtained from the Czech Statistical Office. The aim of the paper is to validate the relevance of the mathematical linear trend estimate technique for the calculation of the predicted average prices of water and sewerage charge rates. The real values of the average prices of water and sewerage charge rates in the Czech Republic in the years 1994-2018 were obtained from the Czech Statistical Office and were converted into a mathematical equation. The same type of real data was obtained from the Czech Statistical Office for the years 2019-2021. Prediction of the average prices of water and sewerage charge rates in the Czech Republic in the years 2019-2021 were also calculated using a chosen method -a linear trend estimation technique. The values obtained from the Czech Statistical Office and the values calculated using the chosen methodology were subsequently compared. The research result is a validation of the chosen mathematical technique to be a suitable technique for this research.Keywords: Czech Republic, linear trend estimation, price prediction, water and sewerage charge rate
Procedia PDF Downloads 12015621 Infilling Strategies for Surrogate Model Based Multi-disciplinary Analysis and Applications to Velocity Prediction Programs
Authors: Malo Pocheau-Lesteven, Olivier Le Maître
Abstract:
Engineering and optimisation of complex systems is often achieved through multi-disciplinary analysis of the system, where each subsystem is modeled and interacts with other subsystems to model the complete system. The coherence of the output of the different sub-systems is achieved through the use of compatibility constraints, which enforce the coupling between the different subsystems. Due to the complexity of some sub-systems and the computational cost of evaluating their respective models, it is often necessary to build surrogate models of these subsystems to allow repeated evaluation these subsystems at a relatively low computational cost. In this paper, gaussian processes are used, as their probabilistic nature is leveraged to evaluate the likelihood of satisfying the compatibility constraints. This paper presents infilling strategies to build accurate surrogate models of the subsystems in areas where they are likely to meet the compatibility constraint. It is shown that these infilling strategies can reduce the computational cost of building surrogate models for a given level of accuracy. An application of these methods to velocity prediction programs used in offshore racing naval architecture further demonstrates these method's applicability in a real engineering context. Also, some examples of the application of uncertainty quantification to field of naval architecture are presented.Keywords: infilling strategy, gaussian process, multi disciplinary analysis, velocity prediction program
Procedia PDF Downloads 15815620 Behavior of SPEC CPU2006 Based on Optimization Levels
Authors: Faisel Elramalli, Ibrahim Althomali Amjad Sabbagh, Dhananjay Tambe
Abstract:
SPEC CPU benchmarks are used to evaluate the performance of CPUs on computer systems. In our project we are going to use SPEC CPU suite that contains several benchmarks running on two different compilers gcc and icc in different optimizations levels to evaluate the performance of a CPU. The motivation of this project is to find out which compiler and in which optimization level makes the CPU reaches the best performance. The results of that evaluation will help users of these compilers to choose the best compiler and optimization level that perform efficiently for their work. In other words, it will give users the best performance of the CPU while doing their works. This project is interesting since it will provide the method used to measure the performance of CPU and how different optimization levels of compilers can help achieve a higher performance. Moreover, it will give a good understanding of how benchmarks are used to evaluate a CPU performance. For the reader, in reality SPEC CPU benchmarks are used to measure the performance of new released CPUs to be compared to other CPUs.Keywords: SPEC, CPU, GCC, ICC, copilers
Procedia PDF Downloads 48515619 Rubric in Vocational Education
Authors: Azmanirah Ab Rahman, Jamil Ahmad, Ruhizan Muhammad Yasin
Abstract:
Rubric is a very important tool for teachers and students for a variety of purposes. Teachers use the rubric for evaluating student work while students use rubrics for self-assessment. Therefore, this paper was emphasized scoring rubric as a scoring tool for teachers in an environment of Competency Based Education and Training (CBET) in Malaysia Vocational College. A total of three teachers in the fields of electrical and electronics engineering were interviewed to identify how the use of rubrics practiced since vocational transformation implemented in 2012. Overall holistic rubric used to determine the performance of students in the skills area.Keywords: rubric, vocational education, teachers, CBET
Procedia PDF Downloads 50815618 Socioeconomic Inequality in Physical Activity: The CASPIAN-V Study
Authors: Roya Kelishadi, Mostafa Amini-Rarani, Mostafa Qorbani
Abstract:
Introduction: As a health-related behavior, physical activity (PA) has an unequal distribution relating to individual's socioeconomic status. This study aimed to assess socioeconomic inequality in PA among Iranian students and their parents at national level and according to socioeconomic status (SES) of the living regions. Method: This study was conducted as part of a national surveillance program conducted among 14400 Iranian students and their parents. Non-linear principal component analysis was used to construct the households' socioeconomic status, and the concentration index approach was applied to measure inequality in father, mother, and student’s PA. Results: The data of 13313 students and their parents were complete for the current study. At national level and SES regions, students had more PA than their parents (except in the lowest SES region), and fathers have more PA than mothers. The lowest means of mother and student's PA were find in the highest SES region. At national level, the concentration indices of father and mother’s PA were -0.050 (95 % CI: -0.067 ~ -0.030) and -0.028 (95% CI: -0.044 ~ -0.012), respectively; indicating pro-poor inequality and, the CI value of student PA was nearly equal to zero (P > 0.05). At SES regions, father and mother's PA were more concentrated in the poor, except for lower middle region. Regional concentration indices for students reveal that inequality not statistically significant at all regions. Conclusion: This study suggests that reliable evidence that comparing different aspects of inequality of PA, based on socioeconomic status and residence areas of students and their parents, could be used for better planning for health promotion programs. Moreover, given the average of mother's and student’s PA in the richer regions were low, it can be suggested that richer focused-PA planning may further increase the level of PA across higher SES and, consequently, reduce inequality in PA. These findings can be applied in the health system services.Keywords: concentration index, health system services, physical activity, socioeconomic inequality
Procedia PDF Downloads 16115617 Traffic Analysis and Prediction Using Closed-Circuit Television Systems
Authors: Aragorn Joaquin Pineda Dela Cruz
Abstract:
Road traffic congestion is continually deteriorating in Hong Kong. The largest contributing factor is the increase in vehicle fleet size, resulting in higher competition over the utilisation of road space. This study proposes a project that can process closed-circuit television images and videos to provide real-time traffic detection and prediction capabilities. Specifically, a deep-learning model involving computer vision techniques for video and image-based vehicle counting, then a separate model to detect and predict traffic congestion levels based on said data. State-of-the-art object detection models such as You Only Look Once and Faster Region-based Convolutional Neural Networks are tested and compared on closed-circuit television data from various major roads in Hong Kong. It is then used for training in long short-term memory networks to be able to predict traffic conditions in the near future, in an effort to provide more precise and quicker overviews of current and future traffic conditions relative to current solutions such as navigation apps.Keywords: intelligent transportation system, vehicle detection, traffic analysis, deep learning, machine learning, computer vision, traffic prediction
Procedia PDF Downloads 10315616 Wrist Pain, Technological Device Used, and Perceived Academic Performance Among the College of Computer Studies Students
Authors: Maquiling Jhuvie Jane R., Ojastro Regine B., Peroja Loreille Marie B., Pinili Joy Angela., Salve Genial Gail M., Villavicencio Marielle Irene B., Yap Alther Francis Garth B.
Abstract:
Introduction: This study investigated the impact of prolonged device usage on wrist pain and perceived academic performance among college students in Computer Studies. The research aims to explore the correlation between the frequency of technological device use and the incidence of wrist pain, as well as how this pain affects students' academic performance. The study seeks to provide insights that could inform interventions to promote better musculoskeletal health among students engaged in intensive technology use to further improve their academic performance. Method: The study utilized descriptive-correlational and comparative design, focusing on bona fide students from Silliman University’s College of Computer Studies during the second semester of 2023-2024. Participants were recruited through a survey sent via school email, with responses collected until March 30, 2024. Data was gathered using a password-protected device and Google Forms, ensuring restricted access to raw data. The demographic profile was summarized, and the prevalence of wrist pain and device usage were analyzed using percentages and weighted means. Statistical analyses included Spearman’s rank correlation coefficient to assess the relationship between wrist pain and device usage and an Independent T-test to evaluate differences in academic performance based on wrist pain presence. Alpha was set at 0.05. Results: The study revealed that 40% of College of Computer Studies students experience wrist pain, with 2 out of every 5 students affected. Laptops and desktops were the most frequently used devices for academic work, achieving a weighted mean of 4.511, while mobile phones and tablets received lower means of 4.183 and 1.911, respectively. The average academic performance score among students was 29.7, classified as ‘Good Performance.’ Notably, there was no significant relationship between the frequency of device usage and wrist pain, as indicated by p-values exceeding 0.05. However, a significant difference in perceived academic performance was observed, with students without wrist pain scoring an average of 30.39 compared to 28.72 for those with wrist pain and a p-value of 0.0134 confirming this distinction. Conclusion: The study revealed that about 40% of students in the College of Computer Studies experience wrist pain, but there is no significant link between device usage and pain occurrence. However, students without wrist pain demonstrated better academic performance than those with pain, suggesting that wrist health may impact academic success. These findings imply that physical therapy practices in the Philippines should focus on preventive strategies and ergonomic education to improve student health and performance.Keywords: wrist pain, frequency of use of technological devices, perceived academic performance, physical therapy
Procedia PDF Downloads 1615615 Behind Fuzzy Regression Approach: An Exploration Study
Authors: Lavinia B. Dulla
Abstract:
The exploration study of the fuzzy regression approach attempts to present that fuzzy regression can be used as a possible alternative to classical regression. It likewise seeks to assess the differences and characteristics of simple linear regression and fuzzy regression using the width of prediction interval, mean absolute deviation, and variance of residuals. Based on the simple linear regression model, the fuzzy regression approach is worth considering as an alternative to simple linear regression when the sample size is between 10 and 20. As the sample size increases, the fuzzy regression approach is not applicable to use since the assumption regarding large sample size is already operating within the framework of simple linear regression. Nonetheless, it can be suggested for a practical alternative when decisions often have to be made on the basis of small data.Keywords: fuzzy regression approach, minimum fuzziness criterion, interval regression, prediction interval
Procedia PDF Downloads 30215614 School as a Space of Power: A Foucauldian Critique
Authors: Yildirim Ortaoglan
Abstract:
The attempt to make thought school-like by fitting it into various frameworks with the institutionalization of it is almost simultaneous with philosophy itself. What once sprouted in the “academia” of old has institutionalized under the enlightenment's light, becoming the fundamental space reflecting the spirit of its age. However, the shift from the thinking temple where truth's knowledge was sought to functional spaces where power/power relations are constructed indicates a significant rupture in the meaning of school. Therefore, a genealogical inquiry into the meaning of the school can provide us with a path toward understanding how it should be approached in contemporary times. From this perspective, it is essential to highlight how power/power relations operate in the school in terms of disciplinary practices, temporal management, and spatial organization to construct a distinct subjectivation. Recognizing that the changing and evolving nature of education is related to the structure of space can be understood by revealing how disciplinary power and bio-power, two fundamental aspects of genealogical research, operate. In disciplinary power, the relationship of the subject with discipline, temporal management, and space is about improvement and normalization, while in biopower, it manifests in maximizing utility, increasing free time, and constructing spaces that seem more vital. These indicators not only facilitate the formation of students as a subjectivation but also enable the condition of the possibility of power/power relations. Because power is not applied to subjects but used by them for passage, and behind this lies the idea that the individual is already one of the components of power. As one of the components of power, in terms of subjectivation type, the student is one of the primary targets of power relations. Therefore, conducting a genealogical inquiry of the student as a type of subjectivation and the school as its living area from the philosophical foundations of education may offer a new opportunity for thinking about the contemporary crisis of thought. Within the framework of this possibility, our investigation will consider which aspects of the school and the student, brought together for educational purposes, can be thought of within and beyond power/power relations.Keywords: power, education, space, school, student, discipline
Procedia PDF Downloads 5815613 OSEME: A Smart Learning Environment for Music Education
Authors: Konstantinos Sofianos, Michael Stefanidakis
Abstract:
Nowadays, advances in information and communication technologies offer a range of opportunities for new approaches, methods, and tools in the field of education and training. Teacher-centered learning has changed to student-centered learning. E-learning has now matured and enables the design and construction of intelligent learning systems. A smart learning system fully adapts to a student's needs and provides them with an education based on their preferences, learning styles, and learning backgrounds. It is a wise friend and available at any time, in any place, and with any digital device. In this paper, we propose an intelligent learning system, which includes an ontology with all elements of the learning process (learning objects, learning activities) and a massive open online course (MOOC) system. This intelligent learning system can be used in music education.Keywords: intelligent learning systems, e-learning, music education, ontology, semantic web
Procedia PDF Downloads 31215612 Wind Power Forecasting Using Echo State Networks Optimized by Big Bang-Big Crunch Algorithm
Authors: Amir Hossein Hejazi, Nima Amjady
Abstract:
In recent years, due to environmental issues traditional energy sources had been replaced by renewable ones. Wind energy as the fastest growing renewable energy shares a considerable percent of energy in power electricity markets. With this fast growth of wind energy worldwide, owners and operators of wind farms, transmission system operators, and energy traders need reliable and secure forecasts of wind energy production. In this paper, a new forecasting strategy is proposed for short-term wind power prediction based on Echo State Networks (ESN). The forecast engine utilizes state-of-the-art training process including dynamical reservoir with high capability to learn complex dynamics of wind power or wind vector signals. The study becomes more interesting by incorporating prediction of wind direction into forecast strategy. The Big Bang-Big Crunch (BB-BC) evolutionary optimization algorithm is adopted for adjusting free parameters of ESN-based forecaster. The proposed method is tested by real-world hourly data to show the efficiency of the forecasting engine for prediction of both wind vector and wind power output of aggregated wind power production.Keywords: wind power forecasting, echo state network, big bang-big crunch, evolutionary optimization algorithm
Procedia PDF Downloads 57315611 Conducting Computational Physics Laboratory Course Using Cloud Storage Space
Authors: Ajay Wadhwa
Abstract:
A Laboratory course on computational physics is different from the conventional lab course on other topics of physics like Mechanics, Heat, Optics, etc. because it involves active participation of the teacher as well as one-to-one interaction between teacher and the student. The course content requires the teacher to teach programming language as well as numerical methods along with their applications in physics. The task becomes more daunting when about 90% of the students in the class have no previous experience of any programming language. In the presented work, we have described a methodology for conducting the computational physics course by using the Google Drive and Dropitto.me cloud storage services. We have evaluated the performance in a class of sixty students by dividing them equally into four groups. One of the groups was made the peer group on whom the presented methodology was tested. The other groups were taught by using conventional method of classroom lectures. In order to assess our methodology, we analyzed the performance of students in four class tests. A study of certain statistical parameters like the mean, standard deviation, and Z-test hypothesis revealed that the cyber methodology based on cloud storage is more efficient than the conventional method of teaching.Keywords: computational Physics, Z-test hypothesis, cloud storage, Google drive
Procedia PDF Downloads 30015610 Enhancing Mental Health Services Through Strategic Planning: The East Tennessee State University Counseling Center’s 2024-2028 Plan
Authors: R. M. Kilonzo, S. Bedingfield, K. Smith, K. Hudgins Smith, K. Couper, R. Ratley, Z. Taylor, A. Engelman, M. Renne
Abstract:
Introduction: The mental health needs of university students continue to evolve, necessitating a strategic approach to service delivery. The East Tennessee State University (ETSU) Counseling Center developed its inaugural Strategic Plan (2024-2028) to enhance student mental health services. The plan focuses on improving access, quality of care, and service visibility, aligning with the university’s mission to support academic success and student well-being. Aim: This strategic plan aims to establish a comprehensive framework for delivering high-quality, evidence-based mental health services to ETSU students, addressing current challenges, and anticipating future needs. Methods: The development of the strategic plan was a collaborative effort involving the Counseling Center’s leadership, staff, with technical support from Doctor of Public Health-community and behavioral health intern. Multiple workshops, online/offline reviews, and stakeholder consultations were held to ensure a robust and inclusive process. A SWOT analysis and stakeholder mapping were conducted to identify strengths, weaknesses, opportunities, and challenges. Key performance indicators (KPIs) were set to measure service utilization, satisfaction, and outcomes. Results: The plan resulted in four strategic priorities: service application, visibility/accessibility, safety and satisfaction, and training programs. Key objectives include expanding counseling services, improving service access through outreach, reducing stigma, and increasing peer support programs. The plan also focuses on continuous quality improvement through data-driven assessments and research initiatives. Immediate outcomes include expanded group therapy, enhanced staff training, and increased mental health literacy across campus. Conclusion and Recommendation: The strategic plan provides a roadmap for addressing the mental health needs of ETSU students, with a clear focus on accessibility, inclusivity, and evidence-based practices. Implementing the plan will strengthen the Counseling Center’s capacity to meet the diverse needs of the student population. To ensure sustainability, it is recommended that the center continuously assess student needs, foster partnerships with university and external stakeholders, and advocate for increased funding to expand services and staff capacity.Keywords: strategic plan, university counseling center, mental health, students
Procedia PDF Downloads 2115609 The Effect of Coronavirus on Social Adjustment and Depression of Arak University Students
Authors: Mansour Abdi
Abstract:
The aim of this study has been the investigation of coronavirus influence/impact on social adjustment and depression of Arak University students. The samples of study are 100 available female students at Arak University. They were assessed by the Bell Social Adjustment Questionnaire and Beck Depression. They were asked to answer two situations before the corona outbreak and the present. The result of evaluating/assessing the difference between social adjustment before and after coronavirus was not significant but, the averages indicate a decrease in the adjustment of students before and after the coronavirus. Meanwhile, there was no significant difference in depression findings but, in the present, the average amount of depression indicated an increase than its amount before the corona.Keywords: depression, social adjustment student, coronavirus, student
Procedia PDF Downloads 12015608 Performance Evaluation and Dear Based Optimization on Machining Leather Specimens to Reduce Carbonization
Authors: Khaja Moiduddin, Tamer Khalaf, Muthuramalingam Thangaraj
Abstract:
Due to the variety of benefits over traditional cutting techniques, the usage of laser cutting technology has risen substantially in recent years. Hot wire machining can cut the leather in the required shape by controlling the wire by generating thermal energy. In the present study, an attempt has been made to investigate the effects of performance measures in the hot wire machining process on cutting leather specimens. Carbonization and material removal rates were considered as quality indicators. Burning leather during machining might cause carbon particles, reducing product quality. Minimizing the effect of carbon particles is crucial for assuring operator and environmental safety, health, and product quality. Hot wire machining can efficiently cut the specimens by controlling the current through it. Taguchi- DEAR-based optimization was also performed in the process, which resulted in a required Carbonization and material removal rate. Using the DEAR approach, the optimal parameters of the present study were found with 3.7% prediction error accuracy.Keywords: cabronization, leather, MRR, current
Procedia PDF Downloads 6415607 Generic Early Warning Signals for Program Student Withdrawals: A Complexity Perspective Based on Critical Transitions and Fractals
Authors: Sami Houry
Abstract:
Complex systems exhibit universal characteristics as they near a tipping point. Among them are common generic early warning signals which precede critical transitions. These signals include: critical slowing down in which the rate of recovery from perturbations decreases over time; an increase in the variance of the state variable; an increase in the skewness of the state variable; an increase in the autocorrelations of the state variable; flickering between different states; and an increase in spatial correlations over time. The presence of the signals has management implications, as the identification of the signals near the tipping point could allow management to identify intervention points. Despite the applications of the generic early warning signals in various scientific fields, such as fisheries, ecology and finance, a review of literature did not identify any applications that address the program student withdrawal problem at the undergraduate distance universities. This area could benefit from the application of generic early warning signals as the program withdrawal rate amongst distance students is higher than the program withdrawal rate at face-to-face conventional universities. This research specifically assessed the generic early warning signals through an intensive case study of undergraduate program student withdrawal at a Canadian distance university. The university is non-cohort based due to its system of continuous course enrollment where students can enroll in a course at the beginning of every month. The assessment of the signals was achieved through the comparison of the incidences of generic early warning signals among students who withdrew or simply became inactive in their undergraduate program of study, the true positives, to the incidences of the generic early warning signals among graduates, the false positives. This was achieved through significance testing. Research findings showed support for the signal pertaining to the rise in flickering which is represented in the increase in the student’s non-pass rates prior to withdrawing from a program; moderate support for the signals of critical slowing down as reflected in the increase in the time a student spends in a course; and moderate support for the signals on increase in autocorrelation and increase in variance in the grade variable. The findings did not support the signal on the increase in skewness of the grade variable. The research also proposes a new signal based on the fractal-like characteristic of student behavior. The research also sought to extend knowledge by investigating whether the emergence of a program withdrawal status is self-similar or fractal-like at multiple levels of observation, specifically the program level and the course level. In other words, whether the act of withdrawal at the program level is also present at the course level. The findings moderately supported self-similarity as a potential signal. Overall, the assessment of the signals suggests that the signals, with the exception with the increase of skewness, could be utilized as a predictive management tool and potentially add one more tool, the fractal-like characteristic of withdrawal, as an additional signal in addressing the student program withdrawal problem.Keywords: critical transitions, fractals, generic early warning signals, program student withdrawal
Procedia PDF Downloads 18515606 Peer-Assisted Learning of Ebm in, a UK Medical School: Evaluation of the NICE Evidence Search Student Champion Scheme
Authors: Emily Jin, Harry Sharples, Anne Weist
Abstract:
Introduction: NICE Evidence Search Student Champion Scheme is a peer-assisted learning scheme that aims to improve the routine use of evidence-based information by future health and social care staff. The focus is on the NICE evidence search portal that provides selected information from more than 800 reliable health, social care, and medicines sources, including up-to-date guidelines and information for the public. This paper aims to evaluate the effectiveness of the scheme when implemented in Liverpool School of Medicine and to understand the experiences of those attending. Methods: Twelve student champions were recruited and trained in February 2020 as peer tutors during a workshop facilitated by NICE. Cascade sessions were then organised and delivered on an optional basis for students, in small groups of < 10 to approximately 70 attendees. Surveys were acquired immediately before and 8-12 weeks after cascade sessions (n=47 and 45 respectively). Data from these surveys facilitated the analysis of the scheme. Results: Surveys demonstrated 74% of all attendees frequently searched for health and social care information online as a part of their studies. However, only 15% of attendees reported having prior formal training on searching for health information, despite receiving such training earlier on in the curriculum. After attending cascade sessions, students reported a 58% increase in confidence when searching for information using evidence search, from a pre-session a baseline of 36%. Conclusion: NICE Evidence Search Student Champion Scheme provided clear benefits for attending students, increasing confidence in searching for peer-reviewed, mainly secondary sources of health information. The lack of reported training represents the unmet need that the champion scheme satisfies, and this likely benefits student champions as well as attendees. Increasing confidence in searching for healthcare information online may support future evidence-based decision-making.Keywords: evidence-based medicine, NICE, medical education, medical school, peer-assisted learning
Procedia PDF Downloads 131